En esta ocasión vamos a hablar de una película de culto de los años 90, Hackers – Piratas Informáticos. La verdad es que aunque puede ser entretenida, tecnológicamente es una pesadilla y es que esta película es un claro ejemplo de cuando Hollywood prefiere agradar visualmente a representar escenas realistas.
Tras cuatro minutos en los que se nos presenta a Dade (Jonny Lee Miller) y sus problemas con la ley a una temprana edad, saltamos unos años después hasta ver a Dade encerrado en su habitación volviendo a las andadas intentando acceder ilegítimamente a los servidores de una cadena de televisión. Para ello hace uso de algo muy conocido en el mundillo Hacker, la Ingeniería Social, y es que aunque ahora disponemos de «cierta» conciencia en seguridad informática, en los años 90 no había ninguna. Bien, el caso es que Dade llama a las oficinas de la citada cadena de televisión a una hora en la que no hay más que el vigilante de seguridad y éste le proporciona un número que debemos suponer que es la IP de un Módem y comienza la intrusión.
BTM
Para empezar, se le ve al protagonista escribir comandos cuando en la pantalla no hay más que una animación en algo parecido a una ventana de terminal al estilo «Commander», pero no vemos lo que escribe, algo irreal.
A continuación y como por arte de magia entra en el sistema y lo que se muestra es una animación parpadeante con el logo de la compañia y el nombre del sistema al que estamos accediendo, también irreal.
Finalmente nos muestra sus intenciones, y son nada más y nada menos que cambiar la programación actual simplemente cambiando de VHS, inmejorable. A continuación os muestro la secuencia.
Por lo menos nos queda el consuelo de que cambia la tertulia de un tipejo con ciertos prejuicios raciales por una programación más interesante como «The Outer limits«, aquí conocida como «Más allá del límite«.
El resto de escenas informáticas de la película carecen de veracidad, la única que se salva, puede ser cuando accede al servidor del Instituto para programar el sistema contra incendios y vengarse de Kate (Angelina Jolie), ya que las imágenes que aparecen son de los primeros entornos gráficos de Mac.
Es extraño que casi todas las intrusiones las realiza desde su propia casa, algo poco inteligente, ya que por muy bueno que seas, siempre dejas huellas. Solo cuando se enfrentan a un Super-Hacker se empiezan a tomar las cosas en serio y realizan los ataques desde cabinas telefónicas.
En la película También hacen mención al Phreaking y a algunos de los libros que eran famosos por aquella época pero poco más que destacar. Por todo esto y mucho más, y aunque me caen igual de bien tanto Angelina como Jonny, la película se merece un majestuoso sello de BTM.
Introducción Objetivo del juego y normas Código inicial Primeras modificaciones Terminando la faena Código ganador Curiosidades Enlaces Introducción Hace tiempo
Continuamos con la segunda entrega de Cruehead. En este caso nos encontramos con un único campo de contraseña para introducir.
El algoritmo
Abrimos con Olly y vemos dos saltos. El primer Call realiza una serie de operaciones con el serial introducido y el segundo comprueba si el serial es correcto.
A continuación llegamos aquí:
00401365 /$ C605 18214000 00 MOV BYTE PTR DS:[402118],0
0040136C |. 8B7424 04 MOV ESI,DWORD PTR SS:[ESP+4]
00401370 |. 56 PUSH ESI
00401371 |> 8A06 /MOV AL,BYTE PTR DS:[ESI] ; <---
00401373 |. 84C0 |TEST AL,AL
00401375 |. 74 19 |JE SHORT CRACKME2.00401390
00401377 |. FE05 18214000 |INC BYTE PTR DS:[402118]
0040137D |. 3C 41 |CMP AL,41 ; 41 = A
0040137F |. 72 04 |JB SHORT CRACKME2.00401385 ; ya es mayúscula
00401381 |. 3C 5A |CMP AL,5A ; 5A = Z
00401383 |. 73 03 |JNB SHORT CRACKME2.00401388 ; Convertir a mayúscula
00401385 |> 46 |INC ESI
00401386 |.^ EB E9 |JMP SHORT CRACKME2.00401371 ; Bucle -->
00401388 |> E8 25000000 |CALL CRACKME2.004013B2
0040138D |. 46 |INC ESI
0040138E |.^ EB E1 \JMP SHORT CRACKME2.00401371
00401390 |> 5E POP ESI
00401391 |. E8 03000000 CALL CRACKME2.00401399 ;Convertido a mayúsculas continuamos
00401396 |. EB 00 JMP SHORT CRACKME2.00401398
00401398 \> C3 RETN
Si nuestro serial contiene solo letras, las convierte a mayúsculas y seguimos aquí. En resumen hace XOR byte a byte entre nuestro serial y la frase «Messing_in_bytes»
00401399 /$ 33DB XOR EBX,EBX
0040139B |. 33FF XOR EDI,EDI
0040139D |> 8A8F A3214000 /MOV CL,BYTE PTR DS:[EDI+4021A3] ; Carga el primer byte de 4021A3
004013A3 |. 8A1E |MOV BL,BYTE PTR DS:[ESI] ;
004013A5 |. 84DB |TEST BL,BL
004013A7 |. 74 08 |JE SHORT CRACKME2.004013B1
004013A9 |. 32D9 |XOR BL,CL ; byteSerial XOR Byte"Messing_in..."
