Hace unos años cuando empecé a trastear con Android y animado por mi afición a la Ingeniería Inversa, decidí realizar una serie de crackmes. Los dos primeros pasaron algo desapercibidos, pero el Crackme nº3 tuvo una gran repercusión en el mundillo y, aunque no fue el primer crackme para Android ni mucho menos, si que fue uno de los más estudiados. Todos ellos fueron publicados a través de crackmes.de y el nº3 en cuestión el 6 de Noviembre de 2010. Os dejo una lista de unas cuantas webs donde aparece analizado para que veáis la repercusión que a mi parecer tuvo.

Soluciones al crackme

Referencias al crackme

Links


Introducción Este es un crackme hecho en .Net con dos Nags a parchear y un algoritmo muy sencillo pero que
Introducción A quien va dirigido Comprobaciones previas Lo que necesitamos Presupuesto Ejemplo de instalación Preguntas frecuentes Glosario Notas finales Introducción
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
En el BTM anterior nos remontábamos al año 2006 para ver un pequeño gazapo ocurrido en la serie Dexter. En

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Introducción

Realistic Challenge 3: Your school is employing a web designer who is charging far too much for site design and doesn’t know anything about protecting the site. However, he’s sure that there’s no way anyone can hack into any site he’s designed, prove him wrong!
 En tu escuela están haciendo una web nueva muy rápido. El creador asegura que no le pueden hackear, demuéstrale que está equivocado.

Analizando a la víctima

Echamos un vistazo y vemos en el menú cosas interesantes. La primera de ellas es un Login que pronto descartamos ya que no parece llevar a ninguna parte. La segunda sirve para mandar enlaces al administrador y que este los publique posteriormente en la web.
Vamos a trastear un poco con la opción de mandar enlaces. En el código fuente ya vemos algo interesante y es que hay un campo oculto con el valor a 1 al mandar el enlace. Probamos a mandar un enlace sin tocar nada y nos dice que lo manda pero que lo tienen que aprobar. Vamos a probar ahora cambiando el valor del parámetro oculto a 0 con Firebug.

¡Funcionó!, el enlace ha pasado el filtro.

¿Cómo podemos aprovechar esto?, pués la forma más común es «XSS cross site scripting«. Veamos una prueba. Con el parámetro oculto otra vez en 0 mandamos el siguiente enlace y reto superado.

Links

Intro

Hace poco me reencontré con esta entrañable serie que tanto me entretuvo cuando era pequeño y para mi sorpresa, me percaté de que nunca había visto el episodio piloto. La nostalgia me llevó a tragarme el episodio entero y a disfrutar a lo grande de la parafernalia técnica de la que hace gala para justificar la creación que da nombre a la serie.

La visión tecnológica de los años 80

Esto hay que analizarlo con perspectiva. Estamos en los años 80 y nos están presentando un coche capaz de mantener una conversación, es decir, nos están presentando una inteligencia artificial (IA) llamada KITT. Puede parecer que el término inteligencia artificial es nuevo pero realmente se acuño en 1956 por John McCarthy. A partir de ese momento surgieron líneas de estudio e hipótesis pero a partir de los 70 se puede considerar que la investigación sobre la IA perdió financiación y quedó en el congelador hasta los años 90. Dicho esto, cuando nos presentan a KITT lo hacen de la siguiente manera:

Devon Miles: Está totalmente controlado por microprocesadores que hacen físicamente imposible que se vea implicado en ningún tipo de colisión o percance a no ser que se lo ordene su piloto específicamente

Michael Knight: ¿Piloto?, no me diga que esta cosa vuela

Devon Miles: ¡No!, pero piensa

Michael Knight: ¿Piensa?, ¿mi coche piensa?

Intel daba a conocer el primer microprocesador allá por el 71 y la serie se estrenó en el 82 lo que le da credibilidad en ese aspecto, aunque dudo que el público de esa época supiera que era un microprocesador, un ordenador y menos una IA.

Los Chips

La serie arranca con un grupo de personas realizando espionaje industrial donde nos muestran las hojas de datos de dos chips Japoneses como son el PD8257-5 y el PD780. Un aplauso para los guionistas y sus asesores ya que el PD8257-5 es una interfaz de comunicaciones y el PD780 un microprocesador de 8 bits.

Detalle del esquema del chip PD8257-5 y del set de instrucciones del chip PD780

Lo más interesante es que lo que se muestra es real como podéis apreciar en la siguiente imagen

Detalle del esquema mostrado en la serie VS la hoja de datos

A continuación un detalle de las capturas realizadas:

Más adelante vuelven a aparecer imágenes en un PC que parecen puestas en post-producción y que son robadas en un maravilloso disco de 5 1/4.

Los diálogos

Llaman la atención mucho los diálogos centrados en el microprocesador como si de un ser superior se tratase, éste es la referencia continua y la parte central del guion de los dos primeros capítulos. Curiosamente aparecen en pantalla multitud de imágenes de circuitos integrados pero no se llega a ver ningún microprocesador. Por otro lado, es interesante el esfuerzo que hacen los guionistas por que llamemos a KITT él en vez de ello, convirtiendo al coche en un personaje más.

Otra cosa que llama mucho la atención son los tópicos de los que hace gala como la asociación de los microprocesadores a los videojuegos o que la empresa villana esté afincada en Silicon Valley. Incluso el nombre KITT es un tópico ya que las siglas vienen de Knight Industries Two Thousand que en cristiano quiere decir Industrias Knight 2000. Y es que en mi opinión el año 2000 se imaginaba como una barrera lejana en la que todo iba a ser tecnológicamente más avanzado.

Conclusiones

Tengo que reconocer que me ha sorprendido que dieran realismo a los chips mostrados teniendo en cuenta que aparecen muy pocos segundos en pantalla y podían haber puesto cualquier cosa.

Por otro lado, la realidad es que en el año 2022 aún nos queda recorrido para llegar a tener un coche fantástico y lo más parecido que tenemos hoy día sería un Tesla con Alexa.

Enlaces de interés

Computer Password Security Hacker

En el primer vistazo con el editor hexadecimal ya vemos la solución al reto:

Pho

Al igual que el caso anterior con el editor hexadecimal tenemos más que suficiente para resolver el reto.

Minions

En el análisis inicial no destaca prácticamente nada excepto la palabra myadmin que podemos ver con un editor hexadecimal.

La palabra myadmin es una buena candidata a ser contraseña ante una decodificación. Probamos con lo estándar y conseguimos resultados con steghide. La decodificación nos devuelve la cadena AEMAVABGAGwAZQBhAHIAbgB7AHQAaABpAHMAXwBpAHMAXwBmAHU***** que rápidamente catalogamos como base64 para resolver el reto.

