Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Intro

This crackme is for the crack challenge 6 of canyouhack.it.

In this crackme the goal is to turn on all the lights. Note that a light off to the next, so if we interrupt this, we win.

Tools

Exeinfo (For crackme info)

Delphi Decompiler (For decompile)

 OllyDbg (For debug)

Decompiling

With Delphi Decompiler we can found easy the buttons and his offsets.
Go to the offset 401A64 in OllyDbg and analyze the code.
We view two jumps, one turn ON the light and the other Turn OFF the next light. Patching the call from offset 401A8B we get the serial.

Links


El reto Se nos proporciona la imagen anterior y se nos invita a resolver la ecuación para el menor entero
Primeras impresiones Analizamos el programa con PEiD y nos muestra que está hecho en ensamblador. Unas pruebas introduciendo datos nos
Hace poco me puse a leer El oscuro pasajero de Jeff Lindsay, novela que inspiró la serie Dexter. La nostalgia
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en

El reto

Se nos proporciona la imagen anterior y se nos invita a resolver la ecuación para el menor entero positivo que representa cada fruta. La solución del reto es concatenar «Flag-» a la suma de los valores de las tres frutas.

Análisis inicial

El enunciado es breve pero ya nos adelanta que existen varias soluciones y que además sólo quieren los números más pequeños que podamos encontrar.

Las frutas están muy bien y son muy sanas pero a nosotros se nos hace más sencillo plantear la ecuación con letras.

\begin{align}
&  \frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=4\\
\end{align}

Para arrojar algo de luz veamos la representación gráfica en 2D y 3D con la ayuda de Desmos.

3D

Las gráficas más que luz nos traen oscuridad de modo que preguntemos a ChatGPT.

ChatGPT

resuelve: (x/y+z)+(y/x+z)+(z/x+y)=4 para enteros positivos

Dado que las variables x, y, z son enteros positivos, podemos intentar encontrar una solución para la ecuación bajo estas condiciones. Sin embargo, encontrar una solución exacta puede ser complejo debido a la naturaleza no lineal de la ecuación. Aun así, podemos intentar algunos enfoques:

  • Prueba y error: Podemos probar diferentes combinaciones de valores enteros positivos para x, y, z y ver si satisfacen la ecuación.
  • Análisis de casos específicos: Podemos comenzar analizando casos más simples, como cuando dos de las variables son iguales, y luego ampliar nuestra búsqueda desde allí.
  • Análisis gráfico o numérico: Utilizando herramientas gráficas o numéricas, podríamos identificar posibles soluciones y luego verificar si son enteros positivos.

Voy a realizar un análisis numérico con un rango limitado de valores para ver si encontramos alguna solución que cumpla con las condiciones. Vamos a probar con valores de 1 a 10 para cada variable.

El análisis numérico para valores de en el rango de 1 a 10 no ha encontrado ninguna solución que satisfaga la ecuación. Esto sugiere que, dentro de este rango, no existen combinaciones de enteros positivos que cumplan con la ecuación.

Dado que la ecuación es bastante compleja y no lineal, es posible que las soluciones, si existen, se encuentren fuera del rango considerado o que requieran un enfoque diferente para ser identificadas. Si tienes un rango específico de valores en mente o si hay alguna otra restricción o contexto relevante, por favor házmelo saber para poder ajustar el análisis en consecuencia.

Básicamente nos está invitando a utilizar prueba y error para encontrar una solución, y el prueba y error de las matemáticas no es más que la fuerza bruta en programación.

El código

Partiendo del problema anterior dame un código en python que realice una comprobación recursiva de todas las variables con un rango de 1 a 999.

soluciones = []
rango_valores_x = range(1, 999)
rango_valores_y = range(1, 999)
rango_valores_z = range(1, 999)

for x in rango_valores_x:
    for y in rango_valores_y:
        for z in rango_valores_z:
            # Calculamos el valor de la expresión para cada combinación de x, y, z
            valor = x / (y + z) + y / (x + z) + z / (x + y)
            # Comprobamos si el valor es igual a 4 y agregamos la solución a la lista
            if abs(valor - 4) < 1e-6:  # Usamos una pequeña tolerancia para evitar errores de precisión
                soluciones.append((x, y, z))

print(soluciones)

Dejo resaltada la línea 12 del código ya que en ella reside el problema. Está comprobando con un margen de tolerancia de 10-6 ya que el resultado de las diferentes fracciones no da como resultado exacto 4. Esto es un problema ya que nosotros necesitamos que de exactamente 4 para validar los valores enteros de x, y y z. Pongo un ejemplo para el que se haya perdido con una solución válida para la tolerancia 10-6 siendo x=2, y=264 y z=993.

\begin{align}
&  \frac{2}{264+993}+\frac{264}{2+993}+\frac{993}{2+264}=4.000000429\\
\end{align}

En otras palabras, ChatGPT nos ha brindado una solución aproximada que no sirve para nuestro propósito. Seguimos probando con el código anterior quitando la tolerancia y con rangos mayores hasta que en 106 paro. Me acaba de quedar claro que con la fuerza bruta no vamos a ninguna parte, o más bien, no tenemos capacidad de computación para resolverlo de ésta manera.

¿Qué está pasando?

Lo que pasa es que estamos ante una ecuación algebraica de 3 incógnitas que deben ser enteros positivos cuya solución se alcanza mediante la teoría de curvas elípticas.

Curvas elípticas

Las curvas elípticas son fundamentales en matemáticas avanzadas, representadas por la ecuación y2=x3+Ax+B, donde A y B son constantes. Estas curvas son un punto de encuentro entre la geometría, la teoría de números y el álgebra, ofreciendo un campo rico para la exploración y el análisis. En este CTF, nos enfocaremos en los puntos racionales de las curvas elípticas. Utilizando el método tangente-secante, un procedimiento geométrico iterativo, buscaremos ampliar un conjunto finito de soluciones conocidas a la ecuación de la curva. Este método nos permite indagar en la estructura de las soluciones racionales, que potencialmente pueden ser infinitas. Además, estableceremos una conexión entre las soluciones enteras de las ecuaciones diofánticas y los puntos racionales en las curvas elípticas partiendo de la ecuación (1) especificada en el análisis inicial. A pesar de su aparente simplicidad, esta ecuación es conocida por presentar soluciones mínimas de gran tamaño.

Adecuación

Antes de nada, necesitamos saber el grado de la ecuación, de modo que planteamos la ecuación en forma polinómica estándar deshaciéndonos de los denominadores.

\begin{align}
\begin{split}
n(a+b)(b+c)(c+a)=a(a+b)(c+a)+b(b+c)(a+b)+c(c+a)(b+c)
\end{split}
\end{align}

Ahora necesitamos expandir y simplificar para llegar a la conclusión de que estamos ante una ecuación diofántica de grado 3. Este proceso es engorroso por la cantidad de términos a manejar así que vamos a utilizar Mathematica como software de respaldo para finalmente obtener el polinomio en la forma de Weierstrass según la ecuación 4.

\begin{align}
&  y^2=x^3+109x^2+224x\\
\end{align}

donde:

\begin{align}
x = \frac{−28(a+b+2c)}{(6a+6b−c)}\\
y = \frac{364(a−b)}{(6a+6b−c)}
\end{align}

Las relación entre la ecuación 3 y los puntos de la curva elíptica se establecen mediante la ecuación 4. Las transformaciones entre las soluciones (a, b, c) y los puntos (x, y) en la curva elíptica vienen dados por las ecuaciones 5 y 6. Con estas transformaciones, cada solución de la ecuación diofántica se puede representar como un punto en la curva elíptica, y las operaciones de suma de puntos en la curva elíptica pueden usarse para encontrar nuevas soluciones de la ecuación diofántica.

Mathematica

El código que tenéis a continuación pertenece al gran trabajo de Aditi Kulkarni [7], que además nos da el resultado para cualquier valor de n. Ojo porque para n=4 el resultado tiene 81 dígitos, para n=6 tiene 134, para n=10 tiene 190 y para n=12 asciende a 2707 dígitos.

(* Asignar un valor numérico a n *)
n = 4;
(* Definir la ecuación de una curva elíptica en términos de n *)
curve4 = y^2 == x^3 + (4*n^2 + 12*n - 3)*x^2 + 32*(n + 3)*x;
(* Encontrar un punto racional en la curva que no sea (4,0) *)
P4 = {x, y} /. First[FindInstance[curve4 && x != 4 && y != 0, {x, y}, Integers]];
(* Función para calcular la pendiente entre dos puntos en la curva, 
   o la derivada en el punto si son iguales *)
Slope4[{x1_, y1_}, {x2_, y2_}] := 
  If[x1 == x2 && y1 == y2, 
     ImplicitD[curve4, y, x] /. {x -> x1, y -> y1}, 
     (y2 - y1)/(x2 - x1)];
(* Función para calcular la intersección en y de la línea entre dos puntos 
   o la tangente en el punto si son iguales *)
Intercept4[{x1_, y1_}, {x2_, y2_}] := y1 - Slope4[{x1, y1}, {x2, y2}]*x1; 
(* Función para encontrar el siguiente punto racional en la curva *)
nextRational4[{x1_, y1_}, {x2_, y2_}] := 
  {Slope4[{x1, y1}, {x2, y2}]^2 - CoefficientList[curve4[[2]], x][[3]] - x1 - x2, 
   -Slope4[{x1, y1}, {x2, y2}]^3 + Slope4[{x1, y1}, {x2, y2}]*(CoefficientList[curve4[[2]], x][[3]] + x1 + x2) - Intercept4[{x1, y1}, {x2, y2}]};
(* Función para convertir un punto en la curva elíptica a una solución diofántica *)
ellipticToDiophantine[n_, {x_, y_}] := 
  {(8*(n + 3) - x + y)/(2*(4 - x)*(n + 3)), 
   (8*(n + 3) - x - y)/(2*(4 - x)*(n + 3)), 
   (-4*(n + 3) - (n + 2)*x)/((4 - x)*(n + 3))};
(* Usar nextRational4 para iterar desde P4 hasta encontrar una solución 
   válida y positiva para la ecuación diofántica *)
sol4 = ellipticToDiophantine[n, 
   NestWhile[nextRational4[#, P4] &, P4, 
     ! AllTrue[ellipticToDiophantine[n, #], Function[item, item > 0]] &]];
(* Escalar la solución para obtener enteros mínimos *)
MinSol4 = sol4*(LCM @@ Denominator[sol4])
(* Suma de las tres variables*)
Total[MinSol4]

Solución

Concatenando Flag- con el resultado de Mathematica tenemos la ansiada flag.

Flag-195725546580804863527010379187516702463973843196699016314931210363268850137105614

Conclusiones

ChatGPT ha demostrado ser eficaz en el análisis y la resolución de problemas, siempre que se le proporcione el contexto adecuado. Sin embargo, es importante ser conscientes de que la respuesta proporcionada puede ser aproximada, especialmente si la solución requiere una gran cantidad de recursos computacionales. Por ejemplo, al trabajar con una ecuación diofántica y valores específicos para (x) e (y), ChatGPT puede ayudar a calcular puntos como (P), (2P), (3P), etc., pero hay que tener en cuenta que los resultados para estos puntos pueden ser estimaciones.

Finalmente, os invito a leer la solución de Mingliang Z. [4], en la que se resuelve el problema por completo y de forma muy detallada.

Enlaces

Primeras impresiones

Analizamos el programa con PEiD y nos muestra que está hecho en ensamblador.


Unas pruebas introduciendo datos nos muestran que el nombre debe tener entre 3 y 10 dígitos.


Determinando la rutina de creación del serial con Ollydbg

Llegados a este punto tenemos dos opciones que funcionan en el 90% de los casos. La primera es mediante las referenced strings o mediante los names.
 
Para el primer caso, con el keygenme cargado en olly, click derecho y Search > All referenced text strings. Haciendo doble click en “You got it” o en “Bad boy” vamos directamente a la rutina de comprobación del serial o muy cerca de ella en la mayoría de los casos.


Para el segundo caso, haremos click derecho y Search > Name (label) in current módule, o Ctrl+N. Vemos dos llamadas interesantes como son user32.GetDlgItemInt y user32.GetDlgItemTextA. Lo más seguro es que user32.GetDlgItemInt coja del textbox nuestro serial y user32.GetDlgItemTextA coja nuestro nombre. Para este caso colocaríamos breakpoints en las dos llamadas.


En mi caso elijo la primera opción. Nada más pulsar en “You got it” nos fijamos un poco más arriba y vemos las funciones donde coge el nombre y el serial y a simple vista se ven las operaciones que hace con ellos.

Generando un serial válido

Como se muestra en la imagen siguiente, la creación del serial es muy sencilla y al final la comparación es lineal ya que se compara nuestro serial con el serial válido. Veamos el serial válido para el usuario “abc” cuyos dígitos en hexadecimal son 0x61, 0x62 y 0x63.