004013AB |. 881E |MOV BYTE PTR DS:[ESI],BL
004013AD |. 46 |INC ESI ;Siguiente byte de "Messing_in_bytes"
004013AE |. 47 |INC EDI ;Siguiente byte del serial
004013AF |.^ EB EC \JMP SHORT CRACKME2.0040139D
004013B1 \> C3 RETN ;XOR finalizado volvemos
Estado del DUMP (memoria) antes del XOR y con nuestro serial (12345678) cargado.
Si buscamos el comando REPE encontramos que si el flag Z = 1 el bucle se corta y que trabaja con bytes. El problema es que en Olly la instrucción REPE nosotros la vemos con un solo paso y nos puede pasar desapercibida.
En resumen, está comprobando los bytes de las direcciones 402150 (1F 2C 37 36 3B 3D 28 19 3D 26 1A 31 2D 3B 37 3E) con nuestro serial XOReado, 40217E en adelante, por lo que si hacemos XOR entre los bytes de 402150 y la frase «Messing_in_bytes» obtendremos la clave correcta.
M e s s i n g _ i n _ b y t e s
4D 65 73 73 69 6E 67 5F 69 6E 5F 62 79 74 65 73
XOR
1F 2C 37 36 3B 3D 28 19 3D 26 1A 31 2D 3B 37 3E
-----------------------------------------------
52 49 44 45 52 53 4F 46 54 48 45 53 54 4F 52 4D
R I D E R S O F T H E S T O R M
Serial: RIDERSOFTHESTORM
En este reto se nos entrega un archivo WAV de 9,92 MB. Tras escucharlo y analizarlo por encima con Audacity no llego a ningún lado por lo que me tiro al descarte de herramientas conocidas, y en ésta ocasión sale a escena DeepSound.
Sin más dilación extraemos el JPG y continuamos.
La aparición en escena de DeepSound me hace sospechar sobre el uso de herramientas conocidas y ¡bingo!, sale a escena StegHide. En esta ocasión el autor del reto nos lo ha puesto fácil y la extracción no requiere clave.
Al abrir el archivo TXT como texto vemos lo siguiente:
y si lo abrimos con un editor hexadecimal vemos esto otro:
Claramente el archivo esconde algo que por la repetición de los caracteres me hace sospechar de un simple XOR y efectivamente la flag está XOReada. Tras un ataque preliminar, digamos que los árboles no me dejaban ver el bosque, de modo que limpié los bytes correspondientes a la frase «this is the flag :)» y procesé de nuevo obteniendo por fin la ansiada flag.