Unopenable

Se nos entrega una imagen GIF aparentemente corrupta. Estudiando un poco la cabecera de los archivos GIF llegamos rápidamente a la conclusión de que faltan los cuatro primeros bytes del archivo.

Bytes originales
Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000  39 61 F4 01 F4 01 F4 00 00 00 00 00 3A 00 00 00  9aô.ô.ô.....:...
00000010  00 3A 3A 00 3A 66 00 00 66 00 3A 00 00 66 90 3A  .::.:f..f.:..f.:
00000020  00 90 3A 3A B6 66 00 B6 66 3A 90 90 3A DB 90 3A  ..::¶f.¶f:..:Û.:
00000030  FF B6 66 00 3A 90 66 3A 90 00 66 90 00 66 B6 3A  ÿ¶f.:.f:..f..f¶:

Después de insertar los bytes que faltan
Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000  47 49 46 38 39 61 F4 01 F4 01 F4 00 00 00 00 00  GIF89aô.ô.ô.....
00000010  3A 00 00 00 00 3A 3A 00 3A 66 00 00 66 00 3A 00  :....::.:f..f.:.
00000020  00 66 90 3A 00 90 3A 3A B6 66 00 B6 66 3A 90 90  .f.:..::¶f.¶f:..
00000030  3A DB 90 3A FF B6 66 00 3A 90 66 3A 90 00 66 90  :Û.:ÿ¶f.:.f:..f.

Una vez insertados los bytes podemos ver una animación que contiene una cadena de texto fácilmente reconocible como base64. La decodificamos y ya tenemos la solución.

Oreo

Mirando con un editor hexadecimal no encontramos nada excepto la frase This is not the flag you are looking for para intentar disuadirnos.

Cargamos la imagen en Aperi’Solve y enseguida nos llama la atención la sección Binwalk y un suculento Rar.

Descargamos el archivo Rar y al descomprimir nos encontramos con un archivo de texto con la misma frase desalentadora del inicio y una imagen JPG, esta vez con dos oreos. Inspeccionando la imagen damos con la solución.

Introducción

Continuamos con la segunda entrega de Cruehead. En este caso nos encontramos con un único campo de contraseña para introducir.

El algoritmo

Abrimos con Olly y vemos dos saltos. El primer Call realiza una serie de operaciones con el serial introducido y el segundo comprueba si el serial es correcto.

01

A continuación llegamos aquí:

00401365     /$  C605 18214000 00         MOV BYTE PTR DS:[402118],0
0040136C     |.  8B7424 04                MOV ESI,DWORD PTR SS:[ESP+4]
00401370     |.  56                       PUSH ESI
00401371     |>  8A06                     /MOV AL,BYTE PTR DS:[ESI]      ; <---
00401373     |.  84C0                     |TEST AL,AL
00401375     |.  74 19                    |JE SHORT CRACKME2.00401390
00401377     |.  FE05 18214000            |INC BYTE PTR DS:[402118]
0040137D     |.  3C 41                    |CMP AL,41                     ; 41 = A
0040137F     |.  72 04                    |JB SHORT CRACKME2.00401385    ; ya es mayúscula
00401381     |.  3C 5A                    |CMP AL,5A                     ; 5A = Z
00401383     |.  73 03                    |JNB SHORT CRACKME2.00401388   ; Convertir a mayúscula
00401385     |>  46                       |INC ESI
00401386     |.^ EB E9                    |JMP SHORT CRACKME2.00401371   ; Bucle -->
00401388     |>  E8 25000000              |CALL CRACKME2.004013B2
0040138D     |.  46                       |INC ESI
0040138E     |.^ EB E1                    \JMP SHORT CRACKME2.00401371
00401390     |>  5E                       POP ESI
00401391     |.  E8 03000000              CALL CRACKME2.00401399         ;Convertido a mayúsculas continuamos
00401396     |.  EB 00                    JMP SHORT CRACKME2.00401398
00401398     \>  C3                       RETN

Si nuestro serial contiene solo letras, las convierte a mayúsculas y seguimos aquí. En resumen hace XOR byte a byte entre nuestro serial y la frase «Messing_in_bytes»

00401399     /$  33DB                     XOR EBX,EBX
0040139B     |.  33FF                     XOR EDI,EDI
0040139D     |>  8A8F A3214000            /MOV CL,BYTE PTR DS:[EDI+4021A3]  ; Carga el primer byte de 4021A3
004013A3     |.  8A1E                     |MOV BL,BYTE PTR DS:[ESI]         ;
004013A5     |.  84DB                     |TEST BL,BL
004013A7     |.  74 08                    |JE SHORT CRACKME2.004013B1
004013A9     |.  32D9                     |XOR BL,CL                        ; byteSerial XOR Byte"Messing_in..."
004013AB     |.  881E                     |MOV BYTE PTR DS:[ESI],BL
004013AD     |.  46                       |INC ESI                          ;Siguiente byte de "Messing_in_bytes"
004013AE     |.  47                       |INC EDI                          ;Siguiente byte del serial
004013AF     |.^ EB EC                    \JMP SHORT CRACKME2.0040139D
004013B1     \>  C3                       RETN                              ;XOR finalizado volvemos

Estado del DUMP (memoria) antes del XOR y con nuestro serial (12345678) cargado.

00402118  00 47 6F 6F 64 20 77 6F 72 6B 21 00 47 72 65 61  .Good work!.Grea
00402128  74 20 77 6F 72 6B 2C 20 6D 61 74 65 21 0D 4E 6F  t work, mate!.No
00402138  77 20 74 72 79 20 74 68 65 20 6E 65 78 74 20 43  w try the next C
00402148  72 61 63 6B 4D 65 21 00 1F 2C 37 36 3B 3D 28 19  rackMe!.,76;=(
00402158  3D 26 1A 31 2D 3B 37 3E 4E 6F 20 6C 75 63 6B 21  =&1-;7>No luck!
00402168  00 4E 6F 20 6C 75 63 6B 20 74 68 65 72 65 2C 20  .No luck there,
00402178  6D 61 74 65 21 00 31 32 33 34 35 36 37 38 39 00  mate!.123456789.
00402188  00 00 00 00 00 00 00 00 00 00 54 72 79 20 74 6F  ..........Try to
00402198  20 63 72 61 63 6B 20 6D 65 21 00 4D 65 73 73 69   crack me!.Messi
004021A8  6E 67 5F 69 6E 5F 62 79 74 65 73 00 00 00 00 00  ng_in_bytes.....

Estado del DUMP después del XOR.

