En esta ocasión vamos a hablar de una película de culto de los años 90, Hackers – Piratas Informáticos. La verdad es que aunque puede ser entretenida, tecnológicamente es una pesadilla y es que esta película es un claro ejemplo de cuando Hollywood prefiere agradar visualmente a representar escenas realistas.
Tras cuatro minutos en los que se nos presenta a Dade (Jonny Lee Miller) y sus problemas con la ley a una temprana edad, saltamos unos años después hasta ver a Dade encerrado en su habitación volviendo a las andadas intentando acceder ilegítimamente a los servidores de una cadena de televisión. Para ello hace uso de algo muy conocido en el mundillo Hacker, la Ingeniería Social, y es que aunque ahora disponemos de «cierta» conciencia en seguridad informática, en los años 90 no había ninguna. Bien, el caso es que Dade llama a las oficinas de la citada cadena de televisión a una hora en la que no hay más que el vigilante de seguridad y éste le proporciona un número que debemos suponer que es la IP de un Módem y comienza la intrusión.
BTM
Para empezar, se le ve al protagonista escribir comandos cuando en la pantalla no hay más que una animación en algo parecido a una ventana de terminal al estilo «Commander», pero no vemos lo que escribe, algo irreal.
A continuación y como por arte de magia entra en el sistema y lo que se muestra es una animación parpadeante con el logo de la compañia y el nombre del sistema al que estamos accediendo, también irreal.
Finalmente nos muestra sus intenciones, y son nada más y nada menos que cambiar la programación actual simplemente cambiando de VHS, inmejorable. A continuación os muestro la secuencia.
Por lo menos nos queda el consuelo de que cambia la tertulia de un tipejo con ciertos prejuicios raciales por una programación más interesante como «The Outer limits«, aquí conocida como «Más allá del límite«.
El resto de escenas informáticas de la película carecen de veracidad, la única que se salva, puede ser cuando accede al servidor del Instituto para programar el sistema contra incendios y vengarse de Kate (Angelina Jolie), ya que las imágenes que aparecen son de los primeros entornos gráficos de Mac.
Es extraño que casi todas las intrusiones las realiza desde su propia casa, algo poco inteligente, ya que por muy bueno que seas, siempre dejas huellas. Solo cuando se enfrentan a un Super-Hacker se empiezan a tomar las cosas en serio y realizan los ataques desde cabinas telefónicas.
En la película También hacen mención al Phreaking y a algunos de los libros que eran famosos por aquella época pero poco más que destacar. Por todo esto y mucho más, y aunque me caen igual de bien tanto Angelina como Jonny, la película se merece un majestuoso sello de BTM.
La serie «Expediente X» (The X-Files) ha capturado la imaginación de los espectadores desde su debut en 1993, con sus intrigantes historias de fenómenos paranormales y conspiraciones gubernamentales. Sin embargo, más allá de los extraterrestres y las criaturas sobrenaturales, la serie también exploró el mundo del hacking, la inteligencia artificial y la piratería informática, temas que se adelantaron a su tiempo y que siguen siendo relevantes hoy en día. A continuación, exploramos algunos de los episodios más emblemáticos que abordan estos temas, revelando detalles fascinantes, curiosidades y tomas falsas que los hicieron memorables.
En este episodio, Mulder y Scully investigan un asesinato en una empresa de tecnología avanzada, Eurisko, donde un sistema de inteligencia artificial llamado «COS» (Central Operating System) podría ser el responsable. La trama se centra en las posibles implicaciones de las IA descontroladas y las vulnerabilidades tecnológicas.
Curiosidades:
Este episodio fue uno de los primeros en abordar el tema de la inteligencia artificial en la televisión.
El nombre «COS» es una referencia al sistema operativo OS/2 de IBM, que estaba en uso en la época.
Tomas falsas:
Durante una de las escenas de acción, el actor encargado de operar el COS tuvo dificultades para mantener la seriedad debido a los efectos especiales rudimentarios, resultando en varias tomas falsas.
«Kill Switch» (Temporada 5, Episodio 11)
Escrito por los renombrados autores de ciencia ficción William Gibson y Tom Maddox, este episodio trata sobre un hacker llamado Donald Gelman que desarrolla una inteligencia artificial avanzada y peligrosa. Mulder y Scully se encuentran en una carrera contra el tiempo para detener a la IA antes de que cause más daño.
Curiosidades:
William Gibson es considerado el padre del ciberpunk, y su influencia se nota en la atmósfera y el estilo del episodio.
La tecnología y los conceptos presentados en «Kill Switch» fueron increíblemente visionarios para su tiempo, anticipando el desarrollo de IA avanzada y redes cibernéticas.
Tomas falsas:
Las escenas de acción en el episodio, especialmente las que involucran a Mulder y Scully en entornos virtuales, resultaron en varios momentos divertidos detrás de cámaras, con los actores luchando por coordinar sus movimientos con los efectos especiales.
«First Person Shooter» (Temporada 7, Episodio 13)
En este episodio, Mulder y Scully se encuentran atrapados en un videojuego de realidad virtual mientras investigan una serie de asesinatos en una empresa de desarrollo de videojuegos. La trama explora los peligros potenciales de la inmersión tecnológica y los límites entre la realidad y la ficción.
En este episodio, Mulder y Scully se encuentran atrapados en un videojuego de realidad virtual mientras investigan una serie de asesinatos en una empresa de desarrollo de videojuegos. La trama explora los peligros potenciales de la inmersión tecnológica y los límites entre la realidad y la ficción.
Curiosidades:
Este episodio fue dirigido por Chris Carter, el creador de la serie, y escrito por William Gibson y Tom Maddox, quienes también escribieron «Kill Switch».
«First Person Shooter» fue criticado y elogiado a partes iguales por su tratamiento de la cultura de los videojuegos y la tecnología de realidad virtual.