RAW bytes
FF FE 74 00 68 00 69 00 73 00 20 00 40 DB 53 DC 40 DB 48 DC 40 DB 53 DC 40 DB 7B DC 40 DB 74 DC 69 00 73 00 20 00 40 DB 30 DC 40 DB 30 DC 40 DB 5F DC 40 DB 33 DC 40 DB 34 DC 74 00 68 00 65 00 20 00 40 DB 73 DC 40 DB 79 DC 40 DB 5F DC 40 DB 6D DC 40 DB 34 DC 66 00 6C 00 61 00 67 00 20 00 40 DB 6E DC 40 DB 7D DC 40 DB 20 DC 3A 00 29 00
Cleaned bytes [quitando this is the flag :)]
FF FE 40 DB 53 DC 40 DB 48 DC 40 DB 53 DC 40 DB 7B DC 40 DB 74 DC 40 DB 30 DC 40 DB 30 DC 40 DB 5F DC 40 DB 33 DC 40 DB 34 DC 40 DB 73 DC 40 DB 79 DC 40 DB 5F DC 40 DB 6D DC 40 DB 34 DC 40 DB 6E DC 40 DB 7D DC 40 DB 20 DC
clave XOR == 00fc60fb
Resultado
S H S { t 0 0 _ 3 4 s y _ m 4 n }
He de iniciar esta entrada diciendo que la segunda temporada de Stranger Things es sencillamente genial. Son 9 horas intensas que no dejan indiferente a nadie y además en el capítulo 8 nos han dejado una de esas perlas informáticas que tanto nos gustan.
La escena la protagoniza Bob Newby, un buen hombre amante de la electrónica de aquella época que trabaja en RadioShack y transcurre en el laboratorio secreto de Hawkins. En un momento dado, Bob propone «saltarse» la seguridad del laboratorio y para ello se traslada al sótano donde se encuentran los «servidores».
Para comprender esta escena hay que situarse temporalmente. Estamos hablando de los años 80, en concreto la escena transcurre en 1984 y los equipos de los que dispone el laboratorio son unos maravillosos IBM. No se llega a apreciar bien el modelo de IBM utilizado pero teniendo en cuenta que el monitor que aparece es un terminal IBM 3180, la búsqueda se reduce a los sistemas compatibles S/36, S/38, AS/400, 5294 ó 5394.
IBM 3180 (https://www.argecy.com/3180)
Cracking BASIC or BASIC Cracking?
La escena plantea un ataque de fuerza bruta a un código de 4 dígitos como se puede observar en la imagen a continuación. Esto puede parecer una chorrada hoy día pero podía suponer un pequeño reto para un micro de 8 bits.
Cracking Basic or Basic Cracking?
A simple vista se aprecian una serie de bucles recursivos, una llamada a una función y una sentencia condicional. Desconozco si la sintaxis del lenguaje es la correcta pero mucho me temo que es más bien una mezcla de BASIC y pseudocódigo. Pero lo que más me ha llamado la atención sin duda es que la palabra THEN parece que se sale del monitor como si estuviera realizado en post-producción. Os invito a que ampliéis la imagen y comentéis lo que os parece a vosotr@s.
Os dejo aquí el código para los más curiosos.
10 DIM FourDigitPassword INTEGER
20 FOR i = 0 TO 9
30 FOR j = 0 TO 9
40 FOR k = 0 TO 9
50 FOR l = 0 TO 9
60 FourDigitPassword = getFourDigits (i,j,k,l)
70 IF checkPasswordMatch(FourDigitPassword) = TRUE THEN
80 GOTO 140
90 END
100 NEXT l
110 NEXT k
120 NEXT j
130 NEXT i
140 PRINT FourDigitPassword
Aunque la entrada está dentro del contexto de los Blooper Tech Movies, digamos que en esta ocasión no voy a ir más allá. La escena es creíble y queda bien integrada en la época en la que se desarrolla el capítulo. Por esto mismo, solamente espero que las temporadas venideras sean tan buenas y cuiden tanto los detalles como sus predecesoras.
AperiSolve es un conjunto de herramientas de análisis esteganográfico que nos ayuda a echar un primer vistazo cuando sospechamos que una imagen esconde algo.
Zsteg es una herramienta especializada en la detección y extracción de información oculta en imágenes, especialmente en formatos PNG y BMP. Está orientada a la esteganografía basada en bit-planes y es muy popular en entornos CTF y análisis forense, gracias a su capacidad para automatizar búsquedas exhaustivas de datos escondidos en los bits menos significativos (LSB) y en configuraciones de color poco habituales. Su principal fortaleza es que no se limita a examinar un único plano: prueba sistemáticamente combinaciones de canales (R, G, B, A), número de bits, orden de lectura y posicionamiento, detectando patrones que podrían pasar inadvertidos en una revisión manual.