00402118  0A 47 6F 6F 64 20 77 6F 72 6B 21 00 47 72 65 61  .Good work!.Grea
00402128  74 20 77 6F 72 6B 2C 20 6D 61 74 65 21 0D 4E 6F  t work, mate!.No
00402138  77 20 74 72 79 20 74 68 65 20 6E 65 78 74 20 43  w try the next C
00402148  72 61 63 6B 4D 65 21 00 1F 2C 37 36 3B 3D 28 19  rackMe!.,76;=(
00402158  3D 26 1A 31 2D 3B 37 3E 4E 6F 20 6C 75 63 6B 21  =&1-;7>No luck!
00402168  00 4E 6F 20 6C 75 63 6B 20 74 68 65 72 65 2C 20  .No luck there,
00402178  6D 61 74 65 21 00 7C 57 40 47 5C 58 50 67 50 5E  mate!.|W@G\XPgP^
00402188  00 00 00 00 00 00 00 00 00 00 54 72 79 20 74 6F  ..........Try to
00402198  20 63 72 61 63 6B 20 6D 65 21 00 4D 65 73 73 69   crack me!.Messi
004021A8  6E 67 5F 69 6E 5F 62 79 74 65 73                 ng_in_bytes

A continuación comprueba nuestro serial XOReado con los bytes en memoria.

004013B8     /$  33FF                     XOR EDI,EDI
004013BA     |.  33C9                     XOR ECX,ECX
004013BC     |.  8A0D 18214000            MOV CL,BYTE PTR DS:[402118]                                
004013C2     |.  8B7424 04                MOV ESI,DWORD PTR SS:[ESP+4]                    ; APUNTA AL DUMP 40217E
004013C6     |.  BF 50214000              MOV EDI,CRACKME2.00402150                       ; APUNTA AL DUMP 402150
004013CB     |.  F3:A6                    REPE CMPS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]   ; VER NOTA**
004013CD     \.  C3                       RETN

Nota**

Si buscamos el comando REPE encontramos que si el flag Z = 1 el bucle se corta y que trabaja con bytes. El problema es que en Olly la instrucción REPE nosotros la vemos con un solo paso y nos puede pasar desapercibida.
En resumen, está comprobando los bytes de las direcciones 402150 (1F 2C 37 36 3B 3D 28 19 3D 26 1A 31 2D 3B 37 3E) con nuestro serial XOReado, 40217E en adelante, por lo que si hacemos XOR entre los bytes de 402150 y la frase «Messing_in_bytes» obtendremos la clave correcta.

M  e  s  s  i  n  g  _  i  n  _  b  y  t  e  s
4D 65 73 73 69 6E 67 5F 69 6E 5F 62 79 74 65 73
                                                XOR
1F 2C 37 36 3B 3D 28 19 3D 26 1A 31 2D 3B 37 3E
-----------------------------------------------
52 49 44 45 52 53 4F 46 54 48 45 53 54 4F 52 4D
R  I  D  E  R  S  O  F  T  H  E  S  T  O  R  M

Serial: RIDERSOFTHESTORM

Links


While Crackmes.de returns, I leave a couple of files for practice. Mientras vuelve Crackmes.de, os dejo un par de archivos para practicar.
Hace unos años cuando empecé a trastear con Android y animado por mi afición a la Ingeniería Inversa, decidí realizar
Introducción Activar un botón en memoria Activar el botón de forma permanente Serial Hardcodeado Links Introducción Este crackme pertenece a
Introducción Javascript 1 (Serial a la vista) Javascript 2 (La función charAt()) Javascript 3 (Input) Javascript 4 (Fuerza bruta manual) Javascript

El reto consiste en dos imágenes (v1.png y v2.png) que, a simple vista, parecen contener ruido aleatorio. Sin embargo, ambas forman parte de un sistema de criptografía visual en la que cada imagen contiene información parcial que no es interpretable por separado, pero que al combinarse correctamente revelan información oculta.

La trampa está en que la combinación no se hace con operaciones normales como suma, resta o multiplicación. El autor del reto espera que el jugador use una herramienta como StegSolve y pruebe distintas operaciones tipo XOR, AND o MUL hasta encontrar una transformación en la que uno de los métodos muestre algo significativo. El truco está en llegar a la conclusión de que una de las imágenes hay que invertirla antes de combinar ambas imágenes. Todo esto se puede hacer con StegSolve sin necesidad de utilizar ninguna herramienta adicional, pero voy a aprovechar para hacerlo con python y así de paso entendemos como realiza las operaciones StegSolve. En resumen, para resolver el reto basta con:

  1. Invertir (Colour Inversion XOR) una de las imágenes.
  2. Combinar ambas imágenes mediante Analyse > Combine images.
  3. Operación MUL del combinador.

La operación MUL no es una multiplicación normalizada, sino una multiplicación de enteros de 24 bits (0xRRGGBB) con overflow, algo que la mayoría de herramientas no replican correctamente.

¿Por qué aparece la solución con esa combinación

Las imágenes están preparadas para que ciertos bits de color en una imagen sean el complemento de los de la otra. Por tanto:

  • Si se muestran tal cual → parecen ruido
  • Si se combinan mediante XOR → parte de la estructura aparece, pero no se ve el resultado correcto
  • Si se combinan mediante MUL «normal» → tampoco aparece
  • Si se aplica la multiplicación bitwise exacta usada por StegSolve → se alinean las partes ocultas

La operación MUL de StegSolve no es una multiplicación de píxeles, es decir, no hace:

R = (R1 * R2) / 255

sino:

c1 = 0xRRGGBB  (pixel 1)
c2 = 0xRRGGBB  (pixel 2)
resultado = (c1 * c2) & 0xFFFFFF

Con todo esto claro, he preparado un script para combinar las imágenes de forma automática.

import os
import numpy as np
from PIL import Image

# =========================================================
# UTILIDADES
# =========================================================

def ensure_output():
    if not os.path.exists("output"):
        os.makedirs("output")

def load_rgb(path):
    img = Image.open(path).convert("RGB")
    return np.array(img, dtype=np.uint32)

def save_rgb(arr, name):
    Image.fromarray(arr.astype(np.uint8), "RGB").save(os.path.join("output", name))

def invert_xor(arr):
    """Colour Inversion (Xor) de StegSolve."""
    out = arr.copy()
    out[..., :3] = 255 - out[..., :3]
    return out

# =========================================================
# FUNCIONES DE COMBINER EXACTAS DE STEGSOLVE
# =========================================================

def to24(arr):
    """Convierte RGB → entero 0xRRGGBB."""
    return ((arr[..., 0] << 16) |
            (arr[..., 1] << 8)  |
             arr[..., 2])

def from24(c):
    """Convierte entero 0xRRGGBB → RGB."""
    R = (c >> 16) & 0xFF
    G = (c >> 8)  & 0xFF
    B = c & 0xFF
    return np.stack([R, G, B], axis=-1).astype(np.uint8)