Tomas falsas:
Las escenas dentro del videojuego requirieron el uso de efectos especiales avanzados para la época, lo que resultó en numerosos errores técnicos y momentos de risas entre el elenco.
«Rm9sbG93ZXJz» (Temporada 11, Episodio 7)
Este episodio de la temporada más reciente se centra en el impacto de la inteligencia artificial y la tecnología moderna en la vida cotidiana. Mulder y Scully son perseguidos por drones y dispositivos automatizados después de un malentendido en un restaurante automatizado.
Curiosidades:
El título del episodio, «Rm9sbG93ZXJz», es «Followers» en base64, una referencia a la temática del episodio sobre las redes sociales y la vigilancia tecnológica.
Este episodio es casi completamente sin diálogos, lo que crea una atmósfera única y tensa que subraya la dependencia moderna de la tecnología.
Tomas falsas:
La falta de diálogos resultó en situaciones cómicas durante el rodaje, ya que los actores tenían que comunicar mucho con expresiones faciales y movimientos, lo que llevó a varios malentendidos y momentos divertidos.
Cabe mencionar que, en esta ocasión, no he incluido ningún episodio protagonizado por los Pistoleros Solitarios, el trío de hackers y teóricos de la conspiración favoritos de los fans. Este grupo merece un artículo dedicado para explorar en profundidad sus contribuciones únicas a la serie y su propio spin-off, que también aborda numerosos temas tecnológicos y conspirativos con su estilo distintivo.
Estos episodios no solo nos ofrecen emocionantes tramas y misterios tecnológicos, sino que también nos brindan un vistazo a un futuro potencial, uno en el que la línea entre lo humano y lo artificial se vuelve cada vez más difusa. Las curiosidades y tomas falsas detrás de cámaras añaden una capa adicional de encanto, mostrando el esfuerzo y la creatividad necesarios para dar vida a estos complejos temas.
Como fanáticos de «Expediente X», podemos apreciar cómo la serie ha sido capaz de mantenerse relevante y cautivadora al abordar cuestiones tecnológicas que son tanto atemporales como urgentes. Nos ha llevado a cuestionar nuestra confianza en las máquinas, a temer las posibles repercusiones de una inteligencia artificial sin control y a maravillarnos con las posibilidades de la realidad virtual.
En resumen, «Expediente X» no solo ha sido un pionero en la televisión de ciencia ficción y misterio, sino que también ha demostrado una notable capacidad para explorar y anticipar los dilemas tecnológicos que enfrentamos hoy en día. Estos episodios son un recordatorio de que, en el vasto universo de lo desconocido, la tecnología juega un papel crucial y, a veces, aterrador. Para los verdaderos fans, cada uno de estos episodios es una joya que merece ser revivida y analizada, apreciando su profundidad y relevancia en nuestro mundo cada vez más digital.
Todas las imágenes de esta entrada han sido generadas con ChatGPT.
Aviso: Este crackme forma parte de una serie de pruebas de Yoire.com que todavía está en activo. Lo ético si continuas leyendo este manual es que no utilices la respuesta para completar la prueba sin esfuerzo. 😉
Analizando…
Cargamos el crackme en Ollydbg y vamos a las «Referenced Strings«. Vemos una referencia muy interesante que se llama «checkkey«.
Pinchamos sobre ella y aparecemos aquí:
Vemos una referencia a «GetDlgItemTextA» y depués un Call también interesante, vamos a explorarlo.
Entendiendo la rutina de comprobación del serial
Dentro del Call hay dos bucles, uno realiza una operación con nuestro serial (bucle nombre) y el otro comprueba nuestro serial con «3d34273130276a» dígito a dígito (bucle comprobación).
MOV EDX,10006000 --> EDX = "3d34273130276a"
...
MOV AL,BYTE PTR DS:[ECX] --> AL = 1ºdígito serial xoreado
CMP AL,BYTE PTR DS:[ECX+EDX] --> AL = 1ºdígito de EDX?
JNZ SHORT 1000105A --> Si no son iguales bad boy
INC ECX
TEST AL,AL
JNZ SHORT 1000104A --> bucle
Ejemplo para «deurus».
Nombre: d e u r u s Ascii hex: 64 65 75 72 75 73 XOR 55: 31 30 20 27 20 26
Serial XOReado para deurus sería = 313020272026 que obviamente se aleja bastante de 3d34273130276a.
Por suerte XOR es una función reversible por lo que si revertimos 3d34273130276a nos dará el serial correcto.
Serial correcto XOReado: 3d 34 27 31 30 27 6a
XOR 55: 68 61 72 64 65 72 3F Valor ascii: h a r d e r ?
Hoy vamos a enfrentarnos a cuatro retos de esteganografía relativamente sencillos, y digo relativamente, debido a que hay tantas formas de esconder información en un archivo, ya sea imagen, vídeo o sonido, que afrontarlos suele ser desesperante. Las cuatro imágenes son aparentemente las mismas que la que se ve en portada.
Una buena práctica cuando te enfrentas a retos stego de tipo imagen es realizar una búsqueda inversa. Una búsqueda inversa consiste en buscar la imagen original mediante buscadores especializados como TinEye o Google. Si conseguimos la imagen original podemos resolver el reto simplemente comparando o nos puede dar una idea del tipo de modificación por su diferencia de tamaño, colores, degradados, etc.
Stego 1
Descargamos la imagen del reto. Se trata de una imagen JPEG de 526×263 y 76.6 KB (78445 bytes). Su hash SHA1 es «89aed5bbc3542bf5c60c4c318fe99cb1489f267a«
Realizamos una búsqueda inversa de la imagen y encontramos sin dificultad la imagen original mediante TinEye.