Letra a
Letra b
Letra c
Suma + 0x61
Suma * 0x20
Suma xor 0xBEFF
Suma / 4
Suma = 0x2CB7
Suma + 0x62
Suma * 0x20
Suma xor 0xBEFF
Suma / 4
Suma = 0x14777
Suma + 0x63
Suma * 0x20
Suma xor 0xBEFF
Suma / 4
Suma = 0xA116F
Suma xor 0xBEA4 = 0xAAFCB
Serial válido = 700363

Generando un keygen con WinASM studio desde cero

Abrimos WinASM studio y pulsamos en File > New Project y en la pestaña dialog elegimos base.

  

Vemos que se nos generan tres archivos, uno con extensión asm, otro con extensión inc y otro con extensión rc. El archivo asm es el que contendrá nuestro código. El archivo inc no lo vamos a usar para simplificar las cosas y el archivo rc es nuestro formulario al que pondremos a nuestro gusto.
Empecemos con el aspecto del formulario. Por defecto viene como se muestra en la siguiente imagen. Que por cierto, es todo lo que necesitamos para un keygen básico.

Y el aspecto final:

Ahora veamos cómo viene nuestro archivo asm inicialmente y que haremos con él. En la siguiente imagen lo indico.

    Encima de la sección .code hemos creado dos secciones como son .data y .data? y hemos declarado las variables necesarias. 
  • szFormat está declarada en formato integer (%i). Más tarde la utilizaremos junto a la función wsprintf para dar formato a un número.
  • szSizeMin: habla por sí misma.
  • szSizeMax: habla por sí misma.
  •  szCap: habla por sí misma.
  • szName: contendrá el nombre introducido.
  • szCode: contendrá el serial válido.
Nuestro código queda de la siguiente manera:

A partir de aquí ya simplemente es escribir el código necesario para generar el serial válido. Una de las ventajas que tiene el ensamblador para hacer keygens sin muchas complicaciones, es que prácticamente es copiar el código que nos muestra Ollydbg. Si os fijáis a continuación, en el botón llamado “IDC_OK” (no le he cambiado el nombre) he puesto todo el código necesario para generar la simple rutina del serial.
Como veis el bucle del nombre es una copia de lo que nos mostró Ollydbg. Una vez que tenemos en EAX nuestro serial válido, mediante la función wsprintf guardamos en la variable szCode el serial válido con formato integer. Finalmente mediante la función SetDlgItemText, mostramos el serial válido en la caja de texto 1002, que es la del serial.

Enlaces


Introducción Hoy tenemos aquí un crackme hecho en Visual Basic 6 (pcode), pero lo vamos a abordar de una manera
Aviso: Este crackme forma parte de una serie de pruebas de Yoire.com que todavía está en activo. Lo ético si
Intro Análisis Keygen Links Intro El crackme que analizamos hoy está hecho en ensamblador y si bien su dificultad es
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en

Introducción

Segunda crackme con RSA que afrontamos. Esta vez se trata de un crackme realizado en VC++ 7.0 y en sus entrañas utiliza RSA-127. Una cosa que no comenté en la entrega anterior (RSA-200), es que conviene utilizar el plugin Kanal de PEiD para localizar cuando se utilizan números grandes o determinados hashes como MD5 o SHA1.

16-02-2015 01-49-36

Otra cosa es que os quería comentar es la coletilla 127. Esta lo determina el módulo n e indica el número de bits de éste.

Funcionamiento de RSA

  1. Inicialmente es necesario generar aleatoriamente dos números primos grandes, a los que llamaremos p y q.
  2. A continuación calcularemos n como producto de p y q:
    n = p * q
  3. Se calcula fi:
    fi(n)=(p-1)(q-1)
  4. Se calcula un número natural e de manera que MCD(e, fi(n))=1 , es decir e debe ser primo relativo de fi(n). Es lo mismo que buscar un numero impar por el que dividir fi(n) que de cero como resto.
  5. Mediante el algoritmo extendido de Euclides se calcula d que es el inverso modular de e.
    Puede calcularse d=((Y*fi(n))+1)/e para Y=1,2,3,... hasta encontrar un d entero.
  6. El par de números (e,n) son la clave pública.
  7. El par de números (d,n) son la clave privada.
  8. Cifrado: La función de cifrado es.
    c = m^e mod n
  9. Descifrado: La función de descifrado es.
    m = c^d mod n

OllyDbg

Con OllyDbg analizamos la parte del código que nos interesa.

0040109B    .  68 00010000         PUSH 100                                  ; /Count = 100 (256.)
004010A0    .  52                  PUSH EDX                                  ; |Buffer = RSA127.<ModuleEntryPoint>
004010A1    .  68 EA030000         PUSH 3EA                                  ; |ControlID = 3EA (1002.)
004010A6    .  8B8C24 28020000     MOV ECX,DWORD PTR SS:[ESP+228]            ; |
004010AD    .  51                  PUSH ECX                                  ; |hWnd = NULL
004010AE    .  FF15 F0B04000       CALL DWORD PTR DS:[<&USER32.GetDlgItemTex>; \GetDlgItemTextA
004010B4    .  8D5424 04           LEA EDX,DWORD PTR SS:[ESP+4]
004010B8    .  57                  PUSH EDI
004010B9    .  52                  PUSH EDX                                  ;  RSA127.<ModuleEntryPoint>
004010BA    .  50                  PUSH EAX                                  ;  kernel32.BaseThreadInitThunk
004010BB    .  E8 201E0000         CALL RSA127.00402EE0
004010C0    .  83C4 0C             ADD ESP,0C
004010C3    .  8D9424 04010000     LEA EDX,DWORD PTR SS:[ESP+104]
004010CA    .  68 00010000         PUSH 100                                  ; /Count = 100 (256.)
004010CF    .  52                  PUSH EDX                                  ; |Buffer = RSA127.<ModuleEntryPoint>
004010D0    .  68 EB030000         PUSH 3EB                                  ; |ControlID = 3EB (1003.)
004010D5    .  8B8C24 28020000     MOV ECX,DWORD PTR SS:[ESP+228]            ; |
004010DC    .  51                  PUSH ECX                                  ; |hWnd = NULL
004010DD    .  FF15 F0B04000       CALL DWORD PTR DS:[<&USER32.GetDlgItemTex>; \GetDlgItemTextA
004010E3    .  8D9424 04010000     LEA EDX,DWORD PTR SS:[ESP+104]
004010EA    .  52                  PUSH EDX                                  ;  RSA127.<ModuleEntryPoint>
004010EB    .  8B4C24 04           MOV ECX,DWORD PTR SS:[ESP+4]
004010EF    .  51                  PUSH ECX
004010F0    .  E8 5B1F0000         CALL RSA127.00403050
004010F5    .  68 08B14000         PUSH RSA127.0040B108                      ;  ASCII "666AAA422FDF79E1D4E41EDDC4D42C51"
004010FA    .  55                  PUSH EBP
004010FB    .  E8 501F0000         CALL RSA127.00403050
00401100    .  68 2CB14000         PUSH RSA127.0040B12C                      ;  ASCII "29F8EEDBC262484C2E3F60952B73D067"
00401105    .  56                  PUSH ESI
00401106    .  E8 451F0000         CALL RSA127.00403050
0040110B    .  53                  PUSH EBX
0040110C    .  55                  PUSH EBP
0040110D    .  56                  PUSH ESI
0040110E    .  8B5424 24           MOV EDX,DWORD PTR SS:[ESP+24]
00401112    .  52                  PUSH EDX                                  ;  RSA127.<ModuleEntryPoint>
00401113    .  E8 38250000         CALL RSA127.00403650
00401118    .  53                  PUSH EBX
00401119    .  57                  PUSH EDI
0040111A    .  E8 31130000         CALL RSA127.00402450
0040111F    .  83C4 30             ADD ESP,30
00401122    .  85C0                TEST EAX,EAX                              ;  kernel32.BaseThreadInitThunk
00401124    .  74 12               JE SHORT RSA127.00401138
00401126    .  B8 01000000         MOV EAX,1
0040112B    .  81C4 08020000       ADD ESP,208
00401131    .  5B                  POP EBX                                   ;  kernel32.7590EE1C
00401132    .  5D                  POP EBP                                   ;  kernel32.7590EE1C
00401133    .  5E                  POP ESI                                   ;  kernel32.7590EE1C
00401134    .  5F                  POP EDI                                   ;  kernel32.7590EE1C
00401135    .  C2 1000             RETN 10
00401138    >  6A 40               PUSH 40                                   ; /Style = MB_OK|MB_ICONASTERISK|MB_APPLMODAL
0040113A    .  68 5CB14000         PUSH RSA127.0040B15C                      ; |Title = "Yeah!"
0040113F    .  68 50B14000         PUSH RSA127.0040B150                      ; |Text = "Nice job!!!"
00401144    .  6A 00               PUSH 0                                    ; |hOwner = NULL
00401146    .  FF15 F4B04000       CALL DWORD PTR DS:[<&USER32.MessageBoxA>] ; \MessageBoxA

El código nos proporciona el exponente público (e) y el módulo (n).

  • e = 29F8EEDBC262484C2E3F60952B73D067
  • n = 666AAA422FDF79E1D4E41EDDC4D42C51

Finalmente realiza un PowMod con el número de serie del disco C y el par de claves (e,n).

Calculando la clave privada (d)

Una vez localizados los datos anteriores lo siguiente es factorizar para obtener los primos p y q y finalmente d.

RSA127_rsatool

d = 65537

Ejemplo operacional

Nº serie disco C = -1295811883
Serial = hdd.getBytes()^d mod n
Serial = 2d31323935383131383833^65537 mod 666AAA422FDF79E1D4E41EDDC4D42C51
Serial = 1698B6CE6BE0D388C31E8E7895AF445A

RSA127_bigint

Keygen

El keygen está hecho en Java ya que permite trabajar con números grandes de forma sencilla.

JButton btnNewButton = new JButton("Generar");
        btnNewButton.addActionListener(new ActionListener() {
            public void actionPerformed(ActionEvent arg0) {
                BigInteger serial = new BigInteger("0");
                BigInteger n = new BigInteger("136135092290573418981810449482425576529");
                BigInteger d = new BigInteger("415031");
                String hdd = t1.getText();
                BigInteger tmp = new BigInteger(hdd.getBytes());
                serial = tmp.modPow(d, n);
                t2.setText(serial.toString(16).toUpperCase());
            }
        });

Links


Toda esta aventura comienza con un archivo llamado pretty_raw, sin extensión. Porque sí. Porque las extensiones son una invención heredada
Intro Hoy tenemos un crackme realizado en ensamblador y sin empacar. Consiste en el típico serial asociado a un nombre
Introducción Funcionamiento de RSA OllyDbg Calculando un serial válido Ejemplo operacional Keygen Links Introducción Empezamos con lo que espero que
Intro Os comparto un reto stego que me gustó cuando lo hice hace unos años. En realidad se tarda pocos

Toda esta aventura comienza con un archivo llamado pretty_raw, sin extensión. Porque sí. Porque las extensiones son una invención heredada de CP/M, precursor de MS-DOS, que Windows terminó de popularizar. Porque son innecesarias. Y porque echo de menos cuando los archivos se reconocían por sus permisos… y no por cómo se llamaban.

Como iba diciendo, todo esto comienza mediante el análisis de pretty_raw. Mirando debajo de la falda con un editor hexadecimal encontramos unos cuantos bytes aleatorios hasta dar con una cabecera PNG.

Si atendemos a la captura, justo antes de la cabecera PNG tenemos 116.254 bytes (0x1C61E). Tomad nota que este número será relevante más adelante.

Extraemos el PNG, lo visualizamos y lo pasamos por todas las herramientas habidas y por haber. Nada funciona. Volvemos a visualizarlo con atención y vemos que hace referencia a un archivo llamado flag.png con unas dimensiones que no coinciden con la extraída.

Toca centrarse y pensar en que camino tomar. Hemos gastado tiempo con el PNG extraído y quizá lo mejor sea centrarse en los bytes que inicialmente hemos descartado. En concreto se trata de un bloque de 116.254 bytes, pero espera, 1570×74=116.180 bytes. ¡Mierda!, no coincide exactamente con los bytes extraídos. Bueno, da igual. Si suponemos que el PNG que buscamos no tiene compresión y que cada pixel ocupa un byte (escala de grises y 8 bits), su tamaño depende únicamente de la geometría y de cómo se almacenan las filas en memoria. Vamos a procesarlo con Python para salir de dudas.

import numpy as np
from PIL import Image

INPUT_FILE  = "pretty_raw"
OUTPUT_FILE = "pretty_raw_flag.png"

WIDTH  = 1570 # ¿estás seguro?
HEIGHT = 74
DEPTH  = 8  # bits

# Leer archivo como RAW
with open(INPUT_FILE, "rb") as f:
    raw = f.read()

expected_size = WIDTH * HEIGHT
if len(raw) < expected_size:
    raise ValueError("El archivo no tiene suficientes datos")

# Convertir a array numpy (grayscale 8 bits)
img = np.frombuffer(raw[:expected_size], dtype=np.uint8)
img = img.reshape((HEIGHT, WIDTH))

# Crear imagen
image = Image.fromarray(img, mode="L")
image.save(OUTPUT_FILE)

print(f"Imagen generada correctamente: {OUTPUT_FILE}")

El script nos devuelve un PNG válido pero con las letras torcidas. Tras darle vueltas me di cuenta de que si en el script usamos como WIDTH=1571 en lugar de 1570, la imagen resultante es correcta y tiene todo el sentido del mundo ya que 1571×74=116.254, que son exactamente los bytes que se encuentran antes del png señuelo.