# ------------------------------
# Funciones auxiliares
# ------------------------------

def comb_xor(c1, c2):
    return from24((c1 ^ c2) & 0xFFFFFF)

def comb_or(c1, c2):
    return from24((c1 | c2) & 0xFFFFFF)

def comb_and(c1, c2):
    return from24((c1 & c2) & 0xFFFFFF)

def comb_add(c1, c2):
    return from24((c1 + c2) & 0xFFFFFF)

def comb_add_sep(c1, c2):
    R = (((c1 >> 16) & 0xFF) + ((c2 >> 16) & 0xFF)) & 0xFF
    G = (((c1 >> 8)  & 0xFF) + ((c2 >> 8)  & 0xFF)) & 0xFF
    B = ((c1 & 0xFF) + (c2 & 0xFF)) & 0xFF
    return from24((R << 16) | (G << 8) | B)

def comb_sub(c1, c2):
    return from24((c1 - c2) & 0xFFFFFF)

def comb_sub_sep(c1, c2):
    R = (((c1 >> 16) & 0xFF) - ((c2 >> 16) & 0xFF)) & 0xFF
    G = (((c1 >> 8)  & 0xFF) - ((c2 >> 8)  & 0xFF)) & 0xFF
    B = ((c1 & 0xFF) - (c2 & 0xFF)) & 0xFF
    return from24((R << 16) | (G << 8) | B)

def comb_mul(c1, c2):
    """MUL EXACTO StegSolve"""
    return from24((c1 * c2) & 0xFFFFFF)

def comb_mul_sep(c1, c2):
    R = (((c1 >> 16) & 0xFF) * ((c2 >> 16) & 0xFF)) & 0xFF
    G = (((c1 >> 8)  & 0xFF) * ((c2 >> 8)  & 0xFF)) & 0xFF
    B = ((c1 & 0xFF) * (c2 & 0xFF)) & 0xFF
    return from24((R << 16) | (G << 8) | B)

def comb_lightest(c1, c2):
    """Máximo por canal"""
    R = np.maximum((c1 >> 16) & 0xFF, (c2 >> 16) & 0xFF)
    G = np.maximum((c1 >> 8)  & 0xFF, (c2 >> 8)  & 0xFF)
    B = np.maximum(c1 & 0xFF, c2 & 0xFF)
    return from24((R << 16) | (G << 8) | B)

def comb_darkest(c1, c2):
    """Mínimo por canal"""
    R = np.minimum((c1 >> 16) & 0xFF, (c2 >> 16) & 0xFF)
    G = np.minimum((c1 >> 8)  & 0xFF, (c2 >> 8)  & 0xFF)
    B = np.minimum(c1 & 0xFF, c2 & 0xFF)
    return from24((R << 16) | (G << 8) | B)

# Lista de transformaciones
TRANSFORMS = {
    "xor": comb_xor,
    "or": comb_or,
    "and": comb_and,
    "add": comb_add,
    "add_sep": comb_add_sep,
    "sub": comb_sub,
    "sub_sep": comb_sub_sep,
    "mul": comb_mul,
    "mul_sep": comb_mul_sep,
    "lightest": comb_lightest,
    "darkest": comb_darkest,
}

# =========================================================
# GENERACIÓN DE TODAS LAS COMBINACIONES
# =========================================================

def generate_all(imA, imB, labelA, labelB):
    print(f"Generando combinaciones: {labelA} vs {labelB}")

    c1 = to24(imA)
    c2 = to24(imB)

    for name, fun in TRANSFORMS.items():
        out = fun(c1, c2)
        save_rgb(out, f"{labelA}__{labelB}__{name}.png")

    print(f"{labelA}-{labelB} completado.")

# =========================================================
# MAIN
# =========================================================

ensure_output()

print("Cargando imágenes v1.png y v2.png...")
im1 = load_rgb("v1.png")
im2 = load_rgb("v2.png")

print("Generando invertidas estilo StegSolve...")
im1_x = invert_xor(im1)
im2_x = invert_xor(im2)

save_rgb(im1_x, "v1_xored.png")
save_rgb(im2_x, "v2_xored.png")

# Generar las 52 combinaciones:
generate_all(im1,   im2,   "v1",   "v2")
generate_all(im1_x, im2,   "v1x",  "v2")
generate_all(im1,   im2_x, "v1",   "v2x")
generate_all(im1_x, im2_x, "v1x",  "v2x")

print("\nResultados en carpeta ./output/")

A continuación os muestro parte de las imágenes generadas por el script. El secreto oculto era un código QR que nos da la solución al reto.

Intro

Hoy tenemos aquí un crackme del año 2000 empacado y con un algoritmo aunque no muy complicado largo de tracear. Está empacado varias veces, algo poco habitual pero recordemos que es un crackme antiguo. Tras el empacado se encuentra Delphi.

Herramientas

  • PEiD o similar.
  • OllyDbg con plugin OllyDumpEX.
  • Import REConstructor.
  • LordPE (Opcional).

Desempacado multicapa

VideoTutorial del desempacado disponible

Si lo pasamos por PEiD nos dice que Aspack 2.1, Exeinfo no está muy seguro y RDG packer detector en el escaneo avanzado nos encuentra Aspack, UPX y PE-Pack.

En principio nos enfrentamos a Aspack 2.1, abrimos el crackme con OllyDbg y vemos el típico PUSHAD.

01

Pulsamos F8 (Step Over) y a continuación click derecho sobre el registro ESP y Follow in DUMP.

02

Seleccionamos los primeros cuatro bytes útiles del dump y les ponemos un Breakpoint de Hardware, Access y Dword.

04

05

Pulsamos F9 y nos para aquí:

06

Ya tenemos a Aspack contra las cuerdas, pulsamos F8 hasta después del RETN para llegar al OEP (Original Entry Point).

07

Pero en el supuesto OEP vemos otro PUSHAD por lo que esto no ha terminado. Investigando un poco más vemos que la segunda capa se corresponde con PE-PACK 1.0. La estrategia a seguir es la misma, como ya tenemos el breakpoint puesto pulsamos F9 y nos para aquí:

08

Pulsamos F8 y nos llega a otro PUSHAD. Esta vez es UPX.

09

Pulsamos de nuevo F9 y paramos aquí:

10

Pulsamos F8 y esta vez si llegamos al OEP (4576EC).

11

A continuación vamos a dumpear el archivo en memoria. Vamos a plugins > OllyDumpEX, pulsamos sobre «Get EIP as OEP» y finalmente sobre «Dump«.

13

Minimizamos Olly (no cerrar), abrimos el programa ImportREC y seleccionamos el ejecutable «Sweeet1.exe».