Por lo que vemos ha cambiado el tamaño de 78447 bytes a 78445 bytes y su hash SHA1 tampoco coincide obviamente, lo que nos confirma que ha sufrido alguna modificación. Echando un vistazo con un editor hexadecimal te puedes volver loco por lo que vamos a realizar una comparación mediante la herramienta online DiffNow.
Al realizar la comparación sale a relucir lo que buscamos. La clave es una simple cadena de texto.
Stego 2
Lo primero es realizar de nuevo la comparación.
Imagen
Tamaño
SHA1
Original
78447 bytes
8924676317077fc07c252ddeec04bd2a0ecfdda4
imagen2.jpeg
116386 bytes
7641e3906f795c137269cefef29f30fcb9cb1b07
Como vemos, la imagen ha aumentado significativamente, de 76,6 KB a 113 KB. Cuando el aumento de tamaño llama la atención normalmente tenemos otro archivo insertado. Lo primero que suelo hacer yo es fijarme si ha sido modificado el final del archivo con un editor hexadecimal. Los bytes de cola de un archivo jpg/jpeg son FFD9 y en este caso no vemos modificación alguna al final del archivo. Si el archivo no está al final requiere realizar una búsqueda más exhaustiva. Para estos casos tengo una herramienta de creación propia que se llama Ancillary y que sirve para buscar cierto tipo de archivos dentro de otros como imágenes, documentos de Office, Open Office, pdf, etc. Ancillary encuentra otro jpg que es el que le daba el peso extra y que vemos a continuación. La clave es el título de la película (ojo a las mayúsculas/minúsculas).
Stego 3
El tercer reto parece que tiene algún error debido a que el archivo coincide completamente con el original. Pienso que se ha subido la imagen original por error. Se lo he comunicado al admin del dominio y si algún día obtengo respuesta actualizaré la entrada.
Imagen
Tamaño
SHA1
Original
78447 bytes
8924676317077fc07c252ddeec04bd2a0ecfdda4
imagen3.jpeg
78447 bytes
8924676317077fc07c252ddeec04bd2a0ecfdda4
Actualización 21/08/2016
Al parecer, la solución de este reto es llegar a la conclusión de que la imagen no está modificada. La respuesta del Administrador de la web así lo confirma.
desingsecurity [at] gmail [dot] com – Sorry about the delay, is precisely what is intended with that challenge, they can determine if the image is changed or not , the challenge was solved you . We’ll be equal way improving this point.
Greetings and Thanks
Stego 4
Lo primero es realizar de nuevo la comparación.
Imagen
Tamaño
SHA1
Original
78447 bytes
8924676317077fc07c252ddeec04bd2a0ecfdda4
imagen4.jpeg
93174 bytes
a6329ea4562ef997e5afd067f3b53bdab4665851
Al igual que en el caso dos el tamaño ha aumentado significativamente de modo que miramos al final del archivo y esta vez si vemos que hay insertado unos bytes tras el final del jpg (recordemos FFD9)
El archivo tiene pinta de ser una hoja de cálculo de Open Office o Libre Office según indica la palabra «spreadsheet«. Lo abrimos con Excel y tras analizar la maraña de datos enseguida vemos una clave que llama la atención.
Aquí tenemos un Crackme clásico creado por Scarebyte hallá por el año 2000 y que cuenta con varias fases siendo un crackme muy interesante para iniciarse o simplemente para divertirse. Al estar realizado en Delphi, los apartados de las checkboxes y de las trackbars se simplifican y mucho, pero aún así hay que currarselo un poco para dejar todo bien atado. Si os fijáis en las soluciones que aparecen en crackmes.de, en aquellos años se usaba DEDE y aunque yo usaré otra herramienta, DEDE sigue siendo igual de útil.
Desempacado
PEiD nos dice que nos enfrentamos a ASPack 1.08.03 -> Alexey Solodovnikov, así que vamos al lío.
Eliminar la NAG
Tan sencillo como poner un Breakpoint a User32.MessageBoxA. La llamada a NOPear está en la dirección 441CF2.
Password
Desde las string references localizamos los mensajes de chico bueno y chico malo que nos llevan al código a analizar.
0044C3CD |. E8 5294FDFF CALL CrackMe_.00425824
0044C3D2 |. 8B45 FC MOV EAX,[LOCAL.1]
0044C3D5 |. E8 9A76FBFF CALL CrackMe_.00403A74
0044C3DA |. 83F8 0C CMP EAX,0C ; Lengh C = 12
0044C3DD |. 0F85 53010000 JNZ CrackMe_.0044C536 ; Salto a chico malo
0044C3E3 |. 8D55 FC LEA EDX,[LOCAL.1]
0044C3E6 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C3EC |. E8 3394FDFF CALL CrackMe_.00425824
0044C3F1 |. 8B45 FC MOV EAX,[LOCAL.1]
0044C3F4 |. 8038 43 CMP BYTE PTR DS:[EAX],43 ; 1º dígito serial = C
0044C3F7 |. 0F85 27010000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C3FD |. 8D55 F8 LEA EDX,[LOCAL.2]
0044C400 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C406 |. E8 1994FDFF CALL CrackMe_.00425824
