Este Crackme está basado en la protección de DVD Audio Extractor 4.3. Afrontaremos dos partes, una primera donde desempacaremos PECompact 2.x y otra donde analizaremos la rutina de comprobación del número de serie. Os adelante que la única dificultad reside en desempacar ya que la rutina del serial es bastante floja.
El motivo que me ha llevado a realizar un apartado para Ollydbg 1 y otro para Ollydbg 2 es principalmente por que con Ollydbg 2 lo haremos desde Windows 7 x64 y con Ollydbg 1 desde Windos 7 x32.
3. Ponemos un breakpoint de la siguiente manera «bp VirtualFree» con la ayuda del plugin CmdBar.
4. Pulsamos F9 dos veces y aparecemos aquí.
5. A continuación pulsamos Ctrl+F9 y veremos esto.
6. Pulsamos F8 hasta salir del RETN anterior y veremos esto.
7. Al final vemos lo que estábamos buscando. El JMP EAX es el salto que nos lleva al punto de entrada original (OEP). Ponemos un breakpoint en JMP EAXy pulsamos F9, cuando se detenga Ollydbg, pulsamos F8 y aparecemos aquí.
8. Ya tenemos a PECompact contra las cuerdas, ahora mismo tenemos el Crackme desempacado en memoria.
Hacemos click en Plugins > OllyDumpEx > Dump process y veremos esto.
Pulsamos en Dump y esto nos generará un archivo que se llama DAE430_CrackMe_dump.
9. A continuación con Import Reconstructor seleccionamos el crackme y pulsamos IAT AutoSearch y Get Imports.
Veremos unas importaciones NO válidas, pulsamos en Show Invalid y las clickamos con el botón derecho > Delete thunks.
Finalmente pulsamos Fix Dump y elegimos el crackme dumpeado anteriormente. Con esto ya hemos finalizado el desempacado.
Pulsamos F8 hasta el segundo Call y en éste entramos con F7.
Seguimos con F8.
Buscamos JMP EAX, le ponemos un breakpoint y ejecutamos hast que pare en el.
Situados en JMP EAX, pulsamos F8 y llegamos al OEP.
Dumpeamos.
Reconstruimos las importaciones.
1. Cargamos el crackme en Ollydbg y vemos esto.
2. Pulsamos F8 hasta que veamos dos Calls. Pulsamos F8 hasta el segundo Call y cuando estemos situados encima de él pulsamos F7 para entrar en el.
Dentro del segundo call veremos esto.
3. Seguimos con F8 y llegamos aquí.
4. Sin tracear, nos desplazamos por el código hasta encontrar un poco más abajo JMP EAX. Le ponemos un breakpoint y pulsamos F9.
5. Cuando estemos situados en JMP EAX pulsamos F8 y llegamos al punto de entrada original (OEP).
6. Ahora con el plugin OllyDump vamos a dumpear el ejecutable que tenemos desempacado en memoria.
Dumpeamos.
7. Finalmente con Import reconstructor arreglamos las importaciones.
Análisis de la rutina del número de serie
Cargamos en Ollydbg el crackme desempacado y en las referencias de texto encontramos el mensaje «Gracias por registrarte». Pulsamos en él y llegamos a la rutina de comprobación del serial que desgranamos a continuación.
- El nombre debe tener más de 3 dígitos aunque no lo usa para el número de serie.
- El serial tiene 12 dígitos dividiendose en tres partes, 111122223333.
- La primera parte 1111 es comparada directamente con DA1X.
- Segunda parte (2222), para los dígitos 5º, 6º, 7º y 8º hace lo siguiente:
dígito *4 + dígito = A
A*8 + dígito=B
B/100 = C
C/4 = D
dígito/80 = E
E-D = F
F*4*F = G
G*4+G = H
digito - H = I
I+41 = J
GUARDA J EN LA MEMORIA 22FAFA
**Todo esto se puede resumir en dígito mod 19 + 41
- Tercera parte (3333). Finalmente compara el resultado del 5º, 6º, 7º y 8º dígitos con el 9º, 10º, 11º y 12º dígitos.
Ejemplo:
Serial = DA1X12345678
1 - (31h mod 19h) + 41h = 48h(Y)
2 - (32h mod 19h) + 41h = 41h(A)
3 - (33h mod 19h) + 41h = 42h(B)
4 - (34h mod 19h) + 41h = 43h(C)
Compara Y con 5
Compara A con 6
Compara B con 7
Compara C con 8
Luego el serial correcto sería DA1X1234YABC
Lo que más me ha gustado del capítulo es el guiño que han hecho a la RaspBerry PI. La escena transcurre al inicio del capítulo cuando uno de los protagonistas se conecta a un vehículo para hackearlo con una Raspi 3 Model B con varios pines del GPIO doblados. Os dejo unas capturas a continuación donde se aprecia el logo.
Captura del episodio
Captura del episodio
Captura del episodio
Captura del episodio
La conexión
Ya puestos, la conexión parece micro usb tipo B. Al fondo se ve lo que parece un puerto HDMI.
Captura del episodio
Captura del episodio
Captura del episodio
Cable comercial
La pifia
Lo que no me ha gustado es que al fijarme en el software que corre en el vehículo aparece un flamante OMNIBOOT.EXE con un aspecto parecido al símbolo de sistema, es decir, nos intentan vender que en un futuro el software que gestiona el vehículo es alguna variación de Windows, algo poco probable a día de hoy al menos. Con este tipo de predicciones no se puede escupir hacia arriba pero actualmente es más probable un nucleo tipo Linux u otro propietario al estilo Tesla.
Software del vehículo
Os dejo todas las capturas relevantes a continuación.
AVISO: Debido a que este reto está en activo no publicaré a donde pertenece.
En este pequeño CrackMe se nos pide investigar como se genera la clave que resuelve el reto. No tiene formulario donde introducir usuario y clave, cuando lo ejecutamos simplemente aparece una NAG dándonos a entender que no lo conseguimos.
En 401117 vemos que intenta leer del DUMP en la dirección 402084 y a partir de ahí según lo que haya en el DUMP realiza una serie de operaciones con los datos y nos devuelve el resultado en forma de NAG.
Probamos varias cosas y nuestra teoría funciona pero, ¿cúal es la cadena de texto que debemos introducir?. A partir de aquí ya es un poco la intuición de cada uno, aunque la más lógica es «tell me the answer» que aparece justo antes del bucle.
El BUCLE
En resumen:
t 74 74*8+74 = 414*8+74 = 2114+3B = 214F MOD 1A = 19 + 61 = 72 (z)
e 65 65*8+65 = 38D*8+65 = 1CCD+3B = 1D08 MOD 1A = 16 + 61 = 77 (w)
l 6C 6C*8+6C = 3CC*8+6C = 1ECC+3B = 1F07 MOD 1A = D + 61 = 6E (n)
l 6C 6C*8+6C = 3CC*8+6C = 1ECC+3B = 1F07 MOD 1A = D + 61 = 6E (n)
20 20*8+20 = 120*8+20 = 0920+3B = 095B MOD 1A = 3 + 61 = 64 (d)
m 6D 6D*8+6D = 3D5*8+6D = 1F15+3B = 1F50 MOD 1A = 8 + 61 = 69 (i)
e 65 65*8+65 = 38D*8+65 = 1CCD+3B = 1D08 MOD 1A = 16 + 61 = 77 (w)
20 20*8+20 = 120*8+20 = 0920+3B = 095B MOD 1A = 3 + 61 = 64 (d)
t 74 74*8+74 = 414*8+74 = 2114+3B = 214F MOD 1A = 19 + 61 = 72 (z)
h 68 68*8+68 = 3A8*8+68 = 1DA8+3B = 1DE3 MOD 1A = 7 + 61 = 68 (h)
e 65 65*8+65 = 38D*8+65 = 1CCD+3B = 1D08 MOD 1A = 16 + 61 = 77 (w)
20 20*8+20 = 120*8+20 = 0920+3B = 095B MOD 1A = 3 + 61 = 64 (d)
a 61 61*8+61 = 369*8+61 = 1BA9+3B = 1BE4 MOD 1A = 10 + 61 = 71 (q)
n 6E 6E*8+6E = 3DE*8+6E = 1F5E+3B = 1F9C MOD 1A = 6 + 61 = 67 (g)
s 73 73*8+73 = 40B*8+73 = 20CB+3B = 2106 MOD 1A = 4 + 61 = 65 (e)
w 77 77*8+77 = 42F*8+77 = 21EF+3B = 222A MOD 1A = A + 61 = 6B (k)
e 65 65*8+65 = 38D*8+65 = 1CCD+3B = 1D08 MOD 1A = 16 + 61 = 77 (w)
r 72 72*8+72 = 402*8+72 = 2082+3B = 20BD MOD 1A = 9 + 61 = 6A (j)
zwnndiwdzhwdqdekwj
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.
Realistic Challenge 1: Your friend tried to purchase some software off a company. But after he paid they decided to increase it’s price by a large amount. They are now refusing to send it him. Get them back by getting their most expensive software a lot cheaper than they intended you to.
Lo que nos dice el enunciado del reto a groso modo es que debemos cambiar el precio del software antes de comprarlo.
Firebug
Para resolver este reto basta con tener instalado el complemento para Firefox «Firebug«. Abrimos la web y echamos un vistazo con Firebug
Vemos un parámetro oculto que se llama «amount» y que tiene un valor de 100$. Basta con cambiarlo a 00,01$ y ya tenemos resuelto el reto.
Aquí tenemos un Crackme clásico creado por Scarebyte hallá por el año 2000 y que cuenta con varias fases siendo un crackme muy interesante para iniciarse o simplemente para divertirse. Al estar realizado en Delphi, los apartados de las checkboxes y de las trackbars se simplifican y mucho, pero aún así hay que currarselo un poco para dejar todo bien atado. Si os fijáis en las soluciones que aparecen en crackmes.de, en aquellos años se usaba DEDE y aunque yo usaré otra herramienta, DEDE sigue siendo igual de útil.