14

Pegamos el OEP original (576EC), le damos a AutoSearch y a continuación a Get Imports.

15

Finalmente pulsamos Fix Dump y elegimos el ejecutable dumpeado anteriormente. Esto nos genera un ejecutable dumpeado que es el ejecutable válido.

Ahora PEiD nos dice que estamos tratando con un crackme hecho en Delphi.

Hemos pasado por tres capas de compresión casi idénticas, vamos a analizarlas.

triplecompresion

El algoritmo

Cuando abrimos el crackme nos fijamos en que genera una key. Esta key se genera en función del disco duro desde el que se ejecuta.

Como la secuencia de generación del serial válido es larga os pongo lo más importante muy resumido y con ejemplos como siempre.

El serial es del siguiente tipo:

Serial = 1ªParte-2ªParte-3ªParte
Serial = 0000XXXXX-SerialCalculado-xxxx000Z8

Comprobación del tamaño del nombre
----------------------------------
........
00456EAA    E8 01CCFAFF     CALL sweeet1_Fix_dump_rebuilded.00403AB0
00456EAF    83F8 04         CMP EAX,4    ------------------------------------------------; Nombre >=4                    
00456EB2    7D 13           JGE SHORT sweeet1_Fix_dump_rebuilded.00456EC7
00456EB4    A1 08954500     MOV EAX,DWORD PTR DS:[sweeet1_Fix_dump_rebuilded.459508]
00456EB9    8B00            MOV EAX,DWORD PTR DS:[EAX]
00456EBB    E8 0869FEFF     CALL sweeet1_Fix_dump_rebuilded.0043D7C8
00456EC0    BB 01000000     MOV EBX,1
00456EC5    EB 15           JMP SHORT sweeet1_Fix_dump_rebuilded.00456EDC
00456EC7    83FB 25         CMP EBX,25                                                                                                
00456ECA    7D 0E           JGE SHORT sweeet1_Fix_dump_rebuilded.00456EDA
00456ECC    83C3 32         ADD EBX,32
00456ECF    83C3 1E         ADD EBX,1E
00456ED2    83EB 4F         SUB EBX,4F
00456ED5    83FB 25         CMP EBX,25 -----------------------------------------------; Nombre <=25
00456ED8  ^ 7C F2           JL SHORT sweeet1_Fix_dump_rebuilded.00456ECC
00456EDA    33DB            XOR EBX,EBX
00456EDC    33C0            XOR EAX,EAX
........

1ºBucle - Nuestro nombre (A)
----------------------------
........
00456F55    BE 1B000000     MOV ESI,1B -------------------------------; ESI = 1B
00456F5A    EB 21           JMP SHORT sweeet1_dump_.00456F7D
00456F5C    8D55 D4         LEA EDX,[EBP-2C]
00456F5F    A1 34A84500     MOV EAX,DWORD PTR DS:[sweeet1_dump_.45A8
00456F64    8B80 C4020000   MOV EAX,DWORD PTR DS:[EAX+2C4]
00456F6A    E8 B5DAFCFF     CALL sweeet1_dump_.00424A24
00456F6F    8B45 D4         MOV EAX,DWORD PTR SS:[EBP-2C]
00456F72    0FB64418 FF     MOVZX EAX,BYTE PTR DS:[EBX+EAX-1]---------; Coje digito
00456F77    03F0            ADD ESI,EAX ------------------------------; digito + ESI
00456F79    43              INC EBX
00456F7A    0FAFF3          IMUL ESI,EBX  ----------------------------; multiplica por i (bucle)
00456F7D    8D55 D4         LEA EDX,[EBP-2C]
........

2ºBucle - La key (B)
--------------------
........
00456F9C         |.  BF 1A000000            MOV EDI,1A -------------------------;EDI = 1A
00456FA1         |.  BB 01000000            MOV EBX,1
00456FA6         |.  EB 1E                  JMP SHORT sweeet1_.00456FC6
00456FA8         |>  8D55 D4                /LEA EDX,[LOCAL.11]
00456FAB         |.  A1 34A84500            |MOV EAX,DWORD PTR DS:[45A834]
00456FB0         |.  8B80 D0020000          |MOV EAX,DWORD PTR DS:[EAX+2D0]
00456FB6         |.  E8 69DAFCFF            |CALL sweeet1_.00424A24
00456FBB         |.  8B45 D4                |MOV EAX,[LOCAL.11]
00456FBE         |.  0FB64418 FF            |MOVZX EAX,BYTE PTR DS:[EAX+EBX-1]--;Coje dígito
00456FC3         |.  03F8                   |ADD EDI,EAX -----------------------;Suma dígito a dígito
00456FC5         |.  43                     |INC EBX
00456FC6         |>  8D55 D4                 LEA EDX,[LOCAL.11]
00456FC9         |.  A1 34A84500            |MOV EAX,DWORD PTR DS:[45A834]
00456FCE         |.  8B80 D0020000          |MOV EAX,DWORD PTR DS:[EAX+2D0]
00456FD4         |.  E8 4BDAFCFF            |CALL sweeet1_.00424A24
00456FD9         |.  8B45 D4                |MOV EAX,[LOCAL.11]
00456FDC         |.  E8 CFCAFAFF            |CALL sweeet1_.00403AB0
00456FE1         |.  3BD8                   |CMP EBX,EAX
00456FE3         |.^ 7C C3                  \JL SHORT sweeet1_.00456FA8
........

Generación del serial central
-----------------------------
........
00456FE5         |.  B9 01000000            MOV ECX,1
00456FEA         |.  BB 01000000            MOV EBX,1
00456FEF         |.  8BC7                   MOV EAX,EDI
00456FF1         |.  F7EE                   IMUL ESI ----------; C = A * B
00456FF3         |.  99                     CDQ
........
00456FFD         |.  2345 E8                AND EAX,[LOCAL.6]--; D = A and C
00457000         |.  2355 EC                AND EDX,[LOCAL.5]
00457003         |.  8945 E8                MOV [LOCAL.6],EAX
00457006         |.  8955 EC                MOV [LOCAL.5],EDX
........
00457032         |.  8BC7                   MOV EAX,EDI
00457034         |.  99                     CDQ
00457035         |.  0345 E8                ADD EAX,[LOCAL.6]--; E = D + B
00457038         |.  1355 EC                ADC EDX,[LOCAL.5]
0045703B         |.  8945 E0                MOV [LOCAL.8],EAX
0045703E         |.  8955 E4                MOV [LOCAL.7],EDX
........
00405732           8B4424 10                MOV EAX,DWORD PTR SS:[ESP+10]
00405736           F72424                   MUL DWORD PTR SS:[ESP]
00405739           8BC8                     MOV ECX,EAX
0040573B           8B4424 04                MOV EAX,DWORD PTR SS:[ESP+4]
0040573F           F76424 0C                MUL DWORD PTR SS:[ESP+C]------; F = B * D
00405743           03C8                     ADD ECX,EAX
00405745           8B0424                   MOV EAX,DWORD PTR SS:[ESP]
00405748           F76424 0C                MUL DWORD PTR SS:[ESP+C]------; G = A * F
........
0045705E         |.  0B0424                 OR EAX,DWORD PTR SS:[ESP]-----; Serial central = G or A
........
00457077         |.  E8 FC07FBFF            CALL sweeet1_.00407878
0045707C         |.  8B45 F8                MOV EAX,[LOCAL.2]-------------; EAX = Serial central
........
004570D1         |.  E8 A207FBFF            CALL sweeet1_.00407878
004570D6         |.  8B45 D0                MOV EAX,[LOCAL.12]
004570D9         |.  E8 D2C9FAFF            CALL sweeet1_.00403AB0--------; Obtiene longitud del serial central en hexa
004570DE         |.  8BD8                   MOV EBX,EAX
........
004570D1         |.  E8 A207FBFF            CALL sweeet1_.00407878--------;*Nota