0044C40B |. 8B45 F8 MOV EAX,[LOCAL.2]
0044C40E |. 8078 03 6F CMP BYTE PTR DS:[EAX+3],6F ; 4º dígito serial = o
0044C412 |. 0F85 0C010000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C418 |. 8D55 F4 LEA EDX,[LOCAL.3]
0044C41B |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C421 |. E8 FE93FDFF CALL CrackMe_.00425824
0044C426 |. 8B45 F4 MOV EAX,[LOCAL.3]
0044C429 |. 8078 08 6F CMP BYTE PTR DS:[EAX+8],6F ; 9º dígito serial = o
0044C42D |. 0F85 F1000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C433 |. 8D55 F0 LEA EDX,[LOCAL.4]
0044C436 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C43C |. E8 E393FDFF CALL CrackMe_.00425824
0044C441 |. 8B45 F0 MOV EAX,[LOCAL.4]
0044C444 |. 8078 01 6C CMP BYTE PTR DS:[EAX+1],6C ; 2º dígito serial = l
0044C448 |. 0F85 D6000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C44E |. 8D55 EC LEA EDX,[LOCAL.5]
0044C451 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C457 |. E8 C893FDFF CALL CrackMe_.00425824
0044C45C |. 8B45 EC MOV EAX,[LOCAL.5]
0044C45F |. 8078 04 20 CMP BYTE PTR DS:[EAX+4],20 ; 5º dígito serial = espacio
0044C463 |. 0F85 BB000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C469 |. 8D55 E8 LEA EDX,[LOCAL.6]
0044C46C |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C472 |. E8 AD93FDFF CALL CrackMe_.00425824
0044C477 |. 8B45 E8 MOV EAX,[LOCAL.6]
0044C47A |. 8078 0A 52 CMP BYTE PTR DS:[EAX+A],52 ; 11º dígito serial = R
0044C47E |. 0F85 A0000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C484 |. 8D55 E4 LEA EDX,[LOCAL.7]
0044C487 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C48D |. E8 9293FDFF CALL CrackMe_.00425824
0044C492 |. 8B45 E4 MOV EAX,[LOCAL.7]
0044C495 |. 8078 07 75 CMP BYTE PTR DS:[EAX+7],75 ; 8º dígito serial = u
0044C499 |. 0F85 85000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C49F |. 8D55 E0 LEA EDX,[LOCAL.8]
0044C4A2 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C4A8 |. E8 7793FDFF CALL CrackMe_.00425824
0044C4AD |. 8B45 E0 MOV EAX,[LOCAL.8]
0044C4B0 |. 8078 09 6E CMP BYTE PTR DS:[EAX+9],6E ; 10º dígito serial = n
0044C4B4 |. 75 6E JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C4B6 |. 8D55 DC LEA EDX,[LOCAL.9]
0044C4B9 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C4BF |. E8 6093FDFF CALL CrackMe_.00425824
0044C4C4 |. 8B45 DC MOV EAX,[LOCAL.9]
0044C4C7 |. 8078 02 6E CMP BYTE PTR DS:[EAX+2],6E ; 3º dígito serial = n
0044C4CB |. 75 57 JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C4CD |. 8D55 D8 LEA EDX,[LOCAL.10]
0044C4D0 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C4D6 |. E8 4993FDFF CALL CrackMe_.00425824
0044C4DB |. 8B45 D8 MOV EAX,[LOCAL.10]
0044C4DE |. 8078 05 69 CMP BYTE PTR DS:[EAX+5],69 ; 6º dígito serial = i
0044C4E2 |. 75 40 JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C4E4 |. 8D55 D4 LEA EDX,[LOCAL.11]
0044C4E7 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C4ED |. E8 3293FDFF CALL CrackMe_.00425824
0044C4F2 |. 8B45 D4 MOV EAX,[LOCAL.11]
0044C4F5 |. 8078 0B 6E CMP BYTE PTR DS:[EAX+B],6E ; 12º dígito serial = n
0044C4F9 |. 75 29 JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C4FB |. 8D55 D0 LEA EDX,[LOCAL.12]
0044C4FE |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C504 |. E8 1B93FDFF CALL CrackMe_.00425824
0044C509 |. 8B45 D0 MOV EAX,[LOCAL.12]
0044C50C |. 8078 06 67 CMP BYTE PTR DS:[EAX+6],67 ; 7º dígito serial = g
0044C510 |. 75 12 JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C512 |. BA 78C54400 MOV EDX,CrackMe_.0044C578 ; ASCII "Right Password"
0044C517 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C51D |. E8 3293FDFF CALL CrackMe_.00425854
0044C522 |. EB 22 JMP SHORT CrackMe_.0044C546
0044C524 |> BA 90C54400 MOV EDX,CrackMe_.0044C590 ; ASCII "Wrong Password"
0044C529 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C52F |. E8 2093FDFF CALL CrackMe_.00425854
0044C534 |. EB 10 JMP SHORT CrackMe_.0044C546
0044C536 |> BA 90C54400 MOV EDX,CrackMe_.0044C590 ; ASCII "Wrong Password"
Chequeo rápido
ABCD EFGHIJK
Clno iguonRn
; 1º dígito serial = C
; 4º dígito serial = o
; 9º dígito serial = o
; 2º dígito serial = l
; 5º dígito serial = espacio
; 11º dígito serial = R
; 8º dígito serial = u
; 10º dígito serial = n
; 3º dígito serial = n
; 6º dígito serial = i
; 12º dígito serial = n
; 7º dígito serial = g
Básicamente chequea la frase «Cool Running» de forma desordenada como se ve justo encima, siendo el password correcto «Clno iguonRn«. Os dejo el código para que lo analicéis.
Nº serie asociado a un nombre
De nuevo con las string references localizamos el código.