Desempacado
PEiD nos dice que nos enfrentamos a ASPack 1.08.03 -> Alexey Solodovnikov, así que vamos al lío.
Eliminar la NAG
Tan sencillo como poner un Breakpoint a User32.MessageBoxA. La llamada a NOPear está en la dirección 441CF2.
Password
Desde las string references localizamos los mensajes de chico bueno y chico malo que nos llevan al código a analizar.
0044C3CD |. E8 5294FDFF CALL CrackMe_.00425824
0044C3D2 |. 8B45 FC MOV EAX,[LOCAL.1]
0044C3D5 |. E8 9A76FBFF CALL CrackMe_.00403A74
0044C3DA |. 83F8 0C CMP EAX,0C ; Lengh C = 12
0044C3DD |. 0F85 53010000 JNZ CrackMe_.0044C536 ; Salto a chico malo
0044C3E3 |. 8D55 FC LEA EDX,[LOCAL.1]
0044C3E6 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C3EC |. E8 3394FDFF CALL CrackMe_.00425824
0044C3F1 |. 8B45 FC MOV EAX,[LOCAL.1]
0044C3F4 |. 8038 43 CMP BYTE PTR DS:[EAX],43 ; 1º dígito serial = C
0044C3F7 |. 0F85 27010000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C3FD |. 8D55 F8 LEA EDX,[LOCAL.2]
0044C400 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C406 |. E8 1994FDFF CALL CrackMe_.00425824
0044C40B |. 8B45 F8 MOV EAX,[LOCAL.2]
0044C40E |. 8078 03 6F CMP BYTE PTR DS:[EAX+3],6F ; 4º dígito serial = o
0044C412 |. 0F85 0C010000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C418 |. 8D55 F4 LEA EDX,[LOCAL.3]
0044C41B |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C421 |. E8 FE93FDFF CALL CrackMe_.00425824
0044C426 |. 8B45 F4 MOV EAX,[LOCAL.3]
0044C429 |. 8078 08 6F CMP BYTE PTR DS:[EAX+8],6F ; 9º dígito serial = o
0044C42D |. 0F85 F1000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C433 |. 8D55 F0 LEA EDX,[LOCAL.4]
0044C436 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C43C |. E8 E393FDFF CALL CrackMe_.00425824
0044C441 |. 8B45 F0 MOV EAX,[LOCAL.4]
0044C444 |. 8078 01 6C CMP BYTE PTR DS:[EAX+1],6C ; 2º dígito serial = l
0044C448 |. 0F85 D6000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C44E |. 8D55 EC LEA EDX,[LOCAL.5]
0044C451 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C457 |. E8 C893FDFF CALL CrackMe_.00425824
0044C45C |. 8B45 EC MOV EAX,[LOCAL.5]
0044C45F |. 8078 04 20 CMP BYTE PTR DS:[EAX+4],20 ; 5º dígito serial = espacio
0044C463 |. 0F85 BB000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C469 |. 8D55 E8 LEA EDX,[LOCAL.6]
0044C46C |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C472 |. E8 AD93FDFF CALL CrackMe_.00425824
0044C477 |. 8B45 E8 MOV EAX,[LOCAL.6]
0044C47A |. 8078 0A 52 CMP BYTE PTR DS:[EAX+A],52 ; 11º dígito serial = R
0044C47E |. 0F85 A0000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C484 |. 8D55 E4 LEA EDX,[LOCAL.7]
0044C487 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C48D |. E8 9293FDFF CALL CrackMe_.00425824
0044C492 |. 8B45 E4 MOV EAX,[LOCAL.7]
0044C495 |. 8078 07 75 CMP BYTE PTR DS:[EAX+7],75 ; 8º dígito serial = u
0044C499 |. 0F85 85000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C49F |. 8D55 E0 LEA EDX,[LOCAL.8]
0044C4A2 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C4A8 |. E8 7793FDFF CALL CrackMe_.00425824
0044C4AD |. 8B45 E0 MOV EAX,[LOCAL.8]
0044C4B0 |. 8078 09 6E CMP BYTE PTR DS:[EAX+9],6E ; 10º dígito serial = n
0044C4B4 |. 75 6E JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C4B6 |. 8D55 DC LEA EDX,[LOCAL.9]
0044C4B9 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C4BF |. E8 6093FDFF CALL CrackMe_.00425824
0044C4C4 |. 8B45 DC MOV EAX,[LOCAL.9]
0044C4C7 |. 8078 02 6E CMP BYTE PTR DS:[EAX+2],6E ; 3º dígito serial = n
0044C4CB |. 75 57 JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C4CD |. 8D55 D8 LEA EDX,[LOCAL.10]
0044C4D0 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C4D6 |. E8 4993FDFF CALL CrackMe_.00425824
0044C4DB |. 8B45 D8 MOV EAX,[LOCAL.10]
0044C4DE |. 8078 05 69 CMP BYTE PTR DS:[EAX+5],69 ; 6º dígito serial = i
0044C4E2 |. 75 40 JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C4E4 |. 8D55 D4 LEA EDX,[LOCAL.11]
0044C4E7 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C4ED |. E8 3293FDFF CALL CrackMe_.00425824
0044C4F2 |. 8B45 D4 MOV EAX,[LOCAL.11]
0044C4F5 |. 8078 0B 6E CMP BYTE PTR DS:[EAX+B],6E ; 12º dígito serial = n
0044C4F9 |. 75 29 JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C4FB |. 8D55 D0 LEA EDX,[LOCAL.12]
0044C4FE |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C504 |. E8 1B93FDFF CALL CrackMe_.00425824
0044C509 |. 8B45 D0 MOV EAX,[LOCAL.12]
0044C50C |. 8078 06 67 CMP BYTE PTR DS:[EAX+6],67 ; 7º dígito serial = g
0044C510 |. 75 12 JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C512 |. BA 78C54400 MOV EDX,CrackMe_.0044C578 ; ASCII "Right Password"
0044C517 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C51D |. E8 3293FDFF CALL CrackMe_.00425854
0044C522 |. EB 22 JMP SHORT CrackMe_.0044C546
0044C524 |> BA 90C54400 MOV EDX,CrackMe_.0044C590 ; ASCII "Wrong Password"
0044C529 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C52F |. E8 2093FDFF CALL CrackMe_.00425854
0044C534 |. EB 10 JMP SHORT CrackMe_.0044C546
0044C536 |> BA 90C54400 MOV EDX,CrackMe_.0044C590 ; ASCII "Wrong Password"
Chequeo rápido
ABCD EFGHIJK
Clno iguonRn
; 1º dígito serial = C
; 4º dígito serial = o
; 9º dígito serial = o
; 2º dígito serial = l
; 5º dígito serial = espacio
; 11º dígito serial = R
; 8º dígito serial = u
; 10º dígito serial = n
; 3º dígito serial = n
; 6º dígito serial = i
; 12º dígito serial = n
; 7º dígito serial = g
Básicamente chequea la frase «Cool Running» de forma desordenada como se ve justo encima, siendo el password correcto «Clno iguonRn«. Os dejo el código para que lo analicéis.
Nº serie asociado a un nombre
De nuevo con las string references localizamos el código.