*Nota:
A partir de aquí genera la primera y tercera parte del serial de la siguiente manera:

Serial = 1ªParte-2ªParte-3ªParte
Serial = 0000XXXXX-SerialCalculado-xxxx000Z8

1ºParte = 3ºdigSerial+1ºdigSerial+2ºdigSerial+3ºdigSerial+4ºdigNombreMayu+2ºdigNombreMayu+5ºdigNombreMayu+1ºdigNombreMayu+3ºdigNombreMayu
3ºParte = 3ºdigNombreMin+1ºdigNombreMin+4ºdigNombreMin+2ºdigNombreMin+Tamaño Serial_2ªParte en Hex y de tres dígitos+Z8

 Ejemplo:

Nombre: deurus
Key:    C0C0A000
Serial: 6906REUDU-906297047918-udre00CZ8

1) A = 23A2A (Con nuestro nombre empezando por 1B se lo suma a ESI y se lo multiplica por i (la que toque cada vez))
2) B = 1A1 (Con nuestra Key empezando por 1A va sumando los digitos)
3) C = B * A = 3A0BE6A
4) D = A and C = 3A2A
5) E = D + B = 3BCB (Offset 457035)
6) F = B * D = 5EBE6A (Offset 48704A)
7) G = A * F = D303834164
8) Serial = G or A (Serial = D303834164 or 23A2A = D303837B6E (906297047918))

 A tener en cuenta:

  • 1ªParte del serial siempre mayúsculas.
  • 2ªParte siempre numérico. Usa el registro de 64 bits (Qword) con signo.**Nota
  • 3ªParte siempre minúsculas.

**Nota:

Nombre: deurus.info
Key:    E09FF000
Serial: 9169REUDU-16918236-udre008Z8

Fíjate que: -16918236 = FFFFFFFFFEFDD924

Nombre: deurus
Key:    C0C0A000
Serial: 6906REUDU-906297047918-udre00CZ8

906297047918 = 000000D303837B6E

Links


Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
Introducción Javascript 1 (Serial a la vista) Javascript 2 (La función charAt()) Javascript 3 (Input) Javascript 4 (Fuerza bruta manual) Javascript
Intro Análisis Keygen Links Intro El crackme que analizamos hoy está hecho en ensamblador y si bien su dificultad es
Intro Hoy tenemos un crackme realizado en Visual C++ 6. Es el típico serial asociado a un nombre. El algoritmo

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Introducción

Realistic Challenge 4: There is a site offering protection against hackers to website owners, the service is far too overpriced and the people running the service don’t know anything about security. Look around their site, and see how protected it is.

Hay un sitio que ofrece protección contra los hackers. El servicio tiene un precio abusivo, echa un vistazo a la web y evalúa su pretección.

Analizando a la víctima

Vemos un escueto menú pero con cosas interesantes.

Pinchamos sobre «Testimonials» y a continuación en «Customer 1»

Vemos que hay solo 3 «customers», vamos a introducir manualmente un 5 haber que pasa.

Ok, nos genera el siguiente error.

Probamos ahora con un enlace interno que nos genera el siguiente error.

http://www.thisislegal.com/newr/src/read.php?customer=../orders.php

Nos llama la atención «../beqref.cuc«. Parece una encriptación simple, probemos a poner eso mismo en el navegador.

http://www.thisislegal.com/newr/src/read.php?customer=../beqref.cuc

 

Nuestras sospechas son acertadas, ahora el error muestra esto.

Explotando a la víctima

Probamos varias cosas y al final conseguimos algo relevante con «order2.php«.

http://www.thisislegal.com/newr/src/read.php?customer=../beqre2.cuc
Tenemos un directorio interesante «secure«, si entramos en el nos salta un Login típico protegido con «.htaccess«. Lo lógico a continuación es hacernos con el archivo «.htpasswd«
http://www.thisislegal.com/newr/src/read.php?customer=../frpher/.ugcnffjq

 

Una vez obtenido el contenido del archivo «.htpasswd» lo siguiente es crackear el password con John the Ripper. Nos logueamos en la carpeta secure y reto superado.

Links

Introducción

Los retos de Javascript son los retos más sencillos que podemos encontrar. Muchas veces solamente mirando el código fuente obtenemos la respuesta. Suponen una mala implementación de seguridad debido a que el código se ejecuta del lado del cliente, por lo que el código fuente es accesible y por lo tanto, javascript no garantiza seguridad alguna. En estos cinco casos haremos un recorrido por lo más básico, cinco retos fáciles de superar y que nos proporcionan los conocimientos base para Javascript. Dicho esto os puedo asegurar que en ocasiones he encontrado retos javascript realmente complicados que requieren de horas descifrarlos y en los que es fácil tirar la toalla.

Cuando el reto lo requiera, es buena idea utilizar un compilador online para obtener de forma rápida el valor de una variable o realizar una prueba concreta. Yo utilizo Jsfiddle para realizar pruebas pero existen muchos más.

Javascript 1

Este primer reto es lo básico, en el código fuente se pueden apreciar directamente el usuario y la clave.