0044C648 /. 55 PUSH EBP
0044C649 |. 8BEC MOV EBP,ESP
0044C64B |. 83C4 F8 ADD ESP,-8
0044C64E |. 53 PUSH EBX
0044C64F |. 56 PUSH ESI
0044C650 |. 33C9 XOR ECX,ECX
0044C652 |. 894D F8 MOV [LOCAL.2],ECX
0044C655 |. 8BF0 MOV ESI,EAX
0044C657 |. 33C0 XOR EAX,EAX
0044C659 |. 55 PUSH EBP
0044C65A |. 68 83C74400 PUSH CrackMe_.0044C783
0044C65F |. 64:FF30 PUSH DWORD PTR FS:[EAX]
0044C662 |. 64:8920 MOV DWORD PTR FS:[EAX],ESP
0044C665 |. 33C0 XOR EAX,EAX
0044C667 |. 8945 FC MOV [LOCAL.1],EAX
0044C66A |. A1 80F84400 MOV EAX,DWORD PTR DS:[44F880] ; Eax = Nombre
0044C66F |. E8 0074FBFF CALL CrackMe_.00403A74
0044C674 |. 83F8 06 CMP EAX,6 ; Cmp lengh nombre con 6
0044C677 |. 0F8E F0000000 JLE CrackMe_.0044C76D ; Salta si <= 6
0044C67D |. A1 80F84400 MOV EAX,DWORD PTR DS:[44F880] ; Eax = Nombre
0044C682 |. E8 ED73FBFF CALL CrackMe_.00403A74
0044C687 |. 83F8 14 CMP EAX,14 ; Cmp lengh nombre con 20 (14h)
0044C68A |. 0F8D DD000000 JGE CrackMe_.0044C76D ; salta si >= 20
0044C690 |. A1 80F84400 MOV EAX,DWORD PTR DS:[44F880]
0044C695 |. E8 DA73FBFF CALL CrackMe_.00403A74
0044C69A |. 85C0 TEST EAX,EAX
0044C69C |. 7E 17 JLE SHORT CrackMe_.0044C6B5
0044C69E |. BA 01000000 MOV EDX,1
0044C6A3 |> 8B0D 80F84400 /MOV ECX,DWORD PTR DS:[44F880] ; Bucle in
0044C6A9 |. 0FB64C11 FF |MOVZX ECX,BYTE PTR DS:[ECX+EDX-1]
0044C6AE |. 014D FC |ADD [LOCAL.1],ECX ; Suma dig nombre y guarda en 12FBC4
0044C6B1 |. 42 |INC EDX
0044C6B2 |. 48 |DEC EAX
0044C6B3 |.^ 75 EE \JNZ SHORT CrackMe_.0044C6A3 ; Bucle out
0044C6B5 |> A1 84F84400 MOV EAX,DWORD PTR DS:[44F884] ; Eax = Compañia
0044C6BA |. E8 B573FBFF CALL CrackMe_.00403A74
0044C6BF |. 83F8 02 CMP EAX,2 ; Cmp lengh compañia con 2
0044C6C2 |. 7E 18 JLE SHORT CrackMe_.0044C6DC ; Salta si <= 2
0044C6C4 |. A1 84F84400 MOV EAX,DWORD PTR DS:[44F884] ; Eax = Compañia
0044C6C9 |. E8 A673FBFF CALL CrackMe_.00403A74
0044C6CE |. 83F8 08 CMP EAX,8 ; Cmp lengh compañia con 8
0044C6D1 |. 7D 09 JGE SHORT CrackMe_.0044C6DC ; Salta si >= 8
0044C6D3 |. 8B45 FC MOV EAX,[LOCAL.1] ; Eax = sum nombre
0044C6D6 |. 6BC0 02 IMUL EAX,EAX,2 ; Sum nombre * 2
0044C6D9 |. 8945 FC MOV [LOCAL.1],EAX
0044C6DC |> 68 98C74400 PUSH CrackMe_.0044C798 ; ASCII "I Love Cracking and "
0044C6E1 |. 8D55 F8 LEA EDX,[LOCAL.2]
0044C6E4 |. 8B45 FC MOV EAX,[LOCAL.1]
0044C6E7 |. E8 68B0FBFF CALL CrackMe_.00407754
0044C6EC |. FF75 F8 PUSH [LOCAL.2] ; sum del nombre
0044C6EF |. 68 B8C74400 PUSH CrackMe_.0044C7B8 ; ASCII " Girls ;)"
0044C6F4 |. B8 8CF84400 MOV EAX,CrackMe_.0044F88C
0044C6F9 |. BA 03000000 MOV EDX,3
0044C6FE |. E8 3174FBFF CALL CrackMe_.00403B34 ; Concatena 1º frase + sum nombre + 2ºfrase
0044C703 |. 33C0 XOR EAX,EAX
0044C705 |. 8945 FC MOV [LOCAL.1],EAX
0044C708 |. A1 88F84400 MOV EAX,DWORD PTR DS:[44F888] ; Eax = Serial
0044C70D |. E8 6273FBFF CALL CrackMe_.00403A74
0044C712 |. 8BD8 MOV EBX,EAX
0044C714 |. A1 8CF84400 MOV EAX,DWORD PTR DS:[44F88C]
0044C719 |. E8 5673FBFF CALL CrackMe_.00403A74
0044C71E |. 3BD8 CMP EBX,EAX ; Compara tamaño frase con tamaño serial
0044C720 |. 75 4B JNZ SHORT CrackMe_.0044C76D
0044C722 |. A1 88F84400 MOV EAX,DWORD PTR DS:[44F888]
0044C727 |. E8 4873FBFF CALL CrackMe_.00403A74
0044C72C |. 85C0 TEST EAX,EAX
0044C72E |. 7E 27 JLE SHORT CrackMe_.0044C757
0044C730 |. BA 01000000 MOV EDX,1
0044C735 |> 8B0D 88F84400 /MOV ECX,DWORD PTR DS:[44F888] ; Bucle in -->
0044C73B |. 0FB64C11 FF |MOVZX ECX,BYTE PTR DS:[ECX+EDX-1]
0044C740 |. 034D FC |ADD ECX,[LOCAL.1]
0044C743 |. 8B1D 8CF84400 |MOV EBX,DWORD PTR DS:[44F88C]
0044C749 |. 0FB65C13 FF |MOVZX EBX,BYTE PTR DS:[EBX+EDX-1] ; Compara dígito a dígito nuestro serial
0044C74E |. 2BCB |SUB ECX,EBX ; con la concatenación anterior
0044C750 |. 894D FC |MOV [LOCAL.1],ECX
0044C753 |. 42 |INC EDX
0044C754 |. 48 |DEC EAX
0044C755 |.^ 75 DE \JNZ SHORT CrackMe_.0044C735 ; <-- Bucle out
0044C757 |> 837D FC 00 CMP [LOCAL.1],0
0044C75B |. 75 10 JNZ SHORT CrackMe_.0044C76D ; Salta si algo ha ido mal
0044C75D |. 8B86 14030000 MOV EAX,DWORD PTR DS:[ESI+314]
0044C763 |. BA CCC74400 MOV EDX,CrackMe_.0044C7CC ; "You have found the correct Serial :)"
En resumen
Tamaño del nombre entre 7 y 19.