Aunque el ancho visible de la imagen es de 1570 píxeles, cada fila ocupa realmente 1571 bytes. Ese byte adicional actúa como relleno (padding) y forma parte del stride o bytes por fila. Ignorar este detalle lleva a un desplazamiento erróneo acumulativo y por eso se ve la imagen torcida. En este caso concreto da igual ya que el texto se aprecia, pero si el reto hubiera sido más exigente no se vería nada.

Intro

Hoy tenemos un crackme realizado en ensamblador y sin empacar. Consiste en el típico serial asociado a un nombre sin mucha complicación excepto en lo que a la utilización de memoria se refiere. Como veremos más adelante si no tenemos cuidado se solapan en memoria el nombre y el serial y como siempre evitaremos eso.

El algoritmo

Abrimos el crackme con Olly y buscamos las string references, pinchamos sobre cualquiera y encima encontramos el código que no interesa.

stringref

Subimos hasta las funciones que recojen el nombre y serial (GetDlgItemTexA) y nos fijamos que guarda el nombre a partir de la dirección de memoria 403014 y el serial a partir de 40301A. Además el nombre debe tener por lo menos tres caracteres.

getdlgitemaymemoria

compserial

El algoritmo consiste en lo siguiente, recorre el nombre y comprueba si el dígito se corresponde con 5A(Z), 7A(z) y 39(9). Si coincide los deja como está y si no les suma 1 al valor ascii. A continuación concatena después de cada conversión de dígito el caracter 61(a) aumentándole en 1 para cada nuevo dígito del nombre.

Ejemplo:

Nombre: ZZZZZ
Serial: ZaZbZcZdZe

Nombre: zzzzz
Serial: zazbzczdze

Nombre: 99999
Serial: 9a9b9c9d9e

Como veréis a continuación, para el nombre «deuru» el serial correcto sería «eafbvcsdve«. Simplemente a los caracteres del nombre les suma 1, d es e, e es f, u es v, etc, y los concatena con digito+a+digito+b+digito+c…

Nombre: deuru
Serial: eafbvcsdve

Bucle se repite tantos veces como dígitos tenga el nombre

d  e  u  r  u
64 65 75 72 75

e  a  f  b  v  c  s  d  v  e
65 61 66 62 76 63 73 64 76 65

DUMP
----
00403010  00 00 00 00 64 65 75 72 75 00 65 61 66 62 76 63  ....deuru.eafbvc
00403020  73 64 76 65 00 05 00 00 00 00 00 00 00 00 00 00  sdve...........

 La asignación de memoria

El problema viene cuando elegimos un nombre >5 caracteres, ya que, éste se solapa con la memoria del serial (recordemos 40301A y siguientes) haciendo que sea una chapuza. En la siguiente imagen queda claro. No se si es un error o es intencionado, pero nos conviene no utilizar nombres mayores de 5 dígitos para que nuestro keygen sea lo más limpio posible.

ejemplodump2

El KeyGen

Está realizado en C++ y como véis el nombre debe tener entre 3 y 5 dígitos para que todo vaya bien.

char Nombre[10];
GetWindowText(hwndEdit1, Nombre, 10);
SetWindowText(hwndEdit2, "");
string serial = "";
int len = strlen(Nombre);
char consecutivo[5] = {'a','b','c','d','e'};
if (len <=5 && len >=3){
    for(int i = 0; i <= len; i++)
    {
         if (Nombre[i] == 0x5A || Nombre[i] == 0x7A || Nombre[i] == 0x39)
         {
             serial+=Nombre[i];
             serial+=consecutivo[i];
         }else{
             serial+=Nombre[i]+1;
             serial+=consecutivo[i];
         }
     }
     serial = serial.substr(0, len*2);
     LPCTSTR Sfinal = serial.c_str();
     SetWindowText(hwndEdit2, Sfinal);
}else{
MessageBox(NULL,"Nombre demasiado largo/corto","Info",MB_OK | MB_ICONINFORMATION);
}

 Links


Intro Os comparto un reto stego que me gustó cuando lo hice hace unos años. En realidad se tarda pocos
st2 arcade
He de iniciar esta entrada diciendo que la segunda temporada de Stranger Things es sencillamente genial. Son 9 horas intensas
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
Introducción Hoy tenemos aquí un crackme de los que te hacen temblar las conexiones neuronales. Estamos acostumbrados al típico serial

Intro

Os comparto un reto stego que me gustó cuando lo hice hace unos años. En realidad se tarda pocos minutos en resolverlo pero depende de tus recursos es posible que se te atragante.

Procesando a la víctima

Cuando te has enfrentado a unos cuantos retos stego lo normal es que tengas un arsenal de herramientas por las que vas a pasar a la víctima. En mi caso cuando se trata de imágenes, mi fondo de armario está formado por steganabara y stegsolve. Si con esas dos herramientas no lo veo claro ya empiezo a mirar en sus entrañas y en este caso es justo lo que hace falta, mirar en su interior.

La víctima

imagen original del reto

Estamos ante una imagen GIF de 6,36KB (6513 bytes) cuya resolución es 236×42. Debido a la extensión tenderemos a analizar los frames por si se trata de una animación. Una vez desestimada la animación entran en juego steganabara, stegsolve y demás familia. Si todo lo anterior falla abro el archivo con un editor hexadecimal y lo reviso manualmente por si hay algo que me llama la atención.

Bytes

Explorando el interior del archivo enseguida encontramos algo que llama la atención, una sucesión de bytes con espacios intercalados.

Tras copiar los bytes lo primero es eliminar los espacios y empezar a jugar con ellos. Una de las cosas que podemos hacer es convertir los bytes a ascii y voilá, nos encontramos con lo que parece otro archivo GIF.

Copiamos los bytes con la ayuda de nuestro editor hexadecimal favorito, guardamos el archivo como GIF y reto superado.

Enlaces

Nota: si algo os pide clave es deurus.info

st2 arcade

He de iniciar esta entrada diciendo que la segunda temporada de Stranger Things es sencillamente genial. Son 9 horas intensas que no dejan indiferente a nadie y además en el capítulo 8 nos han dejado una de esas perlas informáticas que tanto nos gustan.

La escena la protagoniza Bob Newby, un buen hombre amante de la electrónica de aquella época que trabaja en RadioShack y transcurre en el laboratorio secreto de Hawkins. En un momento dado, Bob propone «saltarse» la seguridad del laboratorio y para ello se traslada al sótano donde se encuentran los «servidores».

El PC de la época

Para comprender esta escena hay que situarse temporalmente. Estamos hablando de los años 80, en concreto la escena transcurre en 1984 y los equipos de los que dispone el laboratorio son unos maravillosos IBM. No se llega a apreciar bien el modelo de IBM utilizado pero teniendo en cuenta que el monitor que aparece es un terminal IBM 3180, la búsqueda se reduce a los sistemas compatibles S/36, S/38, AS/400, 5294 ó 5394.

IBM 3180

IBM 3180 (https://www.argecy.com/3180)

Cracking BASIC or BASIC Cracking?

La escena plantea un ataque de fuerza bruta a un código de 4 dígitos como se puede observar en la imagen a continuación. Esto puede parecer una chorrada hoy día pero podía suponer un pequeño reto para un micro de 8 bits.

Cracking Basic or Basic Cracking?

Cracking Basic or Basic Cracking?

A simple vista se aprecian una serie de bucles recursivos, una llamada a una función y una sentencia condicional. Desconozco si la sintaxis del lenguaje es la correcta pero mucho me temo que es más bien una mezcla de BASIC y pseudocódigo. Pero lo que más me ha llamado la atención sin duda es que la palabra THEN parece que se sale del monitor como si estuviera realizado en post-producción. Os invito a que ampliéis la imagen y comentéis lo que os parece a vosotr@s.

Os dejo aquí el código para los más curiosos.

10 DIM FourDigitPassword INTEGER
20 FOR i = 0 TO 9
30 		FOR j = 0 TO 9
40			FOR k = 0 TO 9
50				FOR l = 0 TO 9
60					FourDigitPassword = getFourDigits (i,j,k,l)
70					IF checkPasswordMatch(FourDigitPassword) = TRUE THEN
80						GOTO 140
90					END
100				NEXT l
110			NEXT k
120		NEXT j
130 NEXT i
140 PRINT FourDigitPassword

Aunque  la entrada está dentro del contexto de los Blooper Tech Movies, digamos que en esta ocasión no voy a ir más allá. La escena es creíble y queda bien integrada en la época en la que se desarrolla el capítulo. Por esto mismo, solamente espero que las temporadas venideras sean tan buenas y cuiden tanto los detalles como sus predecesoras.

Referencias

[1] Ficha IMDB – Stranger Thing

[2] Wikia de Stranger Things

[3] IBM 3180

[4] BASIC

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Introducción

En los retos de esteganografía ya uno se espera de todo, y cuantos más haces más enrevesados encuentras. Hoy no, hoy vamos a tratar un clásico dentro de este tipo de retos, ocultar un archivo dentro de otro.

Buscando la solución

Prácticamente lo primero que hago cuando me descargo una imágen en éste tipo de retos es abrirla con un editor hexadecimal, y en este caso hemos dado en el clavo. La abrimos con un editor cualquiera y al final del archivo encontramos que estamos tratando con un archivo ZIP (cabecera PK).

29-08-2014 03-00-03

La abrimos con 7zip y vemos el prometido archivo txt, dentro ¿qué abrá?

29-08-2014-03-02-19

Links

Introducción

Hoy tenemos aquí un crackme de los que te hacen temblar las conexiones neuronales. Estamos acostumbrados al típico serial asociado a un nombre y a veces nos sorprenden.

El crackme data del año 2000, está realizado por aLoNg3x y lo tenéis colgado en crackmes.de. En crackmes.de también disponéis de una solución muy elegante realizada por cronos, pero que no acaba de saciar nuestro afán de descubrir todas las soluciones posibles.

El algoritmo

Abrimos el crackme con Olly y enseguida encontramos la rutina de comprobación junto con los mensajes de éxito y error. Os dejo la rutina comentada como siempre.