Entre sus características más destacadas se encuentran la identificación automática de firmas de archivos (ZIP, PNG, texto ASCII, GZIP, etc.), la extracción directa de bitstreams reconstruidos y el soporte para diferentes rutas de exploración, como b1,rgb,lsb,xy, que describen exactamente cómo se han recuperado los datos. Esta capacidad de correlacionar parámetros técnicos con resultados concretos convierte a zsteg en una herramienta muy eficiente tanto para localizar contenido oculto como para entender la técnica esteganográfica aplicada.
En AperiSolve se utiliza únicamente la parte de Zsteg encargada de ejecutar el análisis automático y devolver todas las detecciones posibles de esteganografía LSB en imágenes PNG y BMP. Concretamente, AperiSolve llama al comando zsteg <imagen> tal como está implementado en el módulo analyze_zsteg , y captura la salida completa línea por línea. Esta salida incluye todas las combinaciones probadas de bit-planes (b1, b2…), canales (r, g, b, a), orden de bits (lsb/msb) y métodos de recorrido (xy), junto con cualquier coincidencia que zsteg reconozca como firma de archivo o texto. Es decir, AperiSolve no aplica filtros ni interpretación adicional: muestra exactamente lo que zsteg detecta y lo organiza para que el usuario pueda identificar rápidamente si existe un archivo embebido, contenido ASCII, o algún patrón de interés.
Para entender mejor a que se refiere todo esto vamos a repasar lo básico.
¿Qué es LSB y qué es MSB?
Cuando hablamos de esteganografía en imágenes PNG/BMP, nos referimos a manipular bits dentro de los canales de color (R, G, B, A). Cada canal tiene un valor de 0–255, es decir, 8 bits:
R = 11001010
G = 00110101
B = 11100001
LSB — Least Significant Bit (bit menos significativo). Es el bit más débil, el de la derecha:
1100101[0] ← LSB
Modificarlo cambia muy poco el color, por eso se usa en esteganografía. Ejemplo: cambiar 11001010 ↦ 11001011 no cambia el color perceptible.
MSB — Most Significant Bit (bit más significativo). Es el bit más importante, el de la izquierda:
[1]1001010 ← MSB
Modificarlo sí altera mucho el color. A veces se usa pero suele ser detectable.
Cuando Zsteg muestra una línea del estilo b1,rgb,lsb,xy .. file: Zip archive data, está indicando que ha analizado la imagen extrayendo bits según la ruta especificada —en este caso, 1 bit por píxel (b1), combinando los canales rojo, verde y azul (rgb), utilizando el bit menos significativo (lsb) y recorriendo los píxeles en orden normal de lectura (xy)— y que, tras recomponer esos bits, el resultado coincide con la cabecera reconocible de un tipo de archivo real. Por eso aparece “file: Zip archive data”: significa que los bits ocultos forman un flujo válido cuya firma corresponde a un archivo ZIP. En otras ocasiones puede detectar texto ASCII, PNG, JPEG u otros formatos. En resumen, cuando Zsteg muestra esta línea no solo indica dónde se ocultan los datos, sino que confirma que lo recuperado es un archivo auténtico y probablemente extraíble, ya que la estructura binaria coincide con un formato conocido.
Si vemos que Zsteg nos ofrece algo interesante, podemos extraerlo mediante el comando:
zsteg -E b1,rgb,lsb,xy imagen.png > dump.bin
También es habitual usar herramientas como StegSolve. En este caso debemos dirigirnos a Analyse > Data extract para comprobar lo encontrado por zsteg y extraerlo mediante Save Bin.
Zsteg
> Significado <
StegSolve
b1
Extrae 1 bit por canal (bit plano 0, el menos significativo).
En Bit Planes, marca Red 0, Green 0, Blue 0. Solo esos.
rgb
Usa R + G + B en ese orden para reconstruir los bytes.
En Bit Plane Order, selecciona RGB.
lsb
Lee los bits empezando por el LSB (bit 0) antes que el MSB.
En Bit Order, selecciona LSB First.
xy
Recorre la imagen por filas (izquierda → derecha, arriba → abajo).
En Extract By, elige Row.
Más allá de este caso concreto, conviene recordar que la esteganografía no se limita a los LSB: existen métodos basados en paletas, metadatos, manipulación de PNG chunks, secuencias alfa, audio incrustado o capas completas en formatos no comprimidos. Por ello, un análisis completo debería combinar la búsqueda clásica de LSB con herramientas complementarias como binwalk, foremost, exiftool, strings, o incluso análisis manual de cabeceras hexadecimales.