Tamaño de la compañía entre 3 y 7 aunque no interviene en el serial.
Suma los valores ascii de los dígitos del nombre y lo multiplica por 2.
Concatena «I Love Cracking and » + «sum del nombre» + » Girls ;)».
Checkbox
Para afrontar esta parte del reto vamos a usar una herramienta llamada Interactive Delphi Reconstructoro IDR. En su día la mejor herramienta era DEDE, pero IDR a mi parecer es algo más potente.
Básicamente IDR nos permite sin quebraderos de cabeza localizar el código del botón que comprueba la secuencia de checkboxes correcta. Cargamos el crackme en IDR y dentro de la pestaña «Units (F2)«, abajo del todo hacemos doble click sobre «F Crack» y vemos que nos muestra todos los controles del formulario. El botón que nos interesa se llama «SpeedButton3«.
Si hacemos doble click sobre el nos muestra el código que se muestra a continuación.
Como podéis apreciar, las checkboxes involucradas son la 3, 5, 6, 9, 11, 12, 13, 15, 19 y 20. Solo nos falta saber cuales se corresponden con esa numeración y aquí ya depende de cada uno, yo en su día saqué los números a mano mediante el orden de tabulación, pero ya que tenemos IDR, el nos va a dar la solución de una forma sencilla y rápida.
Vamos a la pestaña «Forms (F5)«, seleccionamos la opción Form y hacemos doble click sobre el formulario.
Veréis que aparece el formulario con todos los recursos, incluso los puedes modificar. Localizar los checkboxes ahora es un juego de niños.
Os dejo un vídeo.
Trackbar
De nuevo, con la ayuda de IDR, localizamos la parte del código y analizamos su funcionamiento. Esta parte es la más divertida ya que requiere de un keygen pero en vez de coger el número de serie de una caja de texto lo obtiene de 5 trackbars como muestra la siguiente imagen.
1) Siendo nuestro serial : 1 2 3 4 5
a b c d e
2) Realiza las operaciones matemáticas:
Round(((Cos(sqrt(b^3+5)) + (-sqrt(a+1)) + Ln(c*3+1) + (-sqrt(d+2)) + ((e*3)/2))+0.37)*1000))
3) Obtenemos un hash resultante de 5415
4) XORea los dígitos de la siguiente manera:
(5)35 xor 86 = B6
(4)34 xor 83 = BD
(1)31 xor 86 = B7
(5)35 xor 8D = B8
De modo que tenemos B6BDB7B8
5) Compara B6BDB7B8 con B5BAB2BA
6) Revertimos el XOR para obtener el hash bueno
B5 xor 86 = 36(6)
BA xor 83 = 33(3)
B2 xor 86 = 34(4)
BA xor 8D = 37(7)
Luego el hash bueno es 6347
7) Debemos hacer fuerza bruta buscando:
Round(((Cos(sqrt(b^3+5)) + (-sqrt(a+1)) + Ln(c*3+1) + (-sqrt(d+2)) + ((e*3)/2))+0.37)*1000)) = 6347
Para obtener los seriales válidos podemos hacer bucles recursivos hasta recorrer las 10^5 opciones posibles. Una forma de hacerlo en VBNet es la siguiente.
Dim tmp As Double
Dim an, bn, cn, dn, en As Integer
For an = 0 To 9
For bn = 0 To 9
For cn = 0 To 9
For dn = 0 To 9
For en = 0 To 9
tmp = Round(((Cos(Sqrt((Pow(bn, 3)) + 5)) + (-Sqrt(an + 1)) + Log(cn * 3 + 1) + (-Sqrt(dn + 2)) + ((en * 3) / 2) + 0.37) * 1000))
txtdebug.Text = "a-b-c-d-e = Hash || " & an & "-" & bn & "-" & cn & "-" & dn & "-" & en & " = " & tmp
If tmp = 6347 Then
ListBox1.Items.Add("Serial: " & an & bn & cn & dn & en)
End If
Application.DoEvents()
Next
Next
Next
Next
Next
Os dejo como siempre el crackme y el keygen en los enlaces.
We require your services once again. An employee from our company had recently been identified as a known criminal named Brett Thwaits. He is considered to have stolen missile launch codes from the US navy which unfortunately were handed to us for a brief period of time. As of now, we are accussed of the theft and unless we do something about it, we’re gonna end in some serious trouble. Before Brett left, he formatted the thumbdrive which used to store the launch codes. Fortunately, our system had made a backup image of the drive. See if you can recover the fourth launch code. Good luck!
Requerimos una vez más sus servicios. Un empleado de nuestra empresa había sido identificado recientemente como el conocido criminal Brett Thwaites. Se considera que ha robado los códigos de lanzamiento de misiles de la Armada de Estados Unidos, que por desgracia fueron entregados a nosotros por un breve período de tiempo. A partir de ahora, se nos acusa del robo y a menos que hagamos algo al respecto, vamos a tener serios problemas. Antes de que Brett se fuera formateó el dispositivo que se usa para almacenar los códigos de lanzamiento. Afortunadamente, nuestro sistema había hecho una copia de seguridad de la unidad. Mira a ver si puedes recuperar los cuatro códigos de lanzamiento. ¡Buena suerte!