0044C648 /. 55 PUSH EBP
0044C649 |. 8BEC MOV EBP,ESP
0044C64B |. 83C4 F8 ADD ESP,-8
0044C64E |. 53 PUSH EBX
0044C64F |. 56 PUSH ESI
0044C650 |. 33C9 XOR ECX,ECX
0044C652 |. 894D F8 MOV [LOCAL.2],ECX
0044C655 |. 8BF0 MOV ESI,EAX
0044C657 |. 33C0 XOR EAX,EAX
0044C659 |. 55 PUSH EBP
0044C65A |. 68 83C74400 PUSH CrackMe_.0044C783
0044C65F |. 64:FF30 PUSH DWORD PTR FS:[EAX]
0044C662 |. 64:8920 MOV DWORD PTR FS:[EAX],ESP
0044C665 |. 33C0 XOR EAX,EAX
0044C667 |. 8945 FC MOV [LOCAL.1],EAX
0044C66A |. A1 80F84400 MOV EAX,DWORD PTR DS:[44F880] ; Eax = Nombre
0044C66F |. E8 0074FBFF CALL CrackMe_.00403A74
0044C674 |. 83F8 06 CMP EAX,6 ; Cmp lengh nombre con 6
0044C677 |. 0F8E F0000000 JLE CrackMe_.0044C76D ; Salta si <= 6
0044C67D |. A1 80F84400 MOV EAX,DWORD PTR DS:[44F880] ; Eax = Nombre
0044C682 |. E8 ED73FBFF CALL CrackMe_.00403A74
0044C687 |. 83F8 14 CMP EAX,14 ; Cmp lengh nombre con 20 (14h)
0044C68A |. 0F8D DD000000 JGE CrackMe_.0044C76D ; salta si >= 20
0044C690 |. A1 80F84400 MOV EAX,DWORD PTR DS:[44F880]
0044C695 |. E8 DA73FBFF CALL CrackMe_.00403A74
0044C69A |. 85C0 TEST EAX,EAX
0044C69C |. 7E 17 JLE SHORT CrackMe_.0044C6B5
0044C69E |. BA 01000000 MOV EDX,1
0044C6A3 |> 8B0D 80F84400 /MOV ECX,DWORD PTR DS:[44F880] ; Bucle in
0044C6A9 |. 0FB64C11 FF |MOVZX ECX,BYTE PTR DS:[ECX+EDX-1]
0044C6AE |. 014D FC |ADD [LOCAL.1],ECX ; Suma dig nombre y guarda en 12FBC4
0044C6B1 |. 42 |INC EDX
0044C6B2 |. 48 |DEC EAX
0044C6B3 |.^ 75 EE \JNZ SHORT CrackMe_.0044C6A3 ; Bucle out
0044C6B5 |> A1 84F84400 MOV EAX,DWORD PTR DS:[44F884] ; Eax = Compañia
0044C6BA |. E8 B573FBFF CALL CrackMe_.00403A74
0044C6BF |. 83F8 02 CMP EAX,2 ; Cmp lengh compañia con 2
0044C6C2 |. 7E 18 JLE SHORT CrackMe_.0044C6DC ; Salta si <= 2
0044C6C4 |. A1 84F84400 MOV EAX,DWORD PTR DS:[44F884] ; Eax = Compañia
0044C6C9 |. E8 A673FBFF CALL CrackMe_.00403A74
0044C6CE |. 83F8 08 CMP EAX,8 ; Cmp lengh compañia con 8
0044C6D1 |. 7D 09 JGE SHORT CrackMe_.0044C6DC ; Salta si >= 8
0044C6D3 |. 8B45 FC MOV EAX,[LOCAL.1] ; Eax = sum nombre
0044C6D6 |. 6BC0 02 IMUL EAX,EAX,2 ; Sum nombre * 2
0044C6D9 |. 8945 FC MOV [LOCAL.1],EAX
0044C6DC |> 68 98C74400 PUSH CrackMe_.0044C798 ; ASCII "I Love Cracking and "
0044C6E1 |. 8D55 F8 LEA EDX,[LOCAL.2]
0044C6E4 |. 8B45 FC MOV EAX,[LOCAL.1]
0044C6E7 |. E8 68B0FBFF CALL CrackMe_.00407754
0044C6EC |. FF75 F8 PUSH [LOCAL.2] ; sum del nombre
0044C6EF |. 68 B8C74400 PUSH CrackMe_.0044C7B8 ; ASCII " Girls ;)"
0044C6F4 |. B8 8CF84400 MOV EAX,CrackMe_.0044F88C
0044C6F9 |. BA 03000000 MOV EDX,3
0044C6FE |. E8 3174FBFF CALL CrackMe_.00403B34 ; Concatena 1º frase + sum nombre + 2ºfrase
0044C703 |. 33C0 XOR EAX,EAX
0044C705 |. 8945 FC MOV [LOCAL.1],EAX
0044C708 |. A1 88F84400 MOV EAX,DWORD PTR DS:[44F888] ; Eax = Serial
0044C70D |. E8 6273FBFF CALL CrackMe_.00403A74
0044C712 |. 8BD8 MOV EBX,EAX
0044C714 |. A1 8CF84400 MOV EAX,DWORD PTR DS:[44F88C]
0044C719 |. E8 5673FBFF CALL CrackMe_.00403A74
0044C71E |. 3BD8 CMP EBX,EAX ; Compara tamaño frase con tamaño serial
0044C720 |. 75 4B JNZ SHORT CrackMe_.0044C76D
0044C722 |. A1 88F84400 MOV EAX,DWORD PTR DS:[44F888]
0044C727 |. E8 4873FBFF CALL CrackMe_.00403A74
0044C72C |. 85C0 TEST EAX,EAX
0044C72E |. 7E 27 JLE SHORT CrackMe_.0044C757
0044C730 |. BA 01000000 MOV EDX,1
0044C735 |> 8B0D 88F84400 /MOV ECX,DWORD PTR DS:[44F888] ; Bucle in -->
0044C73B |. 0FB64C11 FF |MOVZX ECX,BYTE PTR DS:[ECX+EDX-1]
0044C740 |. 034D FC |ADD ECX,[LOCAL.1]
0044C743 |. 8B1D 8CF84400 |MOV EBX,DWORD PTR DS:[44F88C]
0044C749 |. 0FB65C13 FF |MOVZX EBX,BYTE PTR DS:[EBX+EDX-1] ; Compara dígito a dígito nuestro serial
0044C74E |. 2BCB |SUB ECX,EBX ; con la concatenación anterior
0044C750 |. 894D FC |MOV [LOCAL.1],ECX
0044C753 |. 42 |INC EDX
0044C754 |. 48 |DEC EAX
0044C755 |.^ 75 DE \JNZ SHORT CrackMe_.0044C735 ; <-- Bucle out
0044C757 |> 837D FC 00 CMP [LOCAL.1],0
0044C75B |. 75 10 JNZ SHORT CrackMe_.0044C76D ; Salta si algo ha ido mal
0044C75D |. 8B86 14030000 MOV EAX,DWORD PTR DS:[ESI+314]
0044C763 |. BA CCC74400 MOV EDX,CrackMe_.0044C7CC ; "You have found the correct Serial :)"
En resumen
Tamaño del nombre entre 7 y 19.
Tamaño de la compañía entre 3 y 7 aunque no interviene en el serial.
Suma los valores ascii de los dígitos del nombre y lo multiplica por 2.
Concatena «I Love Cracking and » + «sum del nombre» + » Girls ;)».
Checkbox
Para afrontar esta parte del reto vamos a usar una herramienta llamada Interactive Delphi Reconstructoro IDR. En su día la mejor herramienta era DEDE, pero IDR a mi parecer es algo más potente.
Básicamente IDR nos permite sin quebraderos de cabeza localizar el código del botón que comprueba la secuencia de checkboxes correcta. Cargamos el crackme en IDR y dentro de la pestaña «Units (F2)«, abajo del todo hacemos doble click sobre «F Crack» y vemos que nos muestra todos los controles del formulario. El botón que nos interesa se llama «SpeedButton3«.
Si hacemos doble click sobre el nos muestra el código que se muestra a continuación.
Como podéis apreciar, las checkboxes involucradas son la 3, 5, 6, 9, 11, 12, 13, 15, 19 y 20. Solo nos falta saber cuales se corresponden con esa numeración y aquí ya depende de cada uno, yo en su día saqué los números a mano mediante el orden de tabulación, pero ya que tenemos IDR, el nos va a dar la solución de una forma sencilla y rápida.
Vamos a la pestaña «Forms (F5)«, seleccionamos la opción Form y hacemos doble click sobre el formulario.
Veréis que aparece el formulario con todos los recursos, incluso los puedes modificar. Localizar los checkboxes ahora es un juego de niños.
Os dejo un vídeo.
Trackbar
De nuevo, con la ayuda de IDR, localizamos la parte del código y analizamos su funcionamiento. Esta parte es la más divertida ya que requiere de un keygen pero en vez de coger el número de serie de una caja de texto lo obtiene de 5 trackbars como muestra la siguiente imagen.
1) Siendo nuestro serial : 1 2 3 4 5
a b c d e
2) Realiza las operaciones matemáticas:
Round(((Cos(sqrt(b^3+5)) + (-sqrt(a+1)) + Ln(c*3+1) + (-sqrt(d+2)) + ((e*3)/2))+0.37)*1000))
3) Obtenemos un hash resultante de 5415
4) XORea los dígitos de la siguiente manera:
(5)35 xor 86 = B6
(4)34 xor 83 = BD
(1)31 xor 86 = B7
(5)35 xor 8D = B8
De modo que tenemos B6BDB7B8
5) Compara B6BDB7B8 con B5BAB2BA
6) Revertimos el XOR para obtener el hash bueno
B5 xor 86 = 36(6)
BA xor 83 = 33(3)
B2 xor 86 = 34(4)
BA xor 8D = 37(7)
Luego el hash bueno es 6347
7) Debemos hacer fuerza bruta buscando:
Round(((Cos(sqrt(b^3+5)) + (-sqrt(a+1)) + Ln(c*3+1) + (-sqrt(d+2)) + ((e*3)/2))+0.37)*1000)) = 6347
Para obtener los seriales válidos podemos hacer bucles recursivos hasta recorrer las 10^5 opciones posibles. Una forma de hacerlo en VBNet es la siguiente.
Dim tmp As Double
Dim an, bn, cn, dn, en As Integer
For an = 0 To 9
For bn = 0 To 9
For cn = 0 To 9
For dn = 0 To 9
For en = 0 To 9
tmp = Round(((Cos(Sqrt((Pow(bn, 3)) + 5)) + (-Sqrt(an + 1)) + Log(cn * 3 + 1) + (-Sqrt(dn + 2)) + ((en * 3) / 2) + 0.37) * 1000))
txtdebug.Text = "a-b-c-d-e = Hash || " & an & "-" & bn & "-" & cn & "-" & dn & "-" & en & " = " & tmp
If tmp = 6347 Then
ListBox1.Items.Add("Serial: " & an & bn & cn & dn & en)
End If
Application.DoEvents()
Next
Next
Next
Next
Next
Os dejo como siempre el crackme y el keygen en los enlaces.
Aquí tenemos un crackme hecho en Java, lo que como comprobareis a continuación no es muy buena idea ya que conseguir el código fuente e incluso modificarlo no es muy dificil.
Decompilado
Abrimos la víctima con nuestro decompilador favorito y nos fijamos en su contenido.
Lo interesante está en la clase Main > doneActionPerformed(ActionEvent), ya que contiene el código al ejecutar el botón que chequea el serial.
Llegados a este punto podríamos hacer cualquier cosa, parchear, que el serial válido nos lo mostrara una MessageBox etc. Pero vamos a hacer algo mejor, vamos a modificar la victima para crear nuestro keygen personalizado.
Creando un Keygen a partir de la víctima
Solamente tendremos que modificar un poco la apariencia y modificar la rutina de comprobación del serial para que lo muestre en la caja de texto del serial. Finalmente abrá que recompilar.
Aquí resalto el texto a modificar para el aspecto.
Así queda la modificación para mostrar el serial correcto en la caja de texto.
Hoy tenemos aquí un crackme del 2009 originario de crackmes.de. El Crackme está hecho en VB6, sin empacar y consta de 4 tareas a superar. Un anti-debugger, un parcheo, una sorpresa y finalmente un algoritmo sencillo.