004012D7   |.  83C4 08             ADD ESP,8                                 ;  
004012DA   |.  09C0                OR EAX,EAX                                ;  
004012DC   |. /74 16               JE SHORT Zebrone.004012F4                 ;  Salta a Bad boy
004012DE   |. |6A 00               PUSH 0                                    ; /Style = MB_OK|MB_APPLMODAL
004012E0   |. |68 26324000         PUSH Zebrone.00403226                     ; |Title = "Great !!!"
004012E5   |. |68 30324000         PUSH Zebrone.00403230                     ; |Text = "Congratulations, you have cracked the Zebra Crackme ver 1.1"
004012EA   |. |FF75 08             PUSH [ARG.1]                              ; |hOwner = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
004012ED   |. |E8 C6010000         CALL <JMP.&USER32.MessageBoxA>            ; \MessageBoxA
004012F2   |. |EB 14               JMP SHORT Zebrone.00401308
004012F4   |> \6A 00               PUSH 0                                    ; /Style = MB_OK|MB_APPLMODAL
004012F6   |.  68 F8314000         PUSH Zebrone.004031F8                     ; |Title = "Hmmmm :P"
004012FB   |.  68 01324000         PUSH Zebrone.00403201                     ; |Text = "Sorry... The Serial isn't correct :Þ"
00401300   |.  FF75 08             PUSH [ARG.1]                              ; |hOwner = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
00401303   |.  E8 B0010000         CALL <JMP.&USER32.MessageBoxA>            ; \MessageBoxA
00401308   |>  31C0                XOR EAX,EAX
0040130A   |.  40                  INC EAX
0040130B   |.  EB 39               JMP SHORT Zebrone.00401346
0040130D   |>  6A 00               PUSH 0                                    ; /Result = 0
0040130F   |.  FF75 08             PUSH [ARG.1]                              ; |hWnd = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
00401312   |.  E8 89010000         CALL <JMP.&USER32.EndDialog>              ; \EndDialog
00401317   |.  31C0                XOR EAX,EAX
00401319   |.  40                  INC EAX
0040131A   |.  EB 2A               JMP SHORT Zebrone.00401346
0040131C   |>  6A 00               PUSH 0                                    ; /Style = MB_OK|MB_APPLMODAL
0040131E   |.  68 40304000         PUSH Zebrone.00403040                     ; |Title = "Zebra ver. 1.1"
00401323   |.  68 4F304000         PUSH Zebrone.0040304F                     ; |Text = "This is the 1.1 Zebra Crackme, Thanks to Quequero and Koma, to have said me a bug of the previous version. (It was due to an orrible cpu appoximation). As usually you cannot patch this .EXE, you've to find one of the many correct solut"...
00401328   |.  FF75 08             PUSH [ARG.1]                              ; |hOwner = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
0040132B   |.  E8 88010000         CALL <JMP.&USER32.MessageBoxA>            ; \MessageBoxA
00401330   |.  31C0                XOR EAX,EAX
00401332   |.  40                  INC EAX
00401333   |.  EB 11               JMP SHORT Zebrone.00401346
00401335   |>  6A 00               PUSH 0                                    ; /Result = 0
00401337   |.  FF75 08             PUSH [ARG.1]                              ; |hWnd = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
0040133A   |.  E8 61010000         CALL <JMP.&USER32.EndDialog>              ; \EndDialog
0040133F   |.  31C0                XOR EAX,EAX
00401341   |.  40                  INC EAX
00401342   |.  EB 02               JMP SHORT Zebrone.00401346
00401344   |>  31C0                XOR EAX,EAX
00401346   |>  C9                  LEAVE
00401347   \.  C2 1000             RETN 10
================================================================
0040134A   /$  55                  PUSH EBP
0040134B   |.  89E5                MOV EBP,ESP
0040134D   |.  83EC 68             SUB ESP,68
00401350   |.  FF75 08             PUSH [ARG.1]                              ; /x1
00401353   |.  E8 78010000         CALL <JMP.&CRTDLL.atof>                   ; \atof
00401358   |.  DD55 E8             FST QWORD PTR SS:[EBP-18]
0040135B   |.  83EC 08             SUB ESP,8
0040135E   |.  DD1C24              FSTP QWORD PTR SS:[ESP]
00401361   |.  E8 82010000         CALL <JMP.&CRTDLL.floor>
00401366   |.  DD5D F8             FSTP QWORD PTR SS:[EBP-8]
00401369   |.  FF75 0C             PUSH [ARG.2]                              ; /x2
0040136C   |.  E8 5F010000         CALL <JMP.&CRTDLL.atof>                   ; \atof
00401371   |.  DD55 D8             FST QWORD PTR SS:[EBP-28]
00401374   |.  83EC 08             SUB ESP,8
00401377   |.  DD1C24              FSTP QWORD PTR SS:[ESP]
0040137A   |.  E8 69010000         CALL <JMP.&CRTDLL.floor>
0040137F   |.  83C4 18             ADD ESP,18
00401382   |.  DD55 F0             FST QWORD PTR SS:[EBP-10]
00401385   |.  DC4D F8             FMUL QWORD PTR SS:[EBP-8]
00401388   |.  D9EE                FLDZ
0040138A   |.  DED9                FCOMPP                                    ;  floor(x1)*floor(x2)=0 ???
0040138C   |.  DFE0                FSTSW AX                                  ;  <<Store status word
0040138E   |.  9E                  SAHF                                      ;  <<Store AH into FLAGS
0040138F   |.  75 07               JNZ SHORT Zebrone.00401398                ;  Si salta todo OK
00401391   |.  31C0                XOR EAX,EAX
00401393   |.  E9 96000000         JMP Zebrone.0040142E                      ;  Bad boy
00401398   |>  DD45 F8             FLD QWORD PTR SS:[EBP-8]                  ;  <<Floating point load
0040139B   |.  DC5D F0             FCOMP QWORD PTR SS:[EBP-10]               ;  x1 = x2 ???
0040139E   |.  DFE0                FSTSW AX                                  ;  <<Store status word
004013A0   |.  9E                  SAHF                                      ;  <<Store AH into FLAGS
004013A1   |.  75 07               JNZ SHORT Zebrone.004013AA                ;  Si salta todo OK
004013A3   |.  31C0                XOR EAX,EAX
004013A5   |.  E9 84000000         JMP Zebrone.0040142E                      ;  Bad boy
004013AA   |>  DD45 F8             FLD QWORD PTR SS:[EBP-8]                  ;  <<Floating point load
004013AD   |.  DD5D C8             FSTP QWORD PTR SS:[EBP-38]
004013B0   |.  D9E8                FLD1                                      ;  Carga 1 en el stack
004013B2   |.  DD55 C0             FST QWORD PTR SS:[EBP-40]                 ;  <<Floating point store
004013B5   |.  DC5D C8             FCOMP QWORD PTR SS:[EBP-38]               ;  x1 > 1 ???
004013B8   |.  DFE0                FSTSW AX                                  ;  <<Store status word
004013BA   |.  9E                  SAHF                                      ;  <<Store AH into FLAGS
004013BB   |.  77 2D               JA SHORT Zebrone.004013EA                 ;  Si salta bad boy
004013BD   |.  DF2D 38304000       FILD QWORD PTR DS:[403038]                ;  <<Load integer>> 2540BE400 = 10^10
004013C3   |.  DD55 B8             FST QWORD PTR SS:[EBP-48]                 ;  <<Floating point store
004013C6   |.  DC5D C8             FCOMP QWORD PTR SS:[EBP-38]               ;  x1 < 10^10 ???
004013C9   |.  DFE0                FSTSW AX                                  ;  <<Store status word
004013CB   |.  9E                  SAHF                                      ;  <<Store AH into FLAGS
004013CC   |.  72 1C               JB SHORT Zebrone.004013EA                 ;  Si salta bad boy
004013CE   |.  DD45 F0             FLD QWORD PTR SS:[EBP-10]                 ;  <<Floating point load
004013D1   |.  DD5D B0             FSTP QWORD PTR SS:[EBP-50]                ;  <<Store and pop
004013D4   |.  DD45 C0             FLD QWORD PTR SS:[EBP-40]                 ;  <<Floating point load
004013D7   |.  DC5D B0             FCOMP QWORD PTR SS:[EBP-50]               ;  x2 > 1 ???
004013DA   |.  DFE0                FSTSW AX                                  ;  <<Store status word
004013DC   |.  9E                  SAHF                                      ;  <<Store AH into FLAGS
004013DD   |.  77 0B               JA SHORT Zebrone.004013EA                 ;  Si salta bad boy
004013DF   |.  DD45 B8             FLD QWORD PTR SS:[EBP-48]                 ;  <<Floating point load>> carga 10^10
004013E2   |.  DC5D B0             FCOMP QWORD PTR SS:[EBP-50]               ;  x2 < 10^10 ???
004013E5   |.  DFE0                FSTSW AX                                  ;  <<Store status word
004013E7   |.  9E                  SAHF                                      ;  <<Store AH into FLAGS
004013E8   |.  73 04               JNB SHORT Zebrone.004013EE                ;  Salta si menor
004013EA   |>  31C0                XOR EAX,EAX
004013EC   |.  EB 40               JMP SHORT Zebrone.0040142E                ;  Bad boy
004013EE   |>  DD45 F8             FLD QWORD PTR SS:[EBP-8]                  ;  <<Floating point load>> carga x1
004013F1   |.  D9FE                FSIN                                      ;  Sin(x1)
004013F3   |.  DD5D A8             FSTP QWORD PTR SS:[EBP-58]                ;  <<Store and pop
004013F6   |.  DD45 F0             FLD QWORD PTR SS:[EBP-10]                 ;  <<Floating point load>> carga x2
004013F9   |.  D9FE                FSIN                                      ;  Sin(x2)
004013FB   |.  DD5D A0             FSTP QWORD PTR SS:[EBP-60]                ;  <<Store and pop
004013FE   |.  DD45 A8             FLD QWORD PTR SS:[EBP-58]                 ;  <<Floating point load
00401401   |.  DC4D A0             FMUL QWORD PTR SS:[EBP-60]                ;  Sin(x1) * Sin(x2)
00401404   |.  DF2D 30304000       FILD QWORD PTR DS:[403030]                ;  <<Load integer>> 2386F26FC10000 = 10^16
0040140A   |.  DEC9                FMULP ST(1),ST                            ;  10^16 * (Sin(x1) * Sin(x2))
0040140C   |.  83EC 08             SUB ESP,8
0040140F   |.  DD1C24              FSTP QWORD PTR SS:[ESP]                   ;  <<Store and pop
00401412   |.  E8 D1000000         CALL <JMP.&CRTDLL.floor>
00401417   |.  83C4 08             ADD ESP,8
0040141A   |.  DD5D 98             FSTP QWORD PTR SS:[EBP-68]
0040141D   |.  D9EE                FLDZ                                      ;  <<Load 0.0 onto stack
0040141F   |.  DC5D 98             FCOMP QWORD PTR SS:[EBP-68]               ;  10^16 * (Sin(x1) * Sin(x2)) = 0 ???
00401422   |.  DFE0                FSTSW AX
00401424   |.  9E                  SAHF                                      ;  <<Store AH into FLAGS
00401425   |.  75 05               JNZ SHORT Zebrone.0040142C                ;  Si NO salta todo OK
00401427   |.  31C0                XOR EAX,EAX
00401429   |.  40                  INC EAX
0040142A   |.  EB 02               JMP SHORT Zebrone.0040142E
0040142C   |>  31C0                XOR EAX,EAX
0040142E   |>  C9                  LEAVE
0040142F   \.  C3                  RETN

La primera dificultad que podemos encontrar es que utiliza instrucciones FPU y coma flotante, ya que si no tenemos la vista entrenada nos puede resultar un engorro. Superado esto, la rutina de comprobación se puede resumir así:

  • x1 * x2 != 0
  • x1 != x2
  • x1 > 1 y < 10^10
  • x2 > 1 y < 10^10
  • Floor[10^16 * sin(x1) * sin(x2)] = 0

A priori no parece que tenga mucha dificultad, pero vamos a analizarlo más concienzudamente. Necesitamos que la parte entera del resultado de la multiplicación sea 0, algo que parece sencillo, pero fíjate que la constante 10^16 nos obliga a su vez, a que el resultado del seno sea muy pequeño, cosa que como comprobaréis limita mucho los resultados satisfactorios.

Repasando trigonometría

Cuando nos enseñó nuestro profesor la función del seno nos hizo el siguiente dibujo:

circunferencia_e

Partiendo de la circunferencia unitaria, podemos concluir que el seno de alpha es igual a la altura x. Como lo que nos interesa a nosotros es que el seno sea muy pequeño, en realidad estamos buscando que la x sea lo más pequeña posible. Llegamos entonces a la conclusión de que las soluciones para enteros entre 1 y 10^10 van a ser muy reducidas. Además nos percatamos que el ángulo alpha va a tener que estar muy proximo a 0º – 360 (0 – 2π) y a 180º (π). En el siguiente gráfico queda claro el estrecho margen en el que nos movemos.

circunferencia_angulos_e

Si habéis leído la solución de cronos ahora le encontraréis algo más de sentido a por que él utilizó fracciones continuas de π y cogió como resultado los numeradores más cercanos a 10^10, en su caso 245850922 y 411557987.

Análisis operacional

Vamos a analizar un ejemplo operacional.

sin( x rad)
sin(245850922) = 6,1180653830011163142712109862972e-9
sin(411557987) = 2,536716051963676479648989773448e-9

sin(245850922)*sin(411557987) = 1,5519794664022230015882605365808e-17

10^16 * 1,5519794664022230015882605365808e-17 = 0,15519794664022230015882605365808

Floor(0,15519794664022230015882605365808) = 0

Como veis, el exponente negativo (^-17) debe ser mayor que el positivo (^16) para tener éxito.

Fuerza bruta

Lo que vamos a hacer a continuación es buscar todos los senos con exponente negativo ^-8 ó ^-9 de enteros entre 1 y 10^10, y vamos a cruzar los resultados para determinar todos los resultados válidos.

Preparamos el programa y le dejamos trabajar. En principio vamos a filtrar todos los resultados que tengan exponente negativo y luego ya aislaremos los que nos interesan. Esto lo hago por curiosidad.

aprox

La fuerza bruta nos arroja 63663 resultados con exponente negativo entre ^-5 y ^-9, de los cuales solamente nos quedamos con 65, que son los comprendidos a exponentes de entre ^-8 y ^-9. Los números mágicos son los siguientes:

magicnumbers

Los rojos son exponentes ^-9, el resto ^-8.

La mayoría de estos números solo valen con ciertas combinaciones, de hecho, ninguno vale para todos. Esto se debe, a parte del propio exponente, a que hay senos positivos y negativos y para hacer válido a un seno negativo hay que combinarlo con otro negativo. Esto último se debe únicamente a la interpretación que hace el crackme.

 Finalmente cruzamos los resultados y obtenemos 44 combinaciones de seriales válidos que si obviamos repeticiones se reducen a la mitad.

 checker

Combinaciones válidas:

seriales

Conclusiones

Podemos concluir que para cada 10^10 enteros hay 22 soluciones posibles. Finalmente comentar que si aLoNg3x no hubiera puesto el límite en 10^10, habría soluciones infinitas.

Links


Introducción Aquí tenemos un crackme hecho en Java, lo que como comprobareis a continuación no es muy buena idea ya
Introducción Hoy vamos a enfrentarnos a cuatro retos de esteganografía relativamente sencillos, y digo relativamente, debido a que hay tantas
Se nos entrega el siguiente ELF: Extracción de la Flag Si nos fijamos en las líneas 41 a la 45
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en

Intro

Os comparto un reto stego que me gustó cuando lo hice hace unos años. En realidad se tarda pocos minutos en resolverlo pero depende de tus recursos es posible que se te atragante.

Procesando a la víctima

Cuando te has enfrentado a unos cuantos retos stego lo normal es que tengas un arsenal de herramientas por las que vas a pasar a la víctima. En mi caso cuando se trata de imágenes, mi fondo de armario está formado por steganabara y stegsolve. Si con esas dos herramientas no lo veo claro ya empiezo a mirar en sus entrañas y en este caso es justo lo que hace falta, mirar en su interior.