Análisis del archivo
Fichero: forensics1
Extensión: img
Tamaño: 25 MB (26.214.400 bytes)
Hash MD5: 56e4cd5b8f076ba8b7c020c7339caa2b
Echamos un vistazo al archivo con un editor hexadecimal y vemos encabezados de tipos de archivos conocidos, por lo que la unidad no está encriptada. Al no estar encriptada la imagen, usaremos una herramienta de creación propia, Ancillary. En esta ocasión usaremos la versión 2 alpha, que actualmente está en desarrollo, pero podéis usar tranquilamente la versión 1.x.
Ancillary nos muestra lo que ha encontrado en el archivo por lo que pasamos a analizarlo.
Como siempre os digo en este tipo de retos, es difícil discriminar unos ficheros en favor de otros, ya que no sabemos si lo que buscamos va a estar en una imagen, documento u otro tipo de fichero codificado o no.
Tras analizar todos los ficheros, rápidamente suscitan nuestro interés los ficheros RAR, y más cuando el fichero que contienen es un fichero de audio y su nombre es tan sugerente como «conversation_dtmf.wav«. Como podéis apreciar en la imagen, el fichero RAR está protegido con clave por lo que necesitamos esquivar ese obstaculo.
Recuperando una clave de un archivo RAR
En este caso el software que voy a utilizar es cRARk, pero podéis utilizar cualquier otro. Como se muestra en la imagen de abajo, mi procesador es más bien modesto pero la clave no tiene más que tres dígitos por lo que no supone ninguna dificultad recuperarla.
DTMF (Dual-Tone Multi-Frequency)
Una vez recuperado el archivo WAV, al reproducirlo escuchamos 16 tonos telefónicos que inmediatamente me recuerdan las aventuras del mítico «Capitán Crunch«. Os animo a leer la historia de John Draper y su famosa «Blue Box» ya que no tiene desperdicio y forma parte de la historia del Phreaking.
Por si no conocías la historia, el propio nombre del fichero wav nos da la pista clave de qué buscar al contener las siglas «DTMF«.
Al ser pulsada en el teléfono la tecla correspondiente al dígito que quiere marcar, se envían dos tonos, de distinta frecuencia: uno por columna y otro por fila en la que esté la tecla, que la central decodifica a través de filtros especiales, detectando qué dígito se marcó.
No tenemos más que buscar un decodificador de tonos para obtener los preciados códigos de lanzamiento.
En una entrada anterior sobre cómo Expediente X abordó la tecnología de vanguardia, comenté que dedicaría un espacio a esos tres personajes tan peculiares y entrañables que, desde el segundo plano, se ganaron un hueco en el corazón de los seguidores de la serie: los Pistoleros Solitarios. Pues bien, ha llegado el momento.
Estos tres tipos —John Fitzgerald Byers, Melvin Frohike y Richard “Ringo” Langly— no necesitaban armas ni placas del FBI. Su poder estaba en los teclados, los cables enredados y los monitores de tubo que parpadeaban en un sótano lleno de conspiraciones y café frío. Eran los outsiders de Expediente X, tres hackers con alma de periodistas que luchaban por algo tan simple y tan enorme como la verdad.
Su primera aparición fue en E.B.E. (temporada 1), casi como un alivio cómico: tres frikis que ayudaban a Mulder a rastrear información sobre ovnis. Pero pronto quedó claro que había algo especial en ellos. No solo eran fuente de datos, sino conciencia crítica en un mundo plagado de mentiras digitales y gobiernos con demasiados secretos. Con el tiempo se convirtieron en aliados imprescindibles de Mulder y Scully, y también en el reflejo más humano de lo que significa ser hacker: curiosos, testarudos, torpes a veces, pero con un sentido moral inquebrantable.
Byers era el idealista, el que aún creía en la decencia y en las instituciones (al menos en teoría). Frohike, el cínico veterano con corazón de oro, siempre dispuesto a arriesgarse por una buena causa… o por impresionar a Scully. Y Langly, el genio rebelde que parecía vivir en permanente conversación con su módem de 56 k. Juntos formaban un trío excéntrico, pero perfectamente equilibrado.
Mientras Mulder y Scully perseguían abducciones y virus extraterrestres, los pistoleros combatían en otra trinchera: la digital. Hackeaban redes gubernamentales, interceptaban comunicaciones cifradas y desmantelaban cortafuegos que, en los noventa, parecían pura ciencia ficción. Lo suyo no era la acción física, sino la resistencia informativa. Y aunque muchas veces eran el chiste del capítulo, también representaban algo muy real: la gente corriente que lucha contra el poder desde el conocimiento.
Su lema no declarado podría haber sido el clásico “la información quiere ser libre”, y en eso se mantuvieron firmes hasta el final. Si había que elegir entre la seguridad o la verdad, ellos siempre elegían la verdad, aunque les costara caro.
Langly como conciencia digital en un servidor. Debate sobre IA y trascendencia del código.
Morir por la verdad
El final de los pistoleros fue tan inesperado como heroico. En el episodio “Jump the Shark” de la novena temporada, descubren un complot bioterrorista que amenaza con liberar un virus mortal. No hay tiempo para avisar a nadie, ni margen para escapar. Así que, fieles a su estilo, deciden sacrificarse para salvar a otros. Sellan el laboratorio desde dentro, sabiendo que no volverán a salir.
Lo reconozco, este desenlace mi cogió completamente por sorpresa. No hay épica de Hollywood, ni música grandilocuente. Solo tres hombres anónimos haciendo lo correcto. Mueren juntos, sin reconocimiento, sin medallas, pero con la serenidad de quienes saben que su causa era justa. Y en ese silencio final, Expediente X nos recordó algo que las grandes historias suelen olvidar: que los verdaderos héroes a veces no llevan traje ni pistola, solo convicción.