Tarea#1 – Anti-Debugger
Nuestro primer incordio es el anti-debbuger. Este lo podemos afrontar de diferentes maneras, con un plugin desde Olly o de forma permanente parcheando. Si elegimos parchear debemos hacerlo en el offset 408328, cambiando el salto je por jmp.
00408328 /0F84 69030000 je T0RNAD0'.00408697
Tarea#2 – Parche
Si iniciamos el crackme nos encontramos con la siguiente nag que nos impide el arranque.
Las referencias de texto parecen encriptadas así que, ponemos un breakpoint a MSVBVM60.rtcMsgBox y vemos que la llamada se hace desde el offset 406897. Un poco más arriba encontramos un salto condicional muy interesante, concretamente en el offset 40677B. Lo cambiamos por un jmp y arrancamos el programa.
Tarea#3 – Encontrando el camino
A continuación arranca el crackme y vemos lo siguiente.
La sorpresa es que el formulario no se mueve y no hay rastro de las cajas de texto del keygenme. Por suerte para nosotros este crackme está hecho en vb6 y como tal podemos abrirlo con VB Reformer para ver que se nos ofrece.
Abrimos VB Reformer y cambiamos la propiedad «Moveable» del formulario a true.
Ahora ya podemos mover el formulario y por suerte para nosotros, si lo movemos hacia la esquina superior izquierda aparecen las cajas de texto por arte de magia.
Tarea#4 – El keygen
Como hemos dicho antes, las referencias de texto son inútiles, de modo que ponemos un breakpoint a MSVBVM60.__vbaStrCmp y enseguida obtenemos nuestro primer serial válido. También nos percatamos de que hasta que no metemos en el nombre 8 dígitos, no nos muestra un mensaje de error. De este mismo modo obtenemos que el nombre más grande puede tener 30 dígitos.
Username: deurusab (lenght 8)
0012F3F0 0040533A RETURN to T0RNAD0'.0040533A from MSVBVM60.__vbaStrCmp
0012F3F4 0015C954 UNICODE "L-8-deurus-0199F9CA"
Username: abcdefghijklmnopqrstuvwxyz1234 (lenght 30)
0012F3F0 0040533A RETURN to T0RNAD0'.0040533A from MSVBVM60.__vbaStrCmp
0012F3F4 0015F40C UNICODE "L-30-lmnopq-DD19F9CA"
Finalmente llegamos a la rutina de comprobación del serial. Usaremos como nombre: abcdefghijklmnopqrstuvwxyz1234.
Este crackme pertenece a la página de Karpoff Spanish Tutor. Data del año 2000 y está realizado en «Borland Delphi 6.0 – 7.0», además, para resolverlo deberemos activar un botón y conseguir la clave de registro. La principal dificultad proviene a la hora de activar el botón ya que el serial es en realidad un serial hardcodeado muy sencillo.
Activar un botón en memoria
Existen numerosas herramientas para facilitarnos esta tarea, una de las más conocidas en el entorno del Cracking es «Veoveo» realizado por Crack el Destripador & Marmota hace ya unos añitos. Con el crackme ejecutado, ejecutamos VeoVeo y nos aparece el icono en la barra de tareas, hacemos click derecho y elegimos Activar Botones (manual) y ya tenemos el botón activado. Claro está que en cada ejecución del Crackme debemos de Re-activarlo.
Activar el botón de forma permanente
Lo que siempre nos interesa es que el botón esté activado de forma permanente y eso nos exige un poco más de atención. En este caso nos enfrentamos a Delphi y no nos sirve ni Resource Hacker ni Dede. Cuando nos encontramos en un punto muerto el último recurso siempre es realizar un programa en Delphi con un botón activado y otro desactivado y compararlos con un editor hexadecimal para saber que cambia. Si hacemos esto llegaremos a la conclusión de que en Delphi el bit que equivale a desactivado es 8 y ha activado es 9. Con este simple cambio ya tenemos el crackme parcheado. Comentar que en este caso el crackme no tiene ningún timer ni ninguna rutina que desactive el botón de forma periódica, este es el caso más simple.
Serial Hardcodeado
Abrimos Ollydbg y en las «String references» encontramos los mensajes de versión registrada, pinchamos sobre ellos y vemos a simple vista la zona de comprobación del serial. Como podéis observar, el serial se vé a simple vista.
0045811A |. B8 10824500 MOV EAX,CrackMe3.00458210 ; ASCII "ESCRIBE ALGO JOER"
0045811F |. E8 D889FDFF CALL CrackMe3.00430AFC
00458124 |. EB 5C JMP SHORT CrackMe3.00458182
00458126 |> 807D FF 4F CMP BYTE PTR SS:[EBP-1],4F - O
0045812A |. 75 56 JNZ SHORT CrackMe3.00458182
0045812C |. 807D FE 41 CMP BYTE PTR SS:[EBP-2],41 - A
00458130 |. 75 50 JNZ SHORT CrackMe3.00458182
00458132 |. 807D FD 45 CMP BYTE PTR SS:[EBP-3],45 - E
00458136 |. 75 4A JNZ SHORT CrackMe3.00458182
00458138 |. 807D FC 4B CMP BYTE PTR SS:[EBP-4],4B - K
0045813C |. 75 44 JNZ SHORT CrackMe3.00458182
0045813E |. 807D FB 43 CMP BYTE PTR SS:[EBP-5],43 - C
00458142 |. 75 3E JNZ SHORT CrackMe3.00458182
00458144 |. 807D FA 41 CMP BYTE PTR SS:[EBP-6],41 - A
00458148 |. 75 38 JNZ SHORT CrackMe3.00458182
0045814A |. 807D F9 52 CMP BYTE PTR SS:[EBP-7],52 - R
0045814E |. 75 32 JNZ SHORT CrackMe3.00458182
00458150 |. 807D F8 4B CMP BYTE PTR SS:[EBP-8],4B - K
00458154 |. 75 2C JNZ SHORT CrackMe3.00458182
00458156 |. 807D F7 20 CMP BYTE PTR SS:[EBP-9],20 -
0045815A |. 75 26 JNZ SHORT CrackMe3.00458182
0045815C |. 807D F6 49 CMP BYTE PTR SS:[EBP-A],49 - I
00458160 |. 75 20 JNZ SHORT CrackMe3.00458182
00458162 |. 807D F5 4F CMP BYTE PTR SS:[EBP-B],4F - O
00458166 |. 75 1A JNZ SHORT CrackMe3.00458182
00458168 |. 807D F4 54 CMP BYTE PTR SS:[EBP-C],54 - T
0045816C |. 75 14 JNZ SHORT CrackMe3.00458182
0045816E |. 807D F3 20 CMP BYTE PTR SS:[EBP-D],20 -
00458172 |. 75 0E JNZ SHORT CrackMe3.00458182
00458174 |. 807D F2 41 CMP BYTE PTR SS:[EBP-E],41 - A
00458178 |. 75 08 JNZ SHORT CrackMe3.00458182
0045817A |. 807D F1 59 CMP BYTE PTR SS:[EBP-F],59 - Y
0045817E |. 75 02 JNZ SHORT CrackMe3.00458182
00458180 |. B3 01 MOV BL,1
00458182 |> 80FB 01 CMP BL,1
00458185 |. 75 4C JNZ SHORT CrackMe3.004581D3
00458187 |. BA 2C824500 MOV EDX,CrackMe3.0045822C
0045818C |. 8B86 F4020000 MOV EAX,DWORD PTR DS:[ESI+2F4]
00458192 |. E8 B5EBFDFF CALL CrackMe3.00436D4C
00458197 |. BA 48824500 MOV EDX,CrackMe3.00458248 ; ASCII "VERSION REGISTRADA :)"
Serial = YA TOI KRACKEAO
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.
En los retos de esteganografía ya uno se espera de todo, y cuantos más haces más enrevesados encuentras. Hoy no, hoy vamos a tratar un clásico dentro de este tipo de retos, ocultar un archivo dentro de otro.
Buscando la solución
Prácticamente lo primero que hago cuando me descargo una imágen en éste tipo de retos es abrirla con un editor hexadecimal, y en este caso hemos dado en el clavo. La abrimos con un editor cualquiera y al final del archivo encontramos que estamos tratando con un archivo ZIP (cabecera PK).
La abrimos con 7zip y vemos el prometido archivo txt, dentro ¿qué abrá?
Con The Ring inauguro una nueva sección llamada Blooper Tech Movie (BTM), algo así como pifias o tomas falsas tecnológicas en películas. Aunque no os lo creáis, los creadores del séptimo arte y sus asesores son humanos, y como tal se rigen por la ley del mínimo esfuerzo. En este BTM vamos a ver como una simple escena nos puede arruinar la excelente atmósfera de intriga que hasta ese momento se respiraba.
BTM
Transcurridos 70 minutos de película vemos que la protagonista está en una redacción buscando información sobre la maldita cinta de vídeo en un PC.
Hasta aquí todo correcto, pero instantes después vemos que realiza una búsqueda sobre «Moesko Islands» y cuando se abre el plano y podemos ver la barra de direcciones, en realidad vemos un archivo local situado en «C:\WIN98\Desktop\search.com\2_moesko_island_pt2.html«. A continuación la secuencia, se pueden ver los enlaces «locales» en el segundo 13 y 17.
Teniendo en cuenta que la película data del año 2002, me parece increíble que los productores no se lo curraran un poco más y registraran un dominio como «jdoesearch.com» y simularan que se realizan las búsquedas ONline y no OFFline como se están haciendo en realidad.
Quizá no tenían pensado mostrar la parte superior del navegador o simplemente pensaron que nadie se fijaría pero el caso es que para cualquiera que haya navegado por Internet más de 2 veces, si se fija en la barra de direcciones su expresión facial cambia a WTF!.
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.