La víctima

imagen original del reto

Estamos ante una imagen GIF de 6,36KB (6513 bytes) cuya resolución es 236×42. Debido a la extensión tenderemos a analizar los frames por si se trata de una animación. Una vez desestimada la animación entran en juego steganabara, stegsolve y demás familia. Si todo lo anterior falla abro el archivo con un editor hexadecimal y lo reviso manualmente por si hay algo que me llama la atención.

Bytes

Explorando el interior del archivo enseguida encontramos algo que llama la atención, una sucesión de bytes con espacios intercalados.

Tras copiar los bytes lo primero es eliminar los espacios y empezar a jugar con ellos. Una de las cosas que podemos hacer es convertir los bytes a ascii y voilá, nos encontramos con lo que parece otro archivo GIF.

Copiamos los bytes con la ayuda de nuestro editor hexadecimal favorito, guardamos el archivo como GIF y reto superado.

Enlaces

Nota: si algo os pide clave es deurus.info

Intro

Hoy tenemos un crackme hecho en ensamblador y que cuenta con tres niveles. En el primero de todos nos enfrentamos a una «Splash screen» o nag. El segundo en un serial Hardcodeado y el tercero un número de serie asociado a un nombre.

Nopeando la Splash Screen

splashscreen

Abrimos el crackme con Olly y vamos a las «Intermodular Calls«, enseguida vemos la función que crea las ventanas «CreateWindowExA«. Se puede ver lo que parece ser la creación de la pantalla del crackme y al final hay algo que salta a la vista y es la propiedad «WS_TOPMOST», es decir, que se mantenga delante del resto de ventanas.

intermodularcalls

Pinchamos sobre la función y vamos a parar aquí.

codesplash

Vemos la llamada a CreateWindowExA que podríamos parchear pero vamos a pensar un poco. Vemos la función GetTickCount y que carga el valor 7D0. 7D0 es 2000 en decimal, que perfectamente pueden ser milisegundos, por lo tanto el parcheo más elegante sería poner la función GetTickCount a 0. En la imagen inferior se puede ver como queda parcheado el valor 7D0.

splashtime

splashparcheada

Probamos y funciona, pasamos a lo siguiente.

Serial Hardcodeado

El mensaje de error del serial hardcodeado dice «Sorry, please try again». Lo buscamos en las string references y vamos a parar aquí.

hardcoded

Vemos un bucle de comparación que carga unos bytes de la memoria, los bytes dicen «HardCoded«, probamos y prueba superada.

hardcoded2

09-09-2014 11-12-42

El nombre y número de serie

Con el mismo método de las string references localizamos el código que nos interesa. Metemos deurus como nombre y 12345 como serial y empezamos a tracear. Lo primero que hace es una serie de operaciones con nuestro nombre a las que podemos llamar aritmética modular. Aunque en la imagen viene bastante detallado se vé mejor con un ejemplo.

buclenombre

Ejemplo para Nombre: deurus

d   e   u   r   u   s
64  65  75  72  75  73 -hex
100 101 117 114 117 115 -dec

1ºByte = ((Nombre[0] % 10)^0)+2
2ºByte = ((Nombre[1] % 10)^1)+2
3ºByte = ((Nombre[2] % 10)^2)+2
4ºByte = ((Nombre[3] % 10)^3)+2
5ºByte = ((Nombre[4] % 10)^4)+2
6ºByte = ((Nombre[5] % 10)^5)+2

1ºByte = ((100 Mod 10) Xor 0) + 2
2ºByte = ((101 Mod 10) Xor 1) + 2
3ºByte = ((117 Mod 10) Xor 2) + 2
4ºByte = ((114 Mod 10) Xor 3) + 2
5ºByte = ((117 Mod 10) Xor 4) + 2
6ºByte = ((115 Mod 10) Xor 5) + 2

Si el byte > 10 --> Byte = byte - 10

1ºByte = 2
2ºByte = 2
3ºByte = 7
4ºByte = 9
5ºByte = 5
6ºByte = 2

 Lo que nos deja que los Bytes mágicos para deurus son: 227952.

Debido a la naturaleza de la operación IDIV y el bucle en general, llegamos a la conclusión de que para cada letra es un solo byte mágico y que este está comprendido entre 0 y 9.

A continuación realiza las siguientes operaciones con el serial introducido.

bucleserial

Ejemplo para serial: 12345

1  2  3  4  5
31 32 33 34 35 -hex
49 50 51 52 53 -dec

49 mod 10 = 9
50 mod 10 = 0
51 mod 10 = 1
52 mod 10 = 2
53 mod 10 = 3

Los bytes mágicos del serial son: 90123, que difieren bastante de los conseguidos con el nombre.

A continuación compara byte a byte 227952 con 90123.

buclecompara

En resumen, para cada nombre genera un código por cada letra y luego la comprobación del serial la realiza usando el módulo 10 del dígito ascii. Lo primero que se me ocurre es que necesitamos cotejar algún dígito del 0 al 9 para tener cubiertas todas las posibilidades. Realizamos manualmente mod 10 a los números del 0 al 9 y obtenemos sus valores.

(0) 48 mod 10 = 8
(1) 49 mod 10 = 9
(2) 50 mod 10 = 0
(3) 51 mod 10 = 1
(4) 52 mod 10 = 2
(5) 53 mod 10 = 3
(6) 54 mod 10 = 4
(7) 55 mod 10 = 5
(8) 56 mod 10 = 6
(9) 57 mod 10 = 7

Con esto ya podríamos generar un serial válido.

0123456789 - Nuestro alfabeto numérico

8901234567 - Su valor Mod 10

Por lo que para deurus un serial válido sería: 449174. Recordemos que los bytes mágicos para deurus eran «227952», solo hay que sustituir.

Para realizar un KeyGen más interesante, he sacado los valores de un alfabeto mayor y le he añadido una rutina aleatoria para que genere seriales diferentes para un mismo nombre.

keygen

        'abcdefghijklmnñppqrstuvwxyz0123456789ABCDEFGHIJKLMNÑOPQRSTUVWXYZ - Alfabeto
        '7890123456778901234567789018901234567567890123455678901234556880 - Valor
        Dim suma As Integer = 0
        'Para hacer el serial más divertido
        Dim brute() As String = {"2", "3", "4", "5", "6", "7", "8", "9", "0", "1"}
        Dim brute2() As String = {"d", "e", "f", "g", "h", "i", "j", "a", "b", "c"}
        Dim brute3() As String = {"P", "Q", "R", "S", "T", "U", "j", "a", "D", "E"}
        Dim alea As New Random()
        txtserial.Text = ""
        'Evito nombres mayores de 11 para evitar el BUG comentado en le manual
        If Len(txtnombre.Text) > 0 And Len(txtnombre.Text) < 12 Then
            For i = 1 To Len(txtnombre.Text)
                Dim aleatorio As Integer = alea.Next(0, 9)
                suma = (((Asc(Mid(txtnombre.Text, i, 1))) Mod 10) Xor i - 1) + 2
                If suma > 9 Then
                    suma = suma - 10
                End If
                If (aleatorio) >= 0 And (aleatorio) <= 4 Then
                    txtserial.Text = txtserial.Text & brute(suma)
                ElseIf (aleatorio) > 4 And (aleatorio) <= 7 Then
                    txtserial.Text = txtserial.Text & brute2(suma)
                ElseIf (aleatorio) > 7 And (aleatorio) <= 10 Then
                    txtserial.Text = txtserial.Text & brute3(suma)
                End If
                suma = 0
            Next
        Else
            txtserial.Text = "El Nombre..."
        End If

Notas finales

Hay un pequeño bug en el almacenaje del nombre y serial y en el guardado de bytes mágicos del serial. Si nos fijamos en los bucles del nombre y el serial, vemos que los bytes mágicos del nombre los guarda a partir de la dirección de memoria 403258 y los bytes mágicos del serial a partir de 40324D. En la siguiente imagen podemos ver seleccionados los 11 primeros bytes donde se almacenan los bytes mágicos del serial. Vemos que hay seleccionados 11 bytes y que el siguiente sería ya 403258, precisamente donde están los bytes mágicos del nombre. Como puedes imaginar si escribes un serial >11 dígitos se solapan bytes y es una chapuza, de modo que el keygen lo he limitado a nombres de 11 dígitos.

dumpespacioserialhash

Links


Introducción Objetivo del juego y normas Código inicial Primeras modificaciones Terminando la faena Código ganador Curiosidades Enlaces Introducción Hace tiempo
Intro Hoy tenemos un crackme realizado en Visual C++ 6. Es el típico serial asociado a un nombre. El algoritmo
Introducción Tal y como nos adelanta el creador está programado en .NET. Lo abrimos para ver su comportamiento y a
Introducción Hoy tenemos aquí un crackme de los que te hacen temblar las conexiones neuronales. Estamos acostumbrados al típico serial

Introducción

Hace tiempo que me aficioné a los retos de Hacking y Cracking, y si bien la mayoría de ellos consisten en desencriptar una clave o realizar ingeniería inversa sobre un ejecutable, también los hay sobre programación pura y dura.

En esta ocasión se nos proporciona un código «muestra» parecido a PHP o C++ y tenemos que ingeniarnoslas para mejorarlo y ganar a la máquina.

Objetivo del juego y normas

El objetivo de esta misión es ganar a Tr0n en su propio juego: las carreras de motos. Se te proporcionará un programa (código) funcional para que veas como se controla el vehiculo. Usando tu inteligencia, tendrás que entender su uso y mejorarlo, ya que no es lo suficientemente bueno como para ganar a Tr0n. Tr0n lleva ya bastante tiempo en la parrilla de juegos y es bastante habilidoso 🙂

Cuando venzas a Tr0n un mínimo de 5 veces consecutivas, se te dará por superada esta prueba.

Buena suerte!!!

[ Available functions / Funciones disponibles ]
direction() returns current direction, change to a new one with direction([newdir])
getX(), getY() returns X and Y coordinates
collisionDistance() | collisionDistance([anydir]) returns the distance until collision
Note: parameters [*dir] can be empty or one of this values: UP DOWN LEFT or RIGHT

[ Constants / Constantes ]
UP DOWN LEFT RIGHT MAX_X MAX_Y

[ Rules / Reglas ]
Try to survive driving your bike and … / Intenta sobrevivir conduciendo tu moto y…
Don’t cross any line / No cruces ninguna línea
or crash with the corners! / o choques con las esquinas!

[ Mission / Mision ]
Use well this controller and beat Tr0n 5 consecutive times to score in this game
Usa bien este controlador y vence a Tr0n 5 veces consecutivas para puntuar en este juego

Código inicial

Nada más comenzar vemos que hemos perdido nuestra primera partida con el siguiente código:

	function controller(playerController $c){
		if($c->direction()==UP && $c->getY()<10){
			if(rand(0,1)==0) $c->direction(LEFT);
				else $c->direction(RIGHT);
			goto done;
		}
		if($c->direction()==DOWN && MAX_Y-$c->getY()<10){
			if(rand(0,1)==0) $c->direction(LEFT);
				else $c->direction(RIGHT);
			goto done;
		}
		if($c->direction()==LEFT && $c->getX()<10){
			if(rand(0,1)==0) $c->direction(UP);
				else $c->direction(DOWN);
			goto done;
		}
		if($c->direction()==RIGHT && MAX_X-$c->getX()<10){
			if(rand(0,1)==0) $c->direction(UP);
				else $c->direction(DOWN);
		}
		done:
	}

Nosotros somos el AZUL y la máquina es el VERDE.

loose_inicial

Primeras modificaciones

Lo primero que tenemos que modificar son las distancias de las coordenadas que estan puestas en «<10» al mínimo, que sería «<2«. También sustituir la aleatoriedad «rand(0,1)==0» por algo más útil y comenzar a usar la función «collisionDistance()«.