<script language=JavaScript>
function Verify(name,pass)
{
if (name=="admin" & pass=="3***3")
	{
	location.href = name + pass + '.htm';
	}
else 
	{
	alert("Si ya fallamos el primero...");
	};
}
</script>

Javascript 2

Este segundo reto es bastante sencillo pero ya te obliga a conocer la función charAt() de Javascript. Dicha función lo que hace es coger el caracter indicado mediante un índice que comienza en cero. Por ejemplo si nombre = deurus y hacemos letra = nombre.charAt(3), estariámos extrayendo la cuarta letra, es decir, la letra r de la variable nombre.

function Verify(name,pass)
{
var name1 = "CrawlinG", pass1 = "capriccio"
	if (name==name1 & pass==pass1)
	{
	location.href = name + ".htm";
	}
else 
	{
	var x =  name1.charAt(7) + pass1.charAt(3)+ name1.charAt(2) + pass1.charAt(5) +  name1.charAt(5) + pass1.charAt(1);x = x.toLowerCase();
	var y =  name.charAt(3) + name.charAt(1) + pass.charAt(1)+ pass.charAt(6) +  pass.charAt(7) + name.charAt(2);var x1 = "des" + y;
	if (x==y){location.href = x1 + ".htm"}else{alert("Esto no va bien");location.href = "js2.htm"}
	}
}

Lo interesante está en la formación de las variables x e y. La variable x se forma de las variables name1 y pass1, formando la palabra gracia. Por otro lado, la variable y se forma con el nombre y clave que introduzcamos nosotros. Vemos que la variable x e y deben ser iguales, por lo tanto debemos construir un nombre (name) y una clave (pass) que cumpla con lo siguiente:

  • 4ª letra del nombre = 1ª letra de la palabra «gracia»
  • 2ª letra del nombre = 2ª letra de la palabra «gracia»
  • 2ª letra de la clave = 3ª letra de la palabra «gracia»
  • 7ª letra de la clave = 4ª letra de la palabra «gracia»
  • 8ª letra de la clave = 5ª letra de la palabra «graci
  • 3ª letra del nombre = 6ª letra de la palabra «gracia«

Como véis simplemente se trata de interpretar correctamente la función charAt() y de fijarse bien en los nombres de las variables.

Javascript 3

Este reto nos muestra diálogo donde nos pide la contraseña para validar el reto. Al fallar  o cancelar vuelve al índice para no dejarnos ver el código fuente. Aquí se pueden seguir varios caminos como bloquear el uso de javascript en el navegador o instalar un plugin en chrome o firefox para habilitar/deshabilitar de forma rápida el uso de javascript.

Una vez deshabilitado javascript vemos lo siguiente:

<script language="JavaScript" src="js3.gif" type=text/javascript>
<!--
function verify()
{
var pass="thebest";
var password=prompt("Introduce el password para superar el nivel","");
	if (password==pass)
		{
		location.href = pass + ".htm";
		}
	else
		{
		alert("No vamos bien...");
		location.href = "index.htm";
		}
}
//-->
</script>

Aquí el truco es darse cuenta que el código que se está ejecutando esta en «js3.gif» y no el código que nos muestra como válida la clave thebest. Si descargamos el archivo js3.gif y lo abrimos con un archivo de texto vemos nuestra querida clave.

function verify()
{
var pass="mo****ver";
var password=prompt("Introduce el password para superar el nivel","");
	if (password==pass)
		{
		location.href = pass + ".htm";
		}
	else
		{
		alert("No vamos bien...");
		location.href = "index.htm";
		}
}

Javascript 4

En este reto ya entramos con que la clave no es reversible y la debemos obtener por fuerza bruta. En este reto utiliza una nueva función como charCodeAt() que lo que hace es obtener el valor ascii del caracter indicado.

function Verify(pass1)
{
var cont1= 2, cont2= 6
var suma1 = 0, suma2 = 0
var pass2 = "FDRLF"
for(i = 0; i < pass1.length; i++) 
{
suma1 += (pass1.charCodeAt(i) * cont1);
cont1++
}
for(i = 0; i < pass2.length; i++) 
{
suma2 += (pass2.charCodeAt(i) * cont2);
cont2++
}
if (suma1==suma2)
{
window.location=suma1+".htm";
}
else
{
alert ("Algo no va bien...");
}
}

Vemos dos bucles en los que se calculan sendos valores suma que finalmente se comparan. la variable suma1 se calcula mediante nuestro password y la variable suma2 la obtiene de la palabra «FDRLF». Con el script que os muestro a continuación obtenemos que usando como clave deurus, suma1 = 3048 y suma2 = 2936. Nuestro punto de referencia es suma2 = 2936, de modo que vamos alterando con paciencia la variable pass1 obteniendo valores cercanos a 2936. Por ejemplo «deurua» nos da suma1 = 2922, un valor bastante cercano.

var pass1 = "deurus";
var cont1= 2, cont2= 6
var suma1 = 0, suma2 = 0
var pass2 = "FDRLF"
for(i = 0; i < pass1.length; i++) 
{
suma1 += (pass1.charCodeAt(i) * cont1);
cont1++
}
for(i = 0; i < pass2.length; i++) 
{
suma2 += (pass2.charCodeAt(i) * cont2);
cont2++
}
alert (suma1);
alert (suma2);

La solución a este reto es múltiple. Dos claves válidas son por ejemplo dfurqfzwfabz.

Javascript 5

Este último reto es similar al anterior pero ya nos obliga a crearnos una pequeña herramienta que nos busque el serial válido.

function Verify(pass)
{
var suma=0
var cadena = "abcdefghijklmnopqrstuvwxyz"
for (var i = 0; i < pass.length; i++) 
	{
	var letra = pass.charAt(i)
	var valor = (cadena.indexOf(letra))
	valor++
	suma *= 26
	suma += valor
	}
if (suma==6030912063)
	{
	window.location=pass+".htm";
	}
else
	{
	alert ("Algo no va bien...");
	}
}

Para esta ocasión utiliza una nueva función llamada indexOf() que lo que hace es devolver un número entero que representa la posición en la que se encuentra el parámetro pasado a la función. Por ejemplo, si tengo variable = deurus y realizo posición = variable.indexOf(«s»), obtengo como resultado 5 (se empieza a contar desde cero).

Las operaciones que realiza el bucle son las siguientes:

  • Coge las letras del nombre una a una.
  • valor = posición de nuestra letra dentro de la variable de texto llamada cadena.
  • valor = valor + 1.
  • Multiplica la variable suma por 26.
  • Suma = suma + valor.

Aunque el proceso de recuperación de esta clave es algo más largo, podemos acortarlo introduciendo una clave de inicio de fuerza bruta próxima al objetivo. Al ser una función bastante lineal podemos rápidamente mediante pruebas con nuestro código de fuerza bruta o con un compilador online, establecer que la clave tendrá 7 caracteres e incluso que para ahorrar tiempo podemos aproximar la clave para que su valor suma esté cercano al valor suma buscado 6030912063.