El cifrado XOR es uno de los algoritmos más utilizados en el mundillo de la encriptación. Aunque por sí solo no es seguro, suele formar parte de cifrados más complejos e incluso si sois aficionados a los crackmes os habréis dado cuenta de que raro es el crackme que no lo utiliza.
Hoy vamos a hacer un recorrido sobre los retos de encriptación que nos propone yoire.com, que aunque son muy sencillos, nos proporcionan una estupenda base para iniciarnos en este tipo de retos.
/challenges/crypt/xor/0_chall_very_easy
En este primer reto, el autor te da directamente la solución, ya que, nos da un texto cifrado y nos dice que está cifrado con la clave 10. Lo que el autor no indica es que la clave es hexadecimal, mas adelante ya aprendereis a fijaros en esos detalles.
Texto cifrado: uqci0t~7d0ie0dxy~{
Clave: 10
/challenges/crypt/xor/1_chall_easy
Esta vez disponemos de un texto cifrado pero sin pistas. Si nos fijamos en el código fuente veremos que la clave utilizada esta vez es 20 y decimal.
<?php
include("../../../core.php");
print Website::header(array("title"=>"The XOR Chall - Easy"));
print Challenges::header();
?>
Convierte la solución que está cifrada con una clave XOR para obtener la respuesta a este reto:
<br><br>
<?php
$solution_xored="m{a4s{`4}`5";
$key = sprintf("%2x",20);
$solution = Crypt::XorData($solution_xored,$key);
print "La solución es: ".$solution_xored;
print "<br><br>";
print Challenges::solutionBox();
print Challenges::checkSolution(Crypt::XorData($solution_xored,$key));
?>
/challenges/crypt/xor/2_chall_mid
En esta ocasión debemos ojear el código fuente para averiguar como solucionar el reto. En esta ocasión y como de lo que se trata es de aprender, este lo dejaré sin solucionar.
<?php
include("../../../core.php");
print Website::header(array("title"=>"The XOR Chall - Mid"));
print Challenges::header();
?>
Convierte la solución que está codificada y cifrada con una clave XOR para obtener la respuesta a este reto:
<br><br>
<?php
foreach (
preg_split("/\./","2.4.10.71.3698")
as $something
)
$value=pow($something,2);
$key = dechex($value);
$solution_xored = base64_decode("ucSnos+lo8Oqtw==");
$solution = Crypt::XorData($solution_xored,$key);
print Challenges::solutionBox();
print Challenges::checkSolution(Crypt::XorData($solution_xored,$key));
?>
<a href="<?=$_SERVER["PHP_SELF"]?>?showSource">Ver código fuente</a>
<?php
if(Common::getString("showSource")!==false) {
print "<hr>";
highlight_file(__FILE__);
}
print Website::footer();
?>
Lo primero es mediante un compilador online de PHP, obtener la variable $key.
En este reto nos indican que el código fuente está encriptado. Cuando nos enfrentamos a XOR en texto grandes y teniendo un indicio de lo que puede contener el código desencriptado es sencillo encontrar lo que buscamos. En este caso en concreto podemos intuir que seguramente el texto contenga la palabra «php«, una vez llegamos a esa conclusión la solución llega sola. Este método no deja de ser un ataque por fuerza bruta.
Código encriptado
lo 8 p]Z9>3<%45xr~~~~~~3?"5~ 8 ryk]Z "9>$p52#9$5jj85145"x1""1)xr$9
En este último reto nos aparece un mensaje que nos dice «La solución es: 7b1a4147100a155a0f45574e0f58«. Nos fijamos en el código fuente y vemos que en la encriptación interviene una cookie llamada «PHPSESSID«.
Código fuente
<?php
include("../../../core.php");
print Website::header(array("title"=>"The XOR Chall - Hard"));
print Challenges::header();
?>
Convierte la solución que está codificada y cifrada con una clave XOR para obtener la respuesta a este reto:
<br><br>
<?php
$sessid = isset($_COOKIE["PHPSESSID"])?$_COOKIE["PHPSESSID"]:">hi!|m¬_ö_Ó_;m'`ñ·$\"<";
$key = Encoder::asc2hex($sessid);
$hiddenSolution = file_get_contents(Config::$challsHiddenData."crypt_xor_average.solution");
$hex_xored_solution = Encoder::data2hex(Crypt::XorData($hiddenSolution,$key));
print "La solucion es: ".$hex_xored_solution;
print "<br><br>";
print Challenges::solutionBox();
print Challenges::checkSolution($hiddenSolution);
?>
<a href="<?=$_SERVER["PHP_SELF"]?>?showSource">Ver código fuente</a>
<?php
if(Common::getString("showSource")!==false) {
print "<hr>";
highlight_file(__FILE__);
}
print Website::footer();
?>
Desde Firefox vamos a usar una extensión muy interesante llamada Advanced Cookie Manager que nos permitirá visualizar y modificar dicha cookie.
Una particularidad de la encriptación XOR es que si realizamos «algo XOR 0 == algo«, por lo que un ataque típico sería anular la cookie. La modificamos poniendo como valor 0 y guardamos. Recargamos la web con F5 y ahora nos fijamos que el valor de la solución ha cambiado a «7e5f4410435f1058514254100a19«. Finalmente y teniendo en cuenta que el texto que tenemos es hexadecimal, hacemos fuerza bruta marcando la opción Output First y clickamos en Search.
En el mismo directorio donde tenemos el programa se genera un archivo llamado «XOR_enumeration.txt«, que contiene todos los resultados, echamos un vistazo y hemos tenido suerte.
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.
En los retos de esteganografía ya uno se espera de todo, y cuantos más haces más enrevesados encuentras. Hoy no, hoy vamos a tratar un clásico dentro de este tipo de retos, ocultar un archivo dentro de otro.
Buscando la solución
Prácticamente lo primero que hago cuando me descargo una imágen en éste tipo de retos es abrirla con un editor hexadecimal, y en este caso hemos dado en el clavo. La abrimos con un editor cualquiera y al final del archivo encontramos que estamos tratando con un archivo ZIP (cabecera PK).
La abrimos con 7zip y vemos el prometido archivo txt, dentro ¿qué abrá?
Hoy tenemos aquí un crackme hecho en Visual Basic 6 (pcode), pero lo vamos a abordar de una manera diferente, ya que, vamos a conseguir el código fuente mediante VB Decompiler, le vamos a hacer una serie de modificaciones para hacerlo funcional con la ayuda de ExDec, y a partir de eso vamos a generar nuestro propio keygen.
El funcionamiento del crackme es simple, tenemos una primera caja de texto «Code» que en función de lo que introduzcamos nos activa el botón «OK». Al pulsar el botón comprueba lo que tengamos en la caja de texto «Serial» para haber si está todo correcto.
Obteniendo el código fuente
Abrimos el crackme con VB Decompiler y vemos sus fauces.
Pinchando en cada parte obtenemos su respectivo código fuente.
El botón OK
Private Sub Command1_Click() '402F70
'Data Table: 402724
Dim ourserial As Variant
ourserial = CVar(Me.SERIAL.Text) 'String
If (ourserial = cript(Left$(Me.CODE.Text, &HA))) Then
MsgBox "Great", 0, ourserial
End
End If
Dim x As String
x = cript(Left$(Me.CODE.Text, &HA))
MsgBox "Not Completed - " & x, 0, ourserial
Me.CODE.Text = ""
Me.SERIAL.Text = ""
Exit Sub
End Sub
El evento KeyUp
Private Sub CODE_KeyUp(KeyCode As Integer, Shift As Integer)
'Data Table: 402724
If (Len(Me.CODE.Text) > 4) Then
ourserialsum = checkcode(Me.CODE.Text)
If CBool((ourserialsum > 70) And (ourserialsum < 90)) Then
Me.Command1.Enabled = True
End If
End If
Exit Sub
End Sub
La función cript
Public Function cript(a)
'Data Table: 402724
Dim var_9C As Long
var_98 = CStr(UCase(a))
For var_10C = 1 To CVar(Len(var_98)): var_CC = var_10C 'Variant
var_9C = CLng((CVar(var_9C) + (CVar((Asc(Mid$(var_98, CLng(var_CC), 1)) - 9) Xor &H58) + var_CC) ^ 2))
Next var_10C 'Variant
For var_160 = 1 To 100: var_140 = var_160
If (Mid$(CVar(Me.CODE.Text), CLng(var_140), 1) = vbNullString) Then
GoTo loc_4030C0
End If
Next var_160
loc_4030C0:
var_9C = CLng(((CVar(var_9C) * Int((var_140 / 2))) * 16))
var_94 = Hex(var_9C) 'Variant
cript = var_94
End Function
La función checkcode
Public Function checkcode(a)
For var_F4 = 1 To CVar(Len(a)): var_A4 = var_F4
var_128 = var_128 + (CVar(Asc(Mid$(a, CLng(var_A4), 1))))
Next var_F4
var_94 = Int(((var_128 / CVar(Len(a) / CVar(Len(a)))))
checkcode = var_94
End Function
La rutina de comprobación del serial
Se compone de dos partes, el código y el serial.
El código
Si el resultado de la función checkcode está entre70 y 90 nos activa el botón OK.
El serial
Lo genera la función cript en función del código anterior.
Arreglando el código fuente
Con lo obtenido anteriormente podemos entender perfectamente el comportamiento de la comprobación del serial pero si los cargamos en Visual Basic 6 y lo intentamos ejecutar tal cual nos dará una serie de errores. Es aquí cuando entra ExDec, ya que, nos proporciona el desensamblado del programa en forma de Opcode para poder comparar con el código obtenido.