Como podéis observar en el código inferior, usamos la función «collisionDistance()» para detectar cuando estamos a punto de chocar «collisionDistance() ==1» y para detectar a que lado nos conviene más girar en función de donde podamos recorrer más distancia «if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT); else $c->direction(RIGHT);«.

if($c->direction()==UP && $c->getY()==1 && $c->collisionDistance() ==1){
			if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT);
				else $c->direction(RIGHT);
		}
if($c->direction()==DOWN && MAX_Y-$c->getY()<2 || $c->collisionDistance() ==1){
			if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT);
				else $c->direction(RIGHT);
		}
if($c->direction()==LEFT && $c->getX()==1 && $c->collisionDistance() ==1){
			if($c->collisionDistance([UP]) >2) 
                                $c->direction(UP);
				else 
                                $c->direction(DOWN);
		}
if($c->direction()==RIGHT && MAX_X-$c->getX()<2 || $c->collisionDistance() ==1){
			if($c->collisionDistance([UP]) >2) $c->direction(UP);
				else $c->direction(DOWN);
				
		}

Terminando la faena

El código anterior de por sí no nos resuelve mucho si no afinamos un poco más, comprobando todos las posibles colisiones y tomando la dirección correcta en función de la mayor distancia a recorrer.

    if($c->collisionDistance([UP])==1 || $c->collisionDistance() ==1){
             if($c->collisionDistance([LEFT]) > $c->collisionDistance([RIGHT]))
               $c->direction(LEFT);
             else 
               $c->direction(RIGHT);
     }
     if($c->collisionDistance([DOWN])==1 || $c->collisionDistance() ==1){
            if($c->collisionDistance([LEFT]) > $c->collisionDistance([RIGHT]))
               $c->direction(LEFT);
             else 
               $c->direction(RIGHT);
     }
     if($c->collisionDistance([RIGHT])==1 || $c->collisionDistance() ==1){
             if($c->collisionDistance([UP]) > $c->collisionDistance([DOWN]))
               $c->direction(UP);
             else 
               $c->direction(DOWN);
     }
     if($c->collisionDistance([LEFT])==1 || $c->collisionDistance() ==1){
          if($c->collisionDistance([UP]) > $c->collisionDistance([DOWN]))
               $c->direction(UP);
             else 
               $c->direction(DOWN);
     }

Código ganador

El código que utilicé yo para ganar a Tron es el siguiente:

function controller(playerController $c){
uno:
if($c->direction()==UP && $c->getY()==1 && $c->collisionDistance() ==1){
			if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT);
				else $c->direction(RIGHT);
				
		}
if($c->direction()==DOWN && MAX_Y-$c->getY()<2 || $c->collisionDistance() ==1){
			if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT);
				else $c->direction(RIGHT);
				
		}
if($c->direction()==LEFT && $c->getX()==1 && $c->collisionDistance() ==1){
			if($c->collisionDistance([UP]) >2) 
                                $c->direction(UP);
				else 
                                $c->direction(DOWN);
				
		}
if($c->direction()==RIGHT && MAX_X-$c->getX()<2 || $c->collisionDistance() ==1){
			if($c->collisionDistance([UP]) >2) $c->direction(UP);
				else $c->direction(DOWN);
				
		}
dos:
    if($c->collisionDistance([UP])==1 || $c->collisionDistance() ==1){
             if($c->collisionDistance([LEFT]) > $c->collisionDistance([RIGHT]))
               $c->direction(LEFT);
             else 
               $c->direction(RIGHT);
     }
     if($c->collisionDistance([DOWN])==1 || $c->collisionDistance() ==1){
            if($c->collisionDistance([LEFT]) > $c->collisionDistance([RIGHT]))
               $c->direction(LEFT);
             else 
               $c->direction(RIGHT);
     }
     if($c->collisionDistance([RIGHT])==1 || $c->collisionDistance() ==1){
             if($c->collisionDistance([UP]) > $c->collisionDistance([DOWN]))
               $c->direction(UP);
             else 
               $c->direction(DOWN);
     }
     if($c->collisionDistance([LEFT])==1 || $c->collisionDistance() ==1){
          if($c->collisionDistance([UP]) > $c->collisionDistance([DOWN]))
               $c->direction(UP);
             else 
               $c->direction(DOWN);
     }
		done:
	}

Mis jugadas ganadoras:

01

02

03

04

05

El código no es infalible ya que como comprabaréis vosotros mismos, no se puede ganar siempre por el mero hecho de la aleatoriedad y de la suerte. Cuando dispongais de un código decente, ejecutarlo varias veces para estar seguros antes de desecharlo.

Curiosidades

Como se suele decir, la banca siempre gana, y en este caso no iba a ser menos y es que en caso de empate ¡la banca gana!

empate

 

Por último deciros que podéis utilizar el código ya que la web detecta los códigos ganadores para que no se repitan.

Enlaces

Intro

Hoy tenemos un crackme realizado en Visual C++ 6. Es el típico serial asociado a un nombre.

El algoritmo

Localizamos con Olly la rutina de comprobación del serial y empezamos a analizar. Vemos una serie de Calls que lo único que hacen es comprobar el tamaño de nuestro nombre y serial y si es <5 dígitos nos tira afuera.

saltos_iniciales

Una vez pasada la traba anterior procede con un bucle para el nombre y otro para el serial. Yo he metido deurus y 123456. El bucle del nombre hace xor al los dígitos ascii con un valor incremental a partir de 1. Reconvierte el valor resultante en su caracter correspondiente y lo almacena.

00401576     |.  B9 01000000   MOV ECX,1                         ; ECX = 1
0040157B     |.  33D2          XOR EDX,EDX
0040157D     |.  8B45 E4       MOV EAX,[LOCAL.7]                 ; EAX = Nombre
00401580     |>  8A18          /MOV BL,BYTE PTR DS:[EAX]         ; BL = digito que toque  <--
00401582     |.  32D9          |XOR BL,CL                        ; digito XOR ECX
00401584     |.  8818          |MOV BYTE PTR DS:[EAX],BL         ; sustituye el digito nombre por el resultante del xor
00401586     |.  41            |INC ECX                          ; ECX++
00401587     |.  40            |INC EAX                          ; Siguiente digito
00401588     |.  8038 00       |CMP BYTE PTR DS:[EAX],0
0040158B     |.^ 75 F3         \JNZ SHORT crackme3.00401580      ; Bucle -->

 Ejemplo:

d  e  u  r  u  s
64 65 75 72 75 73

(d)64 xor 1 = 65(e)
(e)65 xor 2 = 67(g)
(u)75 xor 3 = 76(v)
(r)72 xor 4 = 76(v)
(u)75 xor 5 = 70(p)
(s)73 xor 6 = 75(u)

Nombre:    deurus
Resultado: egvvpu

Hace lo mismo con el serial pero con el valor incremental a partir de 0xA (10).

00401593     |.  B9 0A000000    MOV ECX,0A                      ; ECX = A
00401598     |.  33D2           XOR EDX,EDX
0040159A     |.  8B45 F0        MOV EAX,[LOCAL.4]               ; EAX = Serial
0040159D     |>  8A18           /MOV BL,BYTE PTR DS:[EAX]       ; BL = digito que toque  <--
0040159F     |.  32D9           |XOR BL,CL                      ; BL XOR CL
004015A1     |.  8818           |MOV BYTE PTR DS:[EAX],BL       ; sustituye el digito serial por el resultante del xor
004015A3     |.  41             |INC ECX                        ; ECX++
004015A4     |.  40             |INC EAX                        ; Siguiente digito
004015A5     |.  8038 00        |CMP BYTE PTR DS:[EAX],0
004015A8     |.^ 75 F3          \JNZ SHORT crackme3.0040159D    ; Bucle -->

Ejemplo:

1  2  3  4  5  6
31 32 33 34 35 35

(1)31 xor A = 3B(;)
(2)32 xor B = 39(9)
(3)33 xor C = 3F(?)
(4)34 xor D = 39(9)
(5)35 xor E = 3B(;)
(6)36 xor F = 39(9)

Serial:    123456
Resultado: ;9?9;9

A continuación compara «egvvpu» con «;9?9;9» byte a byte.

KeyGen

El KeyGen quedaría así

for(int i = 0; i <= strlen(Nombre); i = i + 1)
                {
                        Serial[i] = (Nombre[i]^(i+1))^(0xA + i);
                }

 Links


Karpoff.es Hace unos días intenté contactar con Karpoff ya que fué una inspiración para mi y muchos otros, lo conseguí
Continuamos con los BTM awards. Esta vez analizaremos brevemente una escena de la película del casi siempre excelente James Cameron,
Los retos de criptografía pueden ser muy variados como he dicho anteriormente. El secreto suele estar en saber a que
Intro We require your services once again. An employee from our company had recently been identified as a known criminal

Karpoff.es

Hace unos días intenté contactar con Karpoff ya que fué una inspiración para mi y muchos otros, lo conseguí y se me ocurrió hacerle una entrevista, aquí tenéis el resultado.

Para los recién llegados diré que, Karpoff Spanish Tutor era (y sigue siendo aunque no se actualice), una gran web colaborativa donde encontrar cantidad de manuales y programas en Castellano.

deurus: ¿Qué te llevó a realizar la web?, es decir, que te hizo levantarte una mañana y decir, venga, voy a realizar una web sobre ingeniería inversa.

Karpoff: Pues mira, fue de la siguiente manera. Por aquel entonces (te hablo de los 90 y poco) yo pasaba mi tiempo libre intentando saltar las protecciones de los programas que conseguía generalmente en revistas de informática.

Desconocía que existía un mundillo dedicado a esas artes.

En los años 90 no había internet ni nada parecido que yo sepa, sobre el 95 creo recordar, telefónica saco una cosa que se llamaba Infobia y era una especie de intranet de telefónica donde accedías a un contenido muy limitado, pero te permitía salir de alguna manera bastante limitada también a lo que conocemos como internet (todo era mega lento, velocidades de uno o dos kb por segundo) con módem y llamadas analógicas.

No se como, ya que no existia o no era conocido Google tampoco había casi buscadores, conocí la famosa y maravillosa pagina de «Fravia» dedicada a la ingeniería inversa con muchísima documentación, y proyectos de estudio de protecciones, lamentablemente para el momento hispano, toda la documentación estaba en ingles .

Investigando conocí paginas hispanas con proyectos interesantes (aunque muchas de ellas aun siendo hispanas publicaban todo en ingles)

Conocí también otra pagina, el “ECD” estudio colectivo de desprotecciones + WTK en castellano e ingles que me sorprendió gratamente y donde se publicaban proyectos propios del grupo WTK y de otros grupos como estado+porcino.

los tres grupos hispanos del momento eran WTK, TNT y KUT, pertenecí a TNT durante algún tiempo, aunque el objetivo del grupo no me convencía ya que era exclusivamente la creación de cracks a mansalva por lo que no estuve más de un año.

Yo echaba de menos un sitio como “Fravia” pero en castellano donde todos los interesados pudiéramos colaborar y ayudarnos con temas de ingeniería inversa.

Ya en los 90 y mucho, todo lo relacionado con internet había evolucionado bastante, las conexiones también eran mas rápidas, ya no hacia falta conectarte a infobia sino directamente a internet.

Yo disponía de mucho tiempo libre y empecé un proyecto en solitario “Karpoff Spanish Tutor” mas conocido como “la pagina de karpoff” con proyectos de mi cosecha y con temas que me gustaban mucho, como la programación, los compiladores el software en general etc.

Luego todo lo demás fue llegando poco a poco, a la gente le gustaba y tenia muchísimas ganas de aprender y sobre todo de colaborar.

El proyecto alcanzo unos niveles impresionantes en cuanto a colaboración y recepción de material, había días que estaba mas de 14 horas actualizando la pagina y buscando nuevos servidores para alojarla, ya que me los cerraban casi semanalmente. Y la verdad.. cada vez me costaba mas tiempo mantener la pagina.

Luego gracias a Red Futura tuvimos un hostin de calidad y gratuito.

El proyecto era tan amplio que me fue imposible conciliar vida laboral y vida en internet todo esto empezaba a ser incompatible.

deurus: ¿Empezaste solo o erais un grupo de amiguetes?

Karpoff: Esta te la he contestado en la primera pregunta, vamos… que empecé yo solo.

deurus: ¿Echas de menos el proyecto?

Karpoff: Hoy en día no. Hace falta muchísimo tiempo libre y muchísima dedicación a nivel organizativo.

Echo de menos el movimiento que se creo y la actividad que alcanzo el movimiento cracking hispano. Salían grupos de cracker con nuevos proyectos y paginas hasta de debajo de las piedras 🙂 la ingenieria inversa se puso un poco de moda, conocí a gente muy interesante como Ricardo Narvaja, Numi_tor, Demian y muchas otras personas con muchos conocimientos.

Después de cerrar la pagina todo se quedo un poco cojo y todo el movimiento se empezó a diluir bastante rápido.

deurus: ¿Lo retomarías día de hoy?

Karpoff: La verdad es que no, ya no es mi tiempo, ahora me dedico al trabajo y mi familia y en ratos libres intento reventar algún programa. Sobre todo crackmes.

deurus: ¿Tienes o colaboras activamente en algún proyecto relacionado con la Ingeniería Inversa? 

Karpoff: No, no tengo tiempo. Mantengo contacto por correo con gente de que conocí en esa época y me sorprende que la gente no se olvida de mí. Recibo bastante correo en esta cuenta pidiéndome alguna entrevistilla, opiniones y muchos muchos agradecimientos de mucha gente por la página.

deurus: Yo por aquel entonces tenía 17 años, ¿se le puede preguntar la edad a Karpoff?

Karpoff: Pues yo tengo 45, por aquel entonces tenia unos 29 . La ingeniería inversa siempre fue mi pasión. Desde bien pequeño mi obsesión ha sido conocer como y porque funcionaba todo 🙂 hasta el punto de desmontar todo aquello que me llamaba la atención, mi madre estaba desesperada ya que dejaba todo destripado y muchas veces sin posiblilidad de reparacion.

deurus: ¿Te dedicas a algo relacionado con la informática?

Karpoff: Si, desde esos tiempos me encargo de los sistemas informáticos y equipos técnicos de una empresa bastante conocida, además ese fue uno de los principales motivos del cierre de la página.

Hubo gente interesada en seguir con el proyecto, aunque finalmente todo quedó en nada. Supongo que vieron que el proyecto requería muchísimo tiempo y mucho mucho trabajo.