Años después, Mulder vuelve a verlos —o cree verlos— en The Truth. Ya no están en este mundo, pero siguen a su lado, como fantasmas digitales de la conciencia hacker. Es un homenaje discreto a quienes siempre pelearon desde las sombras por liberar la verdad.
Para cerrar el círculo, Langly reaparece de forma inesperada en la temporada 11, dentro del episodio This. Su mente, o más bien su copia digital, sobrevive atrapada en un servidor, reclamando ser liberada. Es el epílogo perfecto: el hacker que muere físicamente, pero cuya conciencia sigue inmortal. Una vez más me volvió a sorprender Chris Carter con este homenaje.
Me gusta pensar que los pistoleros solitarios representaban algo más que tres hackers secundarios en una serie de los noventa. Fueron el reflejo de una época en la que creíamos que la tecnología podía liberar al ser humano, antes de que las redes sociales y la hiperconectividad lo diluyeran todo. Byers, Frohike y Langly no luchaban por fama ni por dinero: luchaban por entender el sistema para exponerlo, por esa curiosidad genuina que hoy apenas sobrevive entre líneas de código y algoritmos opacos. Quizá por eso seguimos recordándolos y mola tanto volver a ver los capítulos. Porque, de algún modo, todos los que amamos el conocimiento libre llevamos dentro un pequeño pistolero solitario, buscando la verdad entre los bits.
Siguiendo con los crackmes que contienen RSA, esta vez tenemos un Keygenme del grupo PGC (Pirates Gone Crazy) que incluso servía para ser admitido en el grupo si mandabas la solución. Como veremos usa RSA32 + MD5 y en la parte de RSA ni siquiera usa el descifrado por lo que es de los sencillitos.
Resumen RSA
Parámetros
p = Primer número primo
q = Segundo número primo
e = Exponente público que cumpla MCD(e,(p-1)*(q-1))==1
n = Módulo público siendo n=p*q
d = Exponente privado que cumpla d=e^(-1) mod ((p-1)*(q-1))
De este modo e y n son la parte pública de la clave y d y n la parte privada. Los número primos p y q se utilizan solo para generar los parámetros y de ahí en adelante se pueden desechar.
Funciones de Cifrado/Descifrado
cifrado = descifrado ^ e mod n
descifrado = cifrado ^ d mod n
Debug
En las referencias de texto se ven a simple vista el exponente públicoe (10001) y el módulo n (8e701a4c793eb8b739166bb23b49e421)
Text strings referenced in RSA32+MD:.text
Address Disassembly Text string
00401848 PUSH RSA32+MD.00404104 ASCII "%.8x%.8x%.8x%.8x"
00401A72 PUSH RSA32+MD.0040429C ASCII "[PGCTRiAL/2oo2]"
00401AEE PUSH RSA32+MD.00404275 ASCII "10001"
00401AFE PUSH RSA32+MD.0040427B ASCII "8e701a4c793eb8b739166bb23b49e421"
00401B43 PUSH RSA32+MD.00404404 ASCII "Name Must Be >= 1 Character."
00401B57 PUSH RSA32+MD.00404421 ASCII "Key Must Be >= 1 Character."
00401B6D PUSH RSA32+MD.0040443D ASCII "Congratulations!"
00401B72 PUSH RSA32+MD.0040444E ASCII " You've done it!
Please send your keygen along with
source code to pgc@dangerous-minds.com
if you would like to be considered as
a new member of PGC."
00401BE7 PUSH 0 (Initial CPU selection)
00401C47 MOV [DWORD SS:EBP-24],RSA32+MD.00404119 ASCII "PGCWinClass"
00401C7C MOV [DWORD SS:EBP-24],RSA32+MD.0040424E ASCII "STATIC"
00401CDB PUSH RSA32+MD.00404115 ASCII "PGC"
00401CE0 PUSH RSA32+MD.00404119 ASCII "PGCWinClass"
00401D13 PUSH RSA32+MD.00404125 ASCII "EDIT"
00401D46 PUSH RSA32+MD.00404125 ASCII "EDIT"
00401DFB PUSH RSA32+MD.00404115 ASCII "PGC"
00401E00 PUSH RSA32+MD.0040424E ASCII "STATIC"
Como vemos comprueba que tanto el nombre como el número de serie tengan al menos un dígito y a continuación comienza el chequeo del serial. El chequeo es muy sencillo ya que ni siquiera tenemos que buscar los números primos p y q y a continuación n, simplemente podemos obtener el número de serie con la parte pública de la clave (par de número e y n). Lo resumimos a continuación:
Concatena nuestro nombre con la cadena «[PGCTRiAL/2oo2]»
Crea el hash MD5 de la cadena concatenada.
Cifra el hash usando el par de números e y n obtenidos en las referencias de texto.
//
// md5(deurus[PGCTRiAL/2oo2]) = dc8a39282da8539d11b8a6aec000c45a
//
var c = BigInt("0xdc8a39282da8539d11b8a6aec000c45a");
var e = BigInt("0x10001");
var n = BigInt("0x8e701a4c793eb8b739166bb23b49e421");
//
var serial = BigInt(0);
serial = powmod(c, e, n);
document.write(serial.toString(16));
//
//POWMOD
//
function powmod(base, exp, modulus) {
var accum = BigInt("1");
var i = BigInt("0");
var basepow2 = BigInt(base);
while ((BigInt(exp) >> BigInt(i) > BigInt(0))) {
if (((BigInt(exp) >> BigInt(i)) & BigInt(1)) == BigInt(1)) {
accum = (BigInt(accum) * BigInt(basepow2)) % BigInt(modulus);
}
basepow2 = (BigInt(basepow2) * BigInt(basepow2)) % BigInt(modulus);
i++;
}
return BigInt(accum);
}