En este caso el único problema se encuentra en la función checkcode en concreto en ésta línea:
El problema está en que divide dos veces entre el número de dígitos de a, si lo analizamos vemos que es imposible ya que nunca nos daría un código entre 70 y 90. La corrección queda así:
var_94 = Int(((var_128 / CVar(Len(a)))))
El KeyGen
Finalmente el código fuente de nuestro keygen quedaría así:
Private Sub Command1_Click() 'Generate CODE
Dim CODE As String
Dim var As Integer
Randomize
var = CLng((0 - 9999) * Rnd + 9999)
Me.CODE.Text = "deurus" & var
codesum = checkcode(Me.CODE.Text)
If CBool((codesum > 70) And (codesum < 90)) Then
lbl.Caption = "Code valid, now generate a serial"
Command2.Enabled = True
Else
Command2.Enabled = False
Command1_Click
End If
End Sub
Private Sub Command2_Click() 'Generate SERIAL
If (Len(Me.CODE.Text) > 4) Then
codesum = checkcode(Me.CODE.Text)
If CBool((codesum > 70) And (codesum < 90)) Then
SERIAL.Text = cript(Left$(Me.CODE.Text, 10))
Else
lbl.Caption = "Code not valid, first gen code"
End If
End If
End Sub
Private Sub CODE_KeyUp(KeyCode As Integer, Shift As Integer)
If (Len(Me.CODE.Text) > 4) Then
var_B0 = checkcode(Me.CODE.Text)
lbl.Caption = "Value must be between 70 - 90. Yours: " & var_B0
If CBool((var_B0 > 70) And (var_B0 < 90)) Then
lbl.Caption = "Code valid, now generate a serial"
Command2.Enabled = True
Else
Command2.Enabled = False
End If
End If
Exit Sub
End Sub
Public Function cript(a)
Dim var_9C As Long
var_98 = CStr(UCase(a))
For var_10C = 1 To CVar(Len(var_98)): var_CC = var_10C
var_9C = CLng((CVar(var_9C) + (CVar((Asc(Mid$(var_98, CLng(var_CC), 1)) - 9) Xor &H58) + var_CC) ^ 2))
Next var_10C
For var_160 = 1 To 100: var_140 = var_160
If (Mid$(CVar(Me.CODE.Text), CLng(var_140), 1) = vbNullString) Then
GoTo loc_4030C0
End If
Next var_160
loc_4030C0:
var_9C = CLng(((CVar(var_9C) * Int((var_140 / 2))) * 16))
var_94 = Hex(var_9C)
cript = var_94
End Function
Public Function checkcode(a)
For var_F4 = 1 To CVar(Len(a)): var_A4 = var_F4
'Suma el valor ascii de todos los caracteres / Add the ascii value of our code
var_128 = var_128 + (CVar(Asc(Mid$(a, CLng(var_A4), 1))))
Next var_F4
'Lo divide entre la longitud del code / Divide our codesum by code lenght
var_94 = Int(((var_128 / CVar(Len(a))))) 'corrección
checkcode = var_94
End Function
En crackmes.de podéis conseguir el crackme y el keygen.
He de iniciar esta entrada diciendo que la segunda temporada de Stranger Things es sencillamente genial. Son 9 horas intensas que no dejan indiferente a nadie y además en el capítulo 8 nos han dejado una de esas perlas informáticas que tanto nos gustan.
La escena la protagoniza Bob Newby, un buen hombre amante de la electrónica de aquella época que trabaja en RadioShack y transcurre en el laboratorio secreto de Hawkins. En un momento dado, Bob propone «saltarse» la seguridad del laboratorio y para ello se traslada al sótano donde se encuentran los «servidores».
Para comprender esta escena hay que situarse temporalmente. Estamos hablando de los años 80, en concreto la escena transcurre en 1984 y los equipos de los que dispone el laboratorio son unos maravillosos IBM. No se llega a apreciar bien el modelo de IBM utilizado pero teniendo en cuenta que el monitor que aparece es un terminal IBM 3180, la búsqueda se reduce a los sistemas compatibles S/36, S/38, AS/400, 5294 ó 5394.
IBM 3180 (https://www.argecy.com/3180)
Cracking BASIC or BASIC Cracking?
La escena plantea un ataque de fuerza bruta a un código de 4 dígitos como se puede observar en la imagen a continuación. Esto puede parecer una chorrada hoy día pero podía suponer un pequeño reto para un micro de 8 bits.
Cracking Basic or Basic Cracking?
A simple vista se aprecian una serie de bucles recursivos, una llamada a una función y una sentencia condicional. Desconozco si la sintaxis del lenguaje es la correcta pero mucho me temo que es más bien una mezcla de BASIC y pseudocódigo. Pero lo que más me ha llamado la atención sin duda es que la palabra THEN parece que se sale del monitor como si estuviera realizado en post-producción. Os invito a que ampliéis la imagen y comentéis lo que os parece a vosotr@s.
Os dejo aquí el código para los más curiosos.
10 DIM FourDigitPassword INTEGER
20 FOR i = 0 TO 9
30 FOR j = 0 TO 9
40 FOR k = 0 TO 9
50 FOR l = 0 TO 9
60 FourDigitPassword = getFourDigits (i,j,k,l)
70 IF checkPasswordMatch(FourDigitPassword) = TRUE THEN
80 GOTO 140
90 END
100 NEXT l
110 NEXT k
120 NEXT j
130 NEXT i
140 PRINT FourDigitPassword
Aunque la entrada está dentro del contexto de los Blooper Tech Movies, digamos que en esta ocasión no voy a ir más allá. La escena es creíble y queda bien integrada en la época en la que se desarrolla el capítulo. Por esto mismo, solamente espero que las temporadas venideras sean tan buenas y cuiden tanto los detalles como sus predecesoras.
Los retos de criptografía pueden ser muy variados como he dicho anteriormente. El secreto suele estar en saber a que te enfrentas y posteriormente construir una herramienta para descifrarlo o usar una ya existente (la mayoría de los casos).
Una web con la que suelo resolver la mayoría de retos es dcode.fr. Si os fijáis en el enlace, la lista de categorías asciende a 48 y disponéis de unos 800 algoritmos para rebanaros los sesos.
A continuación veamos unos cuantos retos que podéis encontrar por la red. Cabe destacar que normalmente el título del reto dice mucho del algoritmo.
Solución: Aquí nuestro primer impulso es utilizar fuerza bruta a MD5, pero cuando nos damos contra la pared el siguiente candidato es LAN Manager. Aquí la opción que más os guste, Cain, John The Ripper, etc.
Con John The Ripper tenemos que preparar un archivo de texto del estilo: deurus.info:1011:4C240DDAB17D1796AAD3B435B51404EE:4C240DDAB17D1796AAD3B435B51404EE:::
Solución: Para la primera parte la conversión es directa. Para la segunda, la dificultad reside en darse cuenta que hay que separar en grupos de cinco y decodificar por separado.
Conversiones, cifra clásica, hash, simétricos, asimétricos, combinaciones de varios algoritmos y un largo etcetera. Como veis los hay para todos los gustos, ten en cuenta que aquí os muestro una pequeñísima parte de lo que os encontrareis en las webs de retos, pero para despertar la curiosidad es suficiente.
Este crackme pertenece a la página de Karpoff Spanish Tutor. Data del año 2000 y está realizado en «Borland Delphi 6.0 – 7.0», además, para resolverlo deberemos activar un botón y conseguir la clave de registro. La principal dificultad proviene a la hora de activar el botón ya que el serial es en realidad un serial hardcodeado muy sencillo.
Activar un botón en memoria
Existen numerosas herramientas para facilitarnos esta tarea, una de las más conocidas en el entorno del Cracking es «Veoveo» realizado por Crack el Destripador & Marmota hace ya unos añitos. Con el crackme ejecutado, ejecutamos VeoVeo y nos aparece el icono en la barra de tareas, hacemos click derecho y elegimos Activar Botones (manual) y ya tenemos el botón activado. Claro está que en cada ejecución del Crackme debemos de Re-activarlo.
Activar el botón de forma permanente
Lo que siempre nos interesa es que el botón esté activado de forma permanente y eso nos exige un poco más de atención. En este caso nos enfrentamos a Delphi y no nos sirve ni Resource Hacker ni Dede. Cuando nos encontramos en un punto muerto el último recurso siempre es realizar un programa en Delphi con un botón activado y otro desactivado y compararlos con un editor hexadecimal para saber que cambia. Si hacemos esto llegaremos a la conclusión de que en Delphi el bit que equivale a desactivado es 8 y ha activado es 9. Con este simple cambio ya tenemos el crackme parcheado. Comentar que en este caso el crackme no tiene ningún timer ni ninguna rutina que desactive el botón de forma periódica, este es el caso más simple.
Serial Hardcodeado
Abrimos Ollydbg y en las «String references» encontramos los mensajes de versión registrada, pinchamos sobre ellos y vemos a simple vista la zona de comprobación del serial. Como podéis observar, el serial se vé a simple vista.