Me dio mucha lastima no poder seguir con la página y mucha más que nadie se hiciera cargo de ella.

No hace mucho al desaparecer los redireccionadores “come.to” adquirí un dominio “karpoff.es” donde enlace tres mirror de la página para dejar un punto de acceso a ellos.

deurus: Finalmente ¿quieres decir algo a los lectores?

Karpoff: Pues sí, sobre todo dar las gracias a los que me conocen y tuvieron relación con la página, siempre me han hecho sentir grande y siempre tuve mucha colaboración y muchos ánimos por parte de los lectores.

Para los que no me conocen y les gusta la ingeniería inversa, decirles que lo que se aprende crackeando no lo enseñan en ningún sitio 🙂 y es muy muy gratificante.

deurus: Muchas gracias por tu atención, ha sido un placer.

Karpoff: Muchas gracias a ti, me ha hecho mucha ilusión y me ha gustado mucho tu blog.

Saludos !!

Karpoff

Continuamos con los BTM awards. Esta vez analizaremos brevemente una escena de la película del casi siempre excelente James Cameron, Mentiras Arriesgadas. En esta ocasión vamos a analizar una situación que se da mucho en el cine de Hollywood, esto es, el Plug and Play mágico. Cuando vemos películas de espías, es habitual encontrarnos con situaciones en las que el protagonista conecta un «algo» en el ordenador al que quiere acceder y ¡chas!, como por arte de magia sin tocar ninguna tecla se copian o se borran unos archivos, le da acceso remoto a algún compañero etc.

BTM

Este film no iba a ser menos y es que cuando Harry Tasker (Arnold Schwarzenegger) con sus inigualables dotes para el espionaje, entra en la mansión del objetivo en cuestión, conecta un módem, lo enciende y sin teclear un solo comando le da a su compañero Faisil (Grant Heslov) que se encuentra en una furgoneta a unos kilómetros,  acceso a la máquina, nos quedamos perplejos.

vlcsnap-2015-11-25-11h24m51s404

Esta situación es posible en la vida real, lo que la hace difícil de creer es que Harry no teclee ni un solo comando al conectar el módem, independientemente del Sistema Operativo que corra la máquina. Si nos situamos un poco, estamos hablando del año 1995, con una máquina corriendo Windows 3.1 y estamos conectando un módem a un puerto RS-232. En aquella época, por avanzada que fuera la tecnología espía, es difícil de creer que las cosas funcionen solas. Otra cosa a destacar es que a no ser que Faisil estuviera conectados a un poste de teléfono, la conexión tendría que ser inalámbrica, casi una quimera hace 20 años. A continuación os muestro la secuencia.

Como se puede observar en el vídeo, incluso parece que el equipo de Faisil, que también corre Windows 3.1, accede al equipo en modo escritorio remoto, tecnología que no existía en aquella época. Para que la secuencia tuviera un mínimo de credibilidad, Harry al conectar el módem y encender el equipo, debiera de haber introducido un par de comandos como mínimo para asignarle un puerto COM al módem y así iniciar la comunicación con Faisil. Ni que decir tiene que Faisil hubiera tenido que hacer todas las transmisiones mediante línea de comandos.

Aunque la película es entretenida y me gustó mucho cuando la vi allá por el año 1998, no nos queda más remedio que ponerle nuestro sello BTM de NO credibilidad.

sellazoment

Enlaces

Otros posts que te pueden interesar

En Parque Jurásico (1993), la informática no es solo un elemento narrativo, es una pieza clave del suspense y del
Introducción Hoy tenemos aquí un bonito crackme matemático realizado por Spider. El crackme está realizado en ensamblador y precisamente por
st2 arcade
He de iniciar esta entrada diciendo que la segunda temporada de Stranger Things es sencillamente genial. Son 9 horas intensas
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en

En Parque Jurásico (1993), la informática no es solo un elemento narrativo, es una pieza clave del suspense y del conflicto. A diferencia de otras películas donde las pantallas muestran interfaces ficticias o visualmente espectaculares pero irreales, Parque Jurásico opta por una aproximación sorprendentemente sobria y auténtica.

Durante bastantes escenas, se nos muestran terminales, ventanas de código y comandos que, lejos de ser decorativos, pertenecen a sistemas reales utilizados por programadores profesionales de principios de los años 90. Este detalle, que puede pasar desapercibido para el público general, resulta especialmente interesante desde un punto de vista técnico. En otras palabras, el trabajo de producción es excelente y destaca como una de las películas más respetuosas con la informática real de su época.

No es “código de película”: es software real

Uno de los puntos más interesantes es que el código que aparece en pantalla no fue escrito para la película. No hay pseudocódigo, ni pantallas diseñadas solo para quedar bonitas en cámara. Lo que se ve es software real, ejecutándose en el entorno Macintosh Programmer’s Workshop (MPW), el kit oficial de Apple para desarrolladores en aquellos años. El sistema operativo que se reconoce es un Macintosh clásico (System 7) corriendo sobre máquinas de la serie Quadra, auténticos pepinos para la época. Vamos, que cuando John Hammond decía aquello de «no hemos reparado en gastos», también iba en serio en lo informático.

«No hemos reparado en gastos»

En este punto no se le puede reprochar demasiado a la película. En líneas generales es bastante fiel a la novela, aunque la resolución del problema de seguridad se aborda de forma distinta. En el libro es el ingeniero Ray Arnold quien detecta el fallo y consigue reconducir la situación. En la película, sin embargo, el personaje desaparece cuando va a los barracones a restablecer la corriente del parque, con el resultado que todos conocemos.

Lo curioso es que muchos personajes sí cambian de forma notable con respecto al libro, el niño es mayor y más friki de los ordenadores, Ray Arnold no muere y acaba salvando la situación, o Gennaro es más atlético y bastante más valiente. Sin embargo, el gran disparate técnico permanece intacto.

En la novela se menciona de pasada a un equipo de informáticos de Cambridge que supuestamente colaboró en el diseño del software. Aun así, la puesta en marcha y la explotación del sistema recaen prácticamente en una sola persona, Dennis Nedry. Evidentemente, tanto al libro como al guion les viene de perlas que todo dependa de una única persona para que el desastre sea posible, pero cuesta aceptar que en un parque donde todo está duplicado, el control informático central dependa de una sola persona.

Curiosamente, en uno de los monitores de Nedry se puede ver una foto de Oppenheimer con la frase «Beginning of baby boom», de la que podemos sacar la conclusión de que Nedry es perfectamente consciente de que su trabajo puede tener consecuencias catastróficas e irreversibles. También es un maravilloso guiño del equipo de producción que nos está indicando exactamente donde se va originar el desastre.

Al final, Parque Jurásico no va de dinosaurios, ni siquiera de genética. Va de personas. Y, más concretamente, de personas con demasiado poder y muy pocos compañeros de equipo y poca supervisión.

Desde el punto de vista informático, la película es casi entrañable. Todo es serio, profesional y real… hasta que descubrimos que el sistema más complejo jamás construido depende, en la práctica, de un solo programador cabreado, mal pagado y con demasiadas líneas de código en la cabeza. Ningún comité de arquitectura, ninguna auditoría externa, ningún segundo par de ojos. Solo Dennis Nedry y su teclado. ¿Qué podía salir mal?

Lo curioso es que ni la película ni el libro se molestan en disimularlo demasiado. Te hablan de sistemas redundantes, de seguridad, de control absoluto… pero el corazón digital del parque es un castillo de naipes. Eso sí, un castillo de naipes programado en máquinas de primera, con software real y pantallas que hoy siguen pareciendo más creíbles que muchas producciones actuales.

Quizá por eso Parque Jurásico envejece tan bien. Porque, incluso cuando se equivoca, lo hace con honestidad. No intenta venderte magia disfrazada de tecnología. Te muestra ordenadores de verdad, código de verdad y errores muy humanos. Y al final, tanto en la novela como en la película, el mensaje es el mismo, puedes clonar dinosaurios, diseñar parques imposibles y rodearte de la mejor tecnología del mundo, que si todo depende de una sola persona, tarde o temprano, el sistema se vendrá abajo.

Y no, el problema no eran los dinosaurios, nunca lo fueron.

Introducción

Hoy tenemos aquí un bonito crackme matemático realizado por Spider. El crackme está realizado en ensamblador y precisamente por eso, vamos a tener que lidiar con ciertas peculiaridades al realizar el keygen con un lenguaje de bajo nivel.

Al inicio comprueba la longitud del nombre y de el número de serie. El nombre debe tener al menos 6 caracteres y el número de serie debe tener 10. Os adelanto ya que la asignación de memoria del nombre es de 9 caracteres, es decir, da igual la longitud del nombre que solo va a usar 9.

004014AD | E8 1A 02 00 00           | call <pythagoras.GetWindowTextA>        | ;Lee el nombre
004014B2 | 83 F8 06                 | cmp eax,6                               | ;Nombre >=6 caracteres
004014B5 | 0F 82 03 01 00 00        | jb pythagoras.4015BE                    |
004014BB | 6A 14                    | push 14                                 |
004014BD | 68 D9 31 40 00           | push pythagoras.4031D9                  | ;004031D9:"1234567890"
004014C2 | FF 35 10 32 40 00        | push dword ptr ds:[403210]              |
004014C8 | E8 FF 01 00 00           | call <pythagoras.GetWindowTextA>        | ;Lee el serial
004014CD | 83 F8 0A                 | cmp eax,A                               | ;Serial debe tener 10 (A) caracteres
004014D0 | 0F 85 E8 00 00 00        | jne pythagoras.4015BE                   |

Sabiendo esto introducimos Nombre: deurus y Serial: 1234567890

A continuación chequea que nuestro serial tenga caracteres hexadecimales.

004014DA | 8A 81 D9 31 40 00        | mov al,byte ptr ds:[ecx+4031D9]         | ; ecx+004031D9:"1234567890"
004014E0 | 3C 00                    | cmp al,0                                | ; contador del bucle
004014E2 | 74 1F                    | je pythagoras.401503                    | ; fin del bucle
004014E4 | 3C 30                    | cmp al,30                               | ; 0x30 = número 1
004014E6 | 0F 82 D2 00 00 00        | jb pythagoras.4015BE                    | ; < 30 bad boy
004014EC | 3C 46                    | cmp al,46                               | ; 0x46 = letra F
004014EE | 0F 87 CA 00 00 00        | ja pythagoras.4015BE                    | ; > 46 bad boy
004014F4 | 3C 39                    | cmp al,39                               | ; 0x39 = número 9
004014F6 | 76 08                    | jbe pythagoras.401500                   | ; <=39 ok continua el bucle
004014F8 | 3C 41                    | cmp al,41                               | ; 0x41 = letra A
004014FA | 0F 82 BE 00 00 00        | jb pythagoras.4015BE                    | ; <41 bad boy
00401500 | 41                       | inc ecx                                 | ; contador += 1
00401501 | EB D7                    | jmp pythagoras.4014DA                   | ; bucle

Continua realizando un sumatorio con nuestro nombre, pero tenemos que tener especial cuidado al tratamiento de los datos, ya que el crackme al estar hecho en ensamblador puede jugar con los registros como quiere y eso nos puede inducir a error.

0040150B | 3C 00                    | cmp al,0                                | ; ¿Fin bucle?
0040150D | 74 05                    | je pythagoras.401514                    | ; Salta fuera del bucle si procede
0040150F | 02 D8                    | add bl,al                               | ; bl = bl + al
00401511 | 41                       | inc ecx                                 | ; contador +=1
00401512 | EB F1                    | jmp pythagoras.401505                   | ; bucle

Si os fijáis utiliza registros de 8 bits como son AL y BL. Debajo os dejo una explicación de EAX pero para EBX es lo mismo.

               EAX
-----------------------------------
                         AX
                  -----------------
                     AH       AL
                  -------- --------
00000000 00000000 00000000 00000000
 (8bit)   (8bit)   (8bit)   (8bit)
 

  EAX     (32 bit)
--------
     AX   (16 bit)
    ----
    AHAL  (AH y AL 8 bit)
--------
00000000

El uso de registros de 8 bits nos implica tomar precauciones al realizar el Keygen debido a que por ejemplo, en .Net no tenemos la capacidad de decirle que haga una suma y que nos devuelva solamente 8 bits del resultado. Veamos como ejemplo para el nombre «deurus». La suma de los caracteres hexadecimales quedaría:

64+65+75+72+75+73 = 298, es decir, EAX = 00000298

Pero recordad que el crackme solo cogerá el 98 que es lo correspondiente al registro AL. De momento nos quedamos con nuestro SUMNOMBRE = 98.

Primera condición

A continuación coge los dos primeros caracteres del serial y les resta nuestro SUMNOMBRE y comprueba que el resultado esté entre 4 (0x4) y -4 (0xFC).