0045811A |. B8 10824500 MOV EAX,CrackMe3.00458210 ; ASCII "ESCRIBE ALGO JOER"
0045811F |. E8 D889FDFF CALL CrackMe3.00430AFC
00458124 |. EB 5C JMP SHORT CrackMe3.00458182
00458126 |> 807D FF 4F CMP BYTE PTR SS:[EBP-1],4F - O
0045812A |. 75 56 JNZ SHORT CrackMe3.00458182
0045812C |. 807D FE 41 CMP BYTE PTR SS:[EBP-2],41 - A
00458130 |. 75 50 JNZ SHORT CrackMe3.00458182
00458132 |. 807D FD 45 CMP BYTE PTR SS:[EBP-3],45 - E
00458136 |. 75 4A JNZ SHORT CrackMe3.00458182
00458138 |. 807D FC 4B CMP BYTE PTR SS:[EBP-4],4B - K
0045813C |. 75 44 JNZ SHORT CrackMe3.00458182
0045813E |. 807D FB 43 CMP BYTE PTR SS:[EBP-5],43 - C
00458142 |. 75 3E JNZ SHORT CrackMe3.00458182
00458144 |. 807D FA 41 CMP BYTE PTR SS:[EBP-6],41 - A
00458148 |. 75 38 JNZ SHORT CrackMe3.00458182
0045814A |. 807D F9 52 CMP BYTE PTR SS:[EBP-7],52 - R
0045814E |. 75 32 JNZ SHORT CrackMe3.00458182
00458150 |. 807D F8 4B CMP BYTE PTR SS:[EBP-8],4B - K
00458154 |. 75 2C JNZ SHORT CrackMe3.00458182
00458156 |. 807D F7 20 CMP BYTE PTR SS:[EBP-9],20 -
0045815A |. 75 26 JNZ SHORT CrackMe3.00458182
0045815C |. 807D F6 49 CMP BYTE PTR SS:[EBP-A],49 - I
00458160 |. 75 20 JNZ SHORT CrackMe3.00458182
00458162 |. 807D F5 4F CMP BYTE PTR SS:[EBP-B],4F - O
00458166 |. 75 1A JNZ SHORT CrackMe3.00458182
00458168 |. 807D F4 54 CMP BYTE PTR SS:[EBP-C],54 - T
0045816C |. 75 14 JNZ SHORT CrackMe3.00458182
0045816E |. 807D F3 20 CMP BYTE PTR SS:[EBP-D],20 -
00458172 |. 75 0E JNZ SHORT CrackMe3.00458182
00458174 |. 807D F2 41 CMP BYTE PTR SS:[EBP-E],41 - A
00458178 |. 75 08 JNZ SHORT CrackMe3.00458182
0045817A |. 807D F1 59 CMP BYTE PTR SS:[EBP-F],59 - Y
0045817E |. 75 02 JNZ SHORT CrackMe3.00458182
00458180 |. B3 01 MOV BL,1
00458182 |> 80FB 01 CMP BL,1
00458185 |. 75 4C JNZ SHORT CrackMe3.004581D3
00458187 |. BA 2C824500 MOV EDX,CrackMe3.0045822C
0045818C |. 8B86 F4020000 MOV EAX,DWORD PTR DS:[ESI+2F4]
00458192 |. E8 B5EBFDFF CALL CrackMe3.00436D4C
00458197 |. BA 48824500 MOV EDX,CrackMe3.00458248 ; ASCII "VERSION REGISTRADA :)"
Serial = YA TOI KRACKEAO
File carving is the process of reassembling computer files from fragments in the absence of filesystem metadata. Wikipedia. "File carving", literalmente tallado
En esta ocasión vamos a hablar de una película de culto de los años 90, Hackers – Piratas Informáticos. La verdad es que aunque puede ser entretenida, tecnológicamente es una pesadilla y es que esta película es un claro ejemplo de cuando Hollywood prefiere agradar visualmente a representar escenas realistas.
Tras cuatro minutos en los que se nos presenta a Dade (Jonny Lee Miller) y sus problemas con la ley a una temprana edad, saltamos unos años después hasta ver a Dade encerrado en su habitación volviendo a las andadas intentando acceder ilegítimamente a los servidores de una cadena de televisión. Para ello hace uso de algo muy conocido en el mundillo Hacker, la Ingeniería Social, y es que aunque ahora disponemos de «cierta» conciencia en seguridad informática, en los años 90 no había ninguna. Bien, el caso es que Dade llama a las oficinas de la citada cadena de televisión a una hora en la que no hay más que el vigilante de seguridad y éste le proporciona un número que debemos suponer que es la IP de un Módem y comienza la intrusión.
BTM
Para empezar, se le ve al protagonista escribir comandos cuando en la pantalla no hay más que una animación en algo parecido a una ventana de terminal al estilo «Commander», pero no vemos lo que escribe, algo irreal.
A continuación y como por arte de magia entra en el sistema y lo que se muestra es una animación parpadeante con el logo de la compañia y el nombre del sistema al que estamos accediendo, también irreal.
Finalmente nos muestra sus intenciones, y son nada más y nada menos que cambiar la programación actual simplemente cambiando de VHS, inmejorable. A continuación os muestro la secuencia.
Por lo menos nos queda el consuelo de que cambia la tertulia de un tipejo con ciertos prejuicios raciales por una programación más interesante como «The Outer limits«, aquí conocida como «Más allá del límite«.
El resto de escenas informáticas de la película carecen de veracidad, la única que se salva, puede ser cuando accede al servidor del Instituto para programar el sistema contra incendios y vengarse de Kate (Angelina Jolie), ya que las imágenes que aparecen son de los primeros entornos gráficos de Mac.
Es extraño que casi todas las intrusiones las realiza desde su propia casa, algo poco inteligente, ya que por muy bueno que seas, siempre dejas huellas. Solo cuando se enfrentan a un Super-Hacker se empiezan a tomar las cosas en serio y realizan los ataques desde cabinas telefónicas.
En la película También hacen mención al Phreaking y a algunos de los libros que eran famosos por aquella época pero poco más que destacar. Por todo esto y mucho más, y aunque me caen igual de bien tanto Angelina como Jonny, la película se merece un majestuoso sello de BTM.
Los retos de encriptación son muy variados como hemos comentado anteriormente. Aquí tenemos unos buenos ejemplos de ello.
Cripto 1
En este primer nivel nos encontramos con un método de encriptación muy antíguo. Sólo diré como pista, que es de los más antiguos que se conocen.
ozhlofxrlmvhxzorulimrz
Lo primero que suelo hacer en este tipo de retos cuando son solamente letras, es comprobar las dos opciones más típicas, que son el cifrado César y Vigenere. En este caso necesitamos ahondar un poco más, aunque enseguida llegamos a la conclusión de que el cifrado usado es el afín. Un ataque por fuerza bruta nos devuelve la solución y los coeficientes utilizados.
En este segundo nivel recordaremos a un general romano muy conocido. Lo complicaremos un poco, sólo lo justo para que cueste algo más de cinco minutos encontrar la clave 🙂
oehoeahhjoexhkzqhfsvzhffhwrhotqk
Lo primero que nos viene a la cabeza es el cifrado César pero no va. Probando varios cifrados por sustitución al final damos con el correcto. De nuevo un ataque por fuerza bruta nos da frutos.
Este nivel también va a ser sencillo. Estos caracteres, pertenecientes a un sistema bastante conocido de encriptado, esconden una palabra que, al introducirla (en minúsculas), nos permitirá superar el nivel.
Investigando un poco llegamos a la conclusión de que se trata del cifrado Francmasón o Pig Pen.
Esta prueba es tan simple que la he dividido en dos partes que, aunque de apariencia similar, se resuelven de distinta manera. La clave es la unión de las dos palabras resultantes de descifrar las dos líneas de números y que, juntas, forman una tercera palabra.
Aquí hay que hacer un poco de trabajo de investigación: Hay que descubrir la clave que empleó un escritor francés (Una pista: «Lagardère») en una de sus novelas, que es la empleada aquí para formar la palabra clave (en minúsculas) que, por cierto, es alemana.
RI3I2MIL2I2A3
POR RESOLVER
Cripto 7
Seguimos con cosas fáciles. Se trata de descifrar este texto escrito en inglés.
kgw qkoev ol 617 qthpreoz iwjpz sdkg kgw pdeyeplk rwqdjzwe ipezwq spbbdq sgo sgwz goqkdbdkdwq iwjpz spq rwkwecdzwr ko cpmw gdq uweqozpb yozkedihkdoz ko kgw spe wlloek
Una vez descifrado, nos será fácil descubrir la clave:
pzpyozrp
Se trata de un cifrado de sustitución mono alfabético.
THE STORY OF 617 SQUADRON BEGAN WITH THE AIRCRAFT DESIGNER BARNES WALLIS WHO WHEN HOSTILITIES BEGAN WAS DETERMINED TO MAJE HIS PERSONAL CONTRIBUTION TO THE WAR EFFORT
Una vez descifrado el alfabeto la solución queda:
pzpyozrp = anaconda
Cripto 8
A veces, las cosas no son lo que parecen. Donde aparecen unos números, en realidad hay otros números distintos.
273664524572348321143738 853442616537643005319627
POR RESOLVER
Cripto 9
Para resolver algunos problemas, hay que tener una buena base. Este es un buen ejemplo de ello:
Esto es más complicado. Para descifrar este texto que contiene la clave para superar el nivel, se necesita otra clave. Para que no sea demasiado difícil, he utilizado una palabra muy sencilla de sólo cuatro letras 🙂
myiemyuvbaeewcxweghkflxw
Mediante fuerza bruta matamos dos pájaros de un tiro.
En una entrada anterior sobre cómo Expediente X abordó la tecnología de vanguardia, comenté que dedicaría un espacio a esos tres personajes tan peculiares y entrañables que, desde el segundo plano, se ganaron un hueco en el corazón de los seguidores de la serie: los Pistoleros Solitarios. Pues bien, ha llegado el momento.
Estos tres tipos —John Fitzgerald Byers, Melvin Frohike y Richard “Ringo” Langly— no necesitaban armas ni placas del FBI. Su poder estaba en los teclados, los cables enredados y los monitores de tubo que parpadeaban en un sótano lleno de conspiraciones y café frío. Eran los outsiders de Expediente X, tres hackers con alma de periodistas que luchaban por algo tan simple y tan enorme como la verdad.
Su primera aparición fue en E.B.E. (temporada 1), casi como un alivio cómico: tres frikis que ayudaban a Mulder a rastrear información sobre ovnis. Pero pronto quedó claro que había algo especial en ellos. No solo eran fuente de datos, sino conciencia crítica en un mundo plagado de mentiras digitales y gobiernos con demasiados secretos. Con el tiempo se convirtieron en aliados imprescindibles de Mulder y Scully, y también en el reflejo más humano de lo que significa ser hacker: curiosos, testarudos, torpes a veces, pero con un sentido moral inquebrantable.
Byers era el idealista, el que aún creía en la decencia y en las instituciones (al menos en teoría). Frohike, el cínico veterano con corazón de oro, siempre dispuesto a arriesgarse por una buena causa… o por impresionar a Scully. Y Langly, el genio rebelde que parecía vivir en permanente conversación con su módem de 56 k. Juntos formaban un trío excéntrico, pero perfectamente equilibrado.
Mientras Mulder y Scully perseguían abducciones y virus extraterrestres, los pistoleros combatían en otra trinchera: la digital. Hackeaban redes gubernamentales, interceptaban comunicaciones cifradas y desmantelaban cortafuegos que, en los noventa, parecían pura ciencia ficción. Lo suyo no era la acción física, sino la resistencia informativa. Y aunque muchas veces eran el chiste del capítulo, también representaban algo muy real: la gente corriente que lucha contra el poder desde el conocimiento.
Su lema no declarado podría haber sido el clásico “la información quiere ser libre”, y en eso se mantuvieron firmes hasta el final. Si había que elegir entre la seguridad o la verdad, ellos siempre elegían la verdad, aunque les costara caro.
Langly como conciencia digital en un servidor. Debate sobre IA y trascendencia del código.
Morir por la verdad
El final de los pistoleros fue tan inesperado como heroico. En el episodio “Jump the Shark” de la novena temporada, descubren un complot bioterrorista que amenaza con liberar un virus mortal. No hay tiempo para avisar a nadie, ni margen para escapar. Así que, fieles a su estilo, deciden sacrificarse para salvar a otros. Sellan el laboratorio desde dentro, sabiendo que no volverán a salir.
Lo reconozco, este desenlace mi cogió completamente por sorpresa. No hay épica de Hollywood, ni música grandilocuente. Solo tres hombres anónimos haciendo lo correcto. Mueren juntos, sin reconocimiento, sin medallas, pero con la serenidad de quienes saben que su causa era justa. Y en ese silencio final, Expediente X nos recordó algo que las grandes historias suelen olvidar: que los verdaderos héroes a veces no llevan traje ni pistola, solo convicción.
Años después, Mulder vuelve a verlos —o cree verlos— en The Truth. Ya no están en este mundo, pero siguen a su lado, como fantasmas digitales de la conciencia hacker. Es un homenaje discreto a quienes siempre pelearon desde las sombras por liberar la verdad.
Para cerrar el círculo, Langly reaparece de forma inesperada en la temporada 11, dentro del episodio This. Su mente, o más bien su copia digital, sobrevive atrapada en un servidor, reclamando ser liberada. Es el epílogo perfecto: el hacker que muere físicamente, pero cuya conciencia sigue inmortal. Una vez más me volvió a sorprender Chris Carter con este homenaje.
Me gusta pensar que los pistoleros solitarios representaban algo más que tres hackers secundarios en una serie de los noventa. Fueron el reflejo de una época en la que creíamos que la tecnología podía liberar al ser humano, antes de que las redes sociales y la hiperconectividad lo diluyeran todo. Byers, Frohike y Langly no luchaban por fama ni por dinero: luchaban por entender el sistema para exponerlo, por esa curiosidad genuina que hoy apenas sobrevive entre líneas de código y algoritmos opacos. Quizá por eso seguimos recordándolos y mola tanto volver a ver los capítulos. Porque, de algún modo, todos los que amamos el conocimiento libre llevamos dentro un pequeño pistolero solitario, buscando la verdad entre los bits.
AperiSolve es un conjunto de herramientas de análisis esteganográfico que nos ayuda a echar un primer vistazo cuando sospechamos que una imagen esconde algo.
Zsteg es una herramienta especializada en la detección y extracción de información oculta en imágenes, especialmente en formatos PNG y BMP. Está orientada a la esteganografía basada en bit-planes y es muy popular en entornos CTF y análisis forense, gracias a su capacidad para automatizar búsquedas exhaustivas de datos escondidos en los bits menos significativos (LSB) y en configuraciones de color poco habituales. Su principal fortaleza es que no se limita a examinar un único plano: prueba sistemáticamente combinaciones de canales (R, G, B, A), número de bits, orden de lectura y posicionamiento, detectando patrones que podrían pasar inadvertidos en una revisión manual.
Entre sus características más destacadas se encuentran la identificación automática de firmas de archivos (ZIP, PNG, texto ASCII, GZIP, etc.), la extracción directa de bitstreams reconstruidos y el soporte para diferentes rutas de exploración, como b1,rgb,lsb,xy, que describen exactamente cómo se han recuperado los datos. Esta capacidad de correlacionar parámetros técnicos con resultados concretos convierte a zsteg en una herramienta muy eficiente tanto para localizar contenido oculto como para entender la técnica esteganográfica aplicada.
En AperiSolve se utiliza únicamente la parte de Zsteg encargada de ejecutar el análisis automático y devolver todas las detecciones posibles de esteganografía LSB en imágenes PNG y BMP. Concretamente, AperiSolve llama al comando zsteg <imagen> tal como está implementado en el módulo analyze_zsteg , y captura la salida completa línea por línea. Esta salida incluye todas las combinaciones probadas de bit-planes (b1, b2…), canales (r, g, b, a), orden de bits (lsb/msb) y métodos de recorrido (xy), junto con cualquier coincidencia que zsteg reconozca como firma de archivo o texto. Es decir, AperiSolve no aplica filtros ni interpretación adicional: muestra exactamente lo que zsteg detecta y lo organiza para que el usuario pueda identificar rápidamente si existe un archivo embebido, contenido ASCII, o algún patrón de interés.
Para entender mejor a que se refiere todo esto vamos a repasar lo básico.
¿Qué es LSB y qué es MSB?
Cuando hablamos de esteganografía en imágenes PNG/BMP, nos referimos a manipular bits dentro de los canales de color (R, G, B, A). Cada canal tiene un valor de 0–255, es decir, 8 bits:
R = 11001010
G = 00110101
B = 11100001
LSB — Least Significant Bit (bit menos significativo). Es el bit más débil, el de la derecha:
1100101[0] ← LSB
Modificarlo cambia muy poco el color, por eso se usa en esteganografía. Ejemplo: cambiar 11001010 ↦ 11001011 no cambia el color perceptible.
MSB — Most Significant Bit (bit más significativo). Es el bit más importante, el de la izquierda:
[1]1001010 ← MSB
Modificarlo sí altera mucho el color. A veces se usa pero suele ser detectable.
Cuando Zsteg muestra una línea del estilo b1,rgb,lsb,xy .. file: Zip archive data, está indicando que ha analizado la imagen extrayendo bits según la ruta especificada —en este caso, 1 bit por píxel (b1), combinando los canales rojo, verde y azul (rgb), utilizando el bit menos significativo (lsb) y recorriendo los píxeles en orden normal de lectura (xy)— y que, tras recomponer esos bits, el resultado coincide con la cabecera reconocible de un tipo de archivo real. Por eso aparece “file: Zip archive data”: significa que los bits ocultos forman un flujo válido cuya firma corresponde a un archivo ZIP. En otras ocasiones puede detectar texto ASCII, PNG, JPEG u otros formatos. En resumen, cuando Zsteg muestra esta línea no solo indica dónde se ocultan los datos, sino que confirma que lo recuperado es un archivo auténtico y probablemente extraíble, ya que la estructura binaria coincide con un formato conocido.
Si vemos que Zsteg nos ofrece algo interesante, podemos extraerlo mediante el comando:
zsteg -E b1,rgb,lsb,xy imagen.png > dump.bin
También es habitual usar herramientas como StegSolve. En este caso debemos dirigirnos a Analyse > Data extract para comprobar lo encontrado por zsteg y extraerlo mediante Save Bin.
Zsteg
> Significado <
StegSolve
b1
Extrae 1 bit por canal (bit plano 0, el menos significativo).
En Bit Planes, marca Red 0, Green 0, Blue 0. Solo esos.
rgb
Usa R + G + B en ese orden para reconstruir los bytes.
En Bit Plane Order, selecciona RGB.
lsb
Lee los bits empezando por el LSB (bit 0) antes que el MSB.
En Bit Order, selecciona LSB First.
xy
Recorre la imagen por filas (izquierda → derecha, arriba → abajo).
En Extract By, elige Row.
Más allá de este caso concreto, conviene recordar que la esteganografía no se limita a los LSB: existen métodos basados en paletas, metadatos, manipulación de PNG chunks, secuencias alfa, audio incrustado o capas completas en formatos no comprimidos. Por ello, un análisis completo debería combinar la búsqueda clásica de LSB con herramientas complementarias como binwalk, foremost, exiftool, strings, o incluso análisis manual de cabeceras hexadecimales.
Lo que más me ha gustado del capítulo es el guiño que han hecho a la RaspBerry PI. La escena transcurre al inicio del capítulo cuando uno de los protagonistas se conecta a un vehículo para hackearlo con una Raspi 3 Model B con varios pines del GPIO doblados. Os dejo unas capturas a continuación donde se aprecia el logo.
Captura del episodio
Captura del episodio
Captura del episodio
Captura del episodio
La conexión
Ya puestos, la conexión parece micro usb tipo B. Al fondo se ve lo que parece un puerto HDMI.
Captura del episodio
Captura del episodio
Captura del episodio
Cable comercial
La pifia
Lo que no me ha gustado es que al fijarme en el software que corre en el vehículo aparece un flamante OMNIBOOT.EXE con un aspecto parecido al símbolo de sistema, es decir, nos intentan vender que en un futuro el software que gestiona el vehículo es alguna variación de Windows, algo poco probable a día de hoy al menos. Con este tipo de predicciones no se puede escupir hacia arriba pero actualmente es más probable un nucleo tipo Linux u otro propietario al estilo Tesla.
Software del vehículo
Os dejo todas las capturas relevantes a continuación.