0040154B | 0F B6 05 F3 31 40 00     | movzx eax,byte ptr ds:[4031F3]          |
00401552 | 8A C8                    | mov cl,al                               |
00401554 | 2A CB                    | sub cl,bl                               | ; CL = CL - BL | CL = 12 - 98 = 7A
00401556 | 80 F9 04                 | cmp cl,4                                | ; Compara CL con 4
00401559 | 7F 63                    | jg pythagoras.4015BE                    | ; Salta si es mayor
0040155B | 80 F9 FC                 | cmp cl,FC                               | ; Compara CL con FC (-4)
0040155E | 7C 5E                    | jl pythagoras.4015BE                    | ; Salta si es menor

Como veis, el resultado de la resta da 7A (122) que al ser mayor que 4 nos echa vilmente. Aquí de nuevo utiliza registros de 8 bits por lo que debemos tener cuidado con las operaciones matemáticas para no cometer errores, veamos un ejemplo para clarificar de aquí en adelante.

Utilizando 8 bits
-----------------
12 - 98 = 7A que en decimal es 122

Utilizando 16 bits
------------------
0012 - 0098 = FF7A que en decimal es -134

Ahora ya veis la diferencia entre FC (252) y FFFC (-4). Estrictamente, el crackme comprueba el rango entre 4 (4) y FC (122) al trabajar con registros de 8 bits pero nosotros, como veremos más adelante tomaremos el rango entre 4 y -4. De momento, para poder continuar depurando cambiamos los dos primeros caracteres del serial de 12 a 98, ya que 98 – 98 = 0 y cumple la condición anterior.

Introducimos Nombre: deurus y Serial: 9834567890

Segunda condición

Analicemos el siguiente código.

00401560 | F7 E0                    | mul eax                                 | ; EAX = EAX * EAX
00401562 | 8B D8                    | mov ebx,eax                             | ; EBX = EAX
00401564 | 0F B7 05 F4 31 40 00     | movzx eax,word ptr ds:[4031F4]          | ; EAX = 3456 (4 dígitos siguientes del serial)
0040156B | F7 E0                    | mul eax                                 | ; EAX = EAX * EAX
0040156D | 03 D8                    | add ebx,eax                             | ; EBX = EBX + EAX
0040156F | 0F B7 05 F6 31 40 00     | movzx eax,word ptr ds:[4031F6]          | ; EAX = 7890 (4 últimos dígitos del serial)
00401576 | F7 E0                    | mul eax                                 | ; EAX = EAX * EAX
00401578 | 33 C3                    | xor eax,ebx                             | ; EAX
0040157A | 75 42                    | jne pythagoras.4015BE                   | ; Salta si el flag ZF no se activa

En resumen:

  • 98 * 98 = 5A40 (98²)
  • 3456 * 3456 = 0AB30CE4 (3456²)
  • 0AB36724 + 5A40 = 0AB36724
  • 7890 * 7890 = 38C75100 (7890²)
  • 38C75100 XOR 0AB36724 = 32743624
  • Si el resultado del XOR no es cero nuestro serial no pasa la comprobación.

Es decir, Pitágoras entra en escena -> 7890² = 98² + 3456²

Serial = aabbbbcccc

Tercera condición

Finalmente comprueba lo siguiente:

0040157C | 66 A1 F6 31 40 00        | mov ax,word ptr ds:[4031F6]             | ; AX = 7890
00401582 | 66 2B 05 F4 31 40 00     | sub ax,word ptr ds:[4031F4]             | ; AX = 7890 - 3456 = 443A
00401589 | 2C 08                    | sub al,8                                | ; AL = 3A - 8 = 32
0040158B | 75 31                    | jne pythagoras.4015BE                   | ; Si el resultado de la resta no ha sido cero, serial no válido
0040158D | 6A 30                    | push 30                                 |
0040158F | 68 B0 31 40 00           | push pythagoras.4031B0                  | ;004031B0:":-) Well done!!!"
00401594 | 68 7F 31 40 00           | push pythagoras.40317F                  | ;0040317F:"Bravo, hai trovato il seriale di questo CrackMe!"
00401599 | FF 75 08                 | push dword ptr ds:[ebp+8]               |

En resumen:

  • 7890 – 3456 – 8 = 0

Creación del Keygen

Nuestro serial tiene que cumplir tres condiciones para ser válido.

  • a – SUMNOMBRE debe estar entre 4 y -4
  • c² = a² + b²
  • c – b – 8 = 0

Como hemos dicho anteriormente, tomaremos el SUMNOMBRE y le sumaremos y restaremos valores siempre y cuando el resultado esté entre 4 y -4. Para deurus hemos dicho que el SUMNOMBRE es 98 por lo que los posibles valores de «a» se pueden ver debajo. Además debemos tener en cuenta que el crackme solo lee los 9 primeros dígitos del nombre.

98-4 = 94		
98-3 = 95		
98-2 = 96		
98-1 = 97		
98-0 = 98		
98+1 = 99		
98+2 = 9A		
98+3 = 9B		
98+4 = 9C

Es evidente que para encontrar el valor de «c» vamos a tener que utilizar fuerza bruta chequeando todos los valores  de «b» comprendidos entre 0 y FFFF (65535). Además, como trabajaremos en un lenguaje de alto nivel, debemos descartar los resultados decimales. Esto nos limitará los seriales válidos asociados a un determinado nombre. Si realizáramos el keygen en ensamblador obtendríamos bastantes más seriales válidos.

Una vez encontrados los valores enteros de la operación «c² = a² + b²», se debe cumplir que «c – b – 8 = 0», lo que nos limitará bastante los resultados.

    Private Sub btn_generar_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btn_generar.Click
        Try
            If txt_nombre.TextLength > 5 Then
                lst_serials.Items.Clear()
                Dim tmp, c, cx As String
                Dim sumanombre, tmp2 As Integer
                If txt_nombre.TextLength > 9 Then tmp2 = 8 Else tmp2 = txt_nombre.TextLength - 1
                'Calculo el SUMNOMBRE
                For i = 0 To tmp2
                    sumanombre += Asc(Mid(txt_nombre.Text, i + 1, 1)) 'Acumulo suma
                    tmp = Strings.Right(Hex(sumanombre).ToString, 2)  'Solo 8 bits (Registro AL)
                    sumanombre = Val("&H" & tmp) 'Paso a decimal
                Next
                tmp = Strings.Right(Hex(sumanombre).ToString, 2)
                sumanombre = CInt("&H" & tmp)
                txtdebug.Text = "- SumNombre = " & Hex(sumanombre) & vbCrLf
                txtdebug.Text &= "----------------------------------------------" & vbCrLf
                Dim a(8) As Integer
                '
                'a - sumanombre >=4 y <=4
                '
                a(0) = sumanombre - 4
                a(1) = sumanombre - 3
                a(2) = sumanombre - 2
                a(3) = sumanombre - 1
                a(4) = sumanombre
                a(5) = sumanombre + 1
                a(6) = sumanombre + 2
                a(7) = sumanombre + 3
                a(8) = sumanombre + 4
                txtdebug.Text &= "- Posibles valores de 'a'" & vbCrLf
                For i = 0 To a.Length - 1
                    txtdebug.Text &= Hex(a(i)) & " "
                Next
                txtdebug.Text &= "----------------------------------------------" & vbCrLf
                txtdebug.Text &= "- Buscando valores de b y c" & vbCrLf
                txtdebug.Text &= "Serial = aabbbbcccc" & vbCrLf
                '
                'c = sqr(a^2 + b^2)
                '
                txtdebug.Text &= "(1) c = raiz(a^2 + b^2)" & vbCrLf
                txtdebug.Text &= "(2) c - b - 8 = 0" & vbCrLf
                For i = 0 To a.Length - 1 ' todas las posibilidades de a
                    For b = 0 To 65535 'b -> 0000 - FFFF
                        c = Math.Sqrt(a(i) ^ 2 + b ^ 2)
                        If c.Contains(".") Then 'busco enteros
                        Else
                            cx = c - b - 8
                            cx = Hex(cx).PadLeft(4, "0"c)
                            lbl_info.Text = cx
                            If cx = "0000" Then
                                txtdebug.Text &= " (1) " & Hex(c).PadLeft(4, "0"c) & " = raiz(" & Hex(a(i)).PadLeft(2, "0"c) & "^2 + " & Hex(b).PadLeft(4, "0"c) & "^2)" & vbCrLf
                                lst_serials.Items.Add(Hex(a(i)).PadLeft(2, "0"c) & Hex(b).PadLeft(4, "0"c) & Hex(c).PadLeft(4, "0"c))
                                txtdebug.Text &= " (2) " & Hex(c).PadLeft(4, "0"c) & " - " & Hex(b).PadLeft(4, "0"c) & " - 8 = 0" & vbCrLf
                            End If
                        End If
                        Application.DoEvents()
                    Next
                Next
                lbl_info.Text = "Búsqueda finalizada"
            End If
        Catch ex As Exception
            MsgBox(ex.ToString)
        End Try

Enlaces

st2 arcade

He de iniciar esta entrada diciendo que la segunda temporada de Stranger Things es sencillamente genial. Son 9 horas intensas que no dejan indiferente a nadie y además en el capítulo 8 nos han dejado una de esas perlas informáticas que tanto nos gustan.

La escena la protagoniza Bob Newby, un buen hombre amante de la electrónica de aquella época que trabaja en RadioShack y transcurre en el laboratorio secreto de Hawkins. En un momento dado, Bob propone «saltarse» la seguridad del laboratorio y para ello se traslada al sótano donde se encuentran los «servidores».

El PC de la época

Para comprender esta escena hay que situarse temporalmente. Estamos hablando de los años 80, en concreto la escena transcurre en 1984 y los equipos de los que dispone el laboratorio son unos maravillosos IBM. No se llega a apreciar bien el modelo de IBM utilizado pero teniendo en cuenta que el monitor que aparece es un terminal IBM 3180, la búsqueda se reduce a los sistemas compatibles S/36, S/38, AS/400, 5294 ó 5394.

IBM 3180

IBM 3180 (https://www.argecy.com/3180)

Cracking BASIC or BASIC Cracking?

La escena plantea un ataque de fuerza bruta a un código de 4 dígitos como se puede observar en la imagen a continuación. Esto puede parecer una chorrada hoy día pero podía suponer un pequeño reto para un micro de 8 bits.

Cracking Basic or Basic Cracking?

Cracking Basic or Basic Cracking?

A simple vista se aprecian una serie de bucles recursivos, una llamada a una función y una sentencia condicional. Desconozco si la sintaxis del lenguaje es la correcta pero mucho me temo que es más bien una mezcla de BASIC y pseudocódigo. Pero lo que más me ha llamado la atención sin duda es que la palabra THEN parece que se sale del monitor como si estuviera realizado en post-producción. Os invito a que ampliéis la imagen y comentéis lo que os parece a vosotr@s.

Os dejo aquí el código para los más curiosos.

10 DIM FourDigitPassword INTEGER
20 FOR i = 0 TO 9
30 		FOR j = 0 TO 9
40			FOR k = 0 TO 9
50				FOR l = 0 TO 9
60					FourDigitPassword = getFourDigits (i,j,k,l)
70					IF checkPasswordMatch(FourDigitPassword) = TRUE THEN
80						GOTO 140
90					END
100				NEXT l
110			NEXT k
120		NEXT j
130 NEXT i
140 PRINT FourDigitPassword

Aunque  la entrada está dentro del contexto de los Blooper Tech Movies, digamos que en esta ocasión no voy a ir más allá. La escena es creíble y queda bien integrada en la época en la que se desarrolla el capítulo. Por esto mismo, solamente espero que las temporadas venideras sean tan buenas y cuiden tanto los detalles como sus predecesoras.

Referencias

[1] Ficha IMDB – Stranger Thing

[2] Wikia de Stranger Things

[3] IBM 3180

[4] BASIC

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Introducción

Realistic Challenge 4: There is a site offering protection against hackers to website owners, the service is far too overpriced and the people running the service don’t know anything about security. Look around their site, and see how protected it is.

Hay un sitio que ofrece protección contra los hackers. El servicio tiene un precio abusivo, echa un vistazo a la web y evalúa su pretección.

Analizando a la víctima

Vemos un escueto menú pero con cosas interesantes.

Pinchamos sobre «Testimonials» y a continuación en «Customer 1»

Vemos que hay solo 3 «customers», vamos a introducir manualmente un 5 haber que pasa.

Ok, nos genera el siguiente error.

Probamos ahora con un enlace interno que nos genera el siguiente error.

http://www.thisislegal.com/newr/src/read.php?customer=../orders.php

Nos llama la atención «../beqref.cuc«. Parece una encriptación simple, probemos a poner eso mismo en el navegador.

http://www.thisislegal.com/newr/src/read.php?customer=../beqref.cuc

 

Nuestras sospechas son acertadas, ahora el error muestra esto.

Explotando a la víctima

Probamos varias cosas y al final conseguimos algo relevante con «order2.php«.

http://www.thisislegal.com/newr/src/read.php?customer=../beqre2.cuc
Tenemos un directorio interesante «secure«, si entramos en el nos salta un Login típico protegido con «.htaccess«. Lo lógico a continuación es hacernos con el archivo «.htpasswd«
http://www.thisislegal.com/newr/src/read.php?customer=../frpher/.ugcnffjq

 

Una vez obtenido el contenido del archivo «.htpasswd» lo siguiente es crackear el password con John the Ripper. Nos logueamos en la carpeta secure y reto superado.

Links