Realizando pruebas obtenemos:

  • Clave = aaaaaaa -> suma = 321272407
  • Clave = zzzzzzz -> suma = 8353082582
  • Clave = smaaaaa -> suma = 6024332887
  • Clave = smkkkkk -> suma = 6029085437

Como vemos, la clave smkkkkk ya está bastante próxima al objetivo y será un buen punto para lanzar la fuerza bruta.

Os dejo el código de fuerza bruta en .Net

Module Module1
    Sub Main()
inicio:
        Console.WriteLine("-------------------------")
        Console.WriteLine("Modo [1] Prueba password")
        Console.WriteLine("Modo [2] Fuerza bruta")
        Console.WriteLine("-------------------------")
        Dim modo = Console.ReadLine()
        '
        If modo = 2 Then
            Console.WriteLine("¿Password para comenzar?")
            Dim pass = Console.ReadLine()
inicio2:
            Dim cadena As String = "abcdefghijklmnopqrstuvwxyz"
            Dim valor As Integer = 0
            Dim suma As Long = 0
            Dim letra As String
            For i = 0 To pass.Length - 1
                letra = Mid(pass, i + 1, 1)
                valor = cadena.IndexOf(letra)
                valor += 1
                suma *= 26
                suma += valor
            Next
            Console.WriteLine("Password: " & pass & " - Sum: " & suma.ToString)
            pass = IncrementString(pass)
            If suma = 6030912063 Then
                MsgBox("Password is " & pass)
            Else
                If pass = "aaaaaaaa" Then
                    Console.WriteLine("pass not found")
                    Console.ReadKey()
                Else
                    GoTo inicio2
                End If
            End If
        End If
        '------------------------------------------------
        If modo = 1 Then
            Console.WriteLine("Password:")
            Dim pass = Console.ReadLine()
            Dim cadena As String = "abcdefghijklmnopqrstuvwxyz"
            Dim valor As Integer = 0
            Dim suma As Long = 0
            Dim letra As String
            For i = 0 To pass.Length - 1
                letra = Mid(pass, i + 1, 1)
                valor = cadena.IndexOf(letra)
                valor += 1
                suma *= 26
                suma += valor
            Next
            Console.WriteLine("Password: " & pass & " - Sum: " & suma.ToString)
            Console.WriteLine(".......")
            Console.WriteLine("Good = 6030912063")
            Console.WriteLine("Suma = " & suma.ToString)
            Console.ReadKey()
            Console.Clear()
            GoTo inicio
        End If
    End Sub
    Function IncrementString(ByVal strString As String) As String
        '
        ' Increments a string counter
        ' e.g.  "a" -> "b"
        '       "az" -> "ba"
        '       "zzz" -> "aaaa"
        '
        ' strString is the string to increment, assumed to be lower-case alphabetic
        ' Return value is the incremented string
        '
        Dim lngLenString As Long
        Dim strChar As String
        Dim lngI As Long

        lngLenString = Len(strString)
        ' Start at far right
        For lngI = lngLenString To 0 Step -1
            ' If we reach the far left then add an A and exit
            If lngI = 0 Then
                strString = "a" & strString
                Exit For
            End If
            ' Consider next character
            strChar = Mid(strString, lngI, 1)
            If strChar = "z" Then
                ' If we find Z then increment this to A
                ' and increment the character after this (in next loop iteration)
                strString = Left$(strString, lngI - 1) & "a" & Mid(strString, lngI + 1, lngLenString)
            Else
                ' Increment this non-Z and exit
                strString = Left$(strString, lngI - 1) & Chr(Asc(strChar) + 1) & Mid(strString, lngI + 1, lngLenString)
                Exit For
            End If
        Next lngI
        IncrementString = strString
        Exit Function

    End Function
End Module

Enlaces

Intro

El crackme que analizamos hoy está hecho en ensamblador y si bien su dificultad es baja, la creación del keygen es un poco liosa. Al keygen que veremos más adelante, le he dado cierta aleatoriedad para que quede más elegante.

El crackme comprueba el serial en función de un identificador de 4 dígitos que el mismo crackme genera.

Análisis

Coje nuestro serial mediante la función GetDlgItemTextA.

004010D3  |.  68 FF000000   PUSH 0FF                                 ; /MaxCount = 255.
004010D8  |.  68 40324000   PUSH OFFSET 00403240                     ; |String
004010DD  |.  68 EC030000   PUSH 3EC                                 ; |ItemID = 1004.
004010E2  |.  FF75 08       PUSH DWORD PTR SS:[ARG.1]                ; |hDialog => [ARG.1]
004010E5  |.  E8 6E010000   CALL <JMP.&user32.GetDlgItemTextA>       ; \USER32.GetDlgItemTextA
004010EA  |.  68 40324000   PUSH OFFSET 00403240                     ; /String
004010EF  |.  E8 52010000   CALL <JMP.&kernel32.lstrlenA>            ; \KERNEL32.lstrlen
004010F4  |.  A3 47334000   MOV DWORD PTR DS:[403347],EAX
004010F9  |.  33DB          XOR EBX,EBX
004010FB  |.  33C0          XOR EAX,EAX
004010FD  |.  EB 54         JMP SHORT 00401153

Comprueba que nuestro serial esté formado por números (30h – 39h), letras de la A a la F (41h – 46h) y el guión (2Dh), es decir, el alfabeto hexadecimal más el guión. Si hay algún dígito indeseado nos tira fuera.

004010FF  |>  8A83 40324000 /MOV AL,BYTE PTR DS:[EBX+403240]
00401105  |.  3C 2D         |CMP AL,2D
00401107  |.  74 40         |JE SHORT 00401149
00401109  |.  3C 30         |CMP AL,30
0040110B  |.  74 3C         |JE SHORT 00401149
0040110D  |.  3C 31         |CMP AL,31
0040110F  |.  74 38         |JE SHORT 00401149
00401111  |.  3C 32         |CMP AL,32
00401113  |.  74 34         |JE SHORT 00401149
00401115  |.  3C 33         |CMP AL,33
00401117  |.  74 30         |JE SHORT 00401149
00401119  |.  3C 34         |CMP AL,34
0040111B  |.  74 2C         |JE SHORT 00401149
0040111D  |.  3C 35         |CMP AL,35
0040111F  |.  74 28         |JE SHORT 00401149
00401121  |.  3C 36         |CMP AL,36
00401123  |.  74 24         |JE SHORT 00401149
00401125  |.  3C 37         |CMP AL,37
00401127  |.  74 20         |JE SHORT 00401149
00401129  |.  3C 38         |CMP AL,38
0040112B  |.  74 1C         |JE SHORT 00401149
0040112D  |.  3C 39         |CMP AL,39
0040112F  |.  74 18         |JE SHORT 00401149
00401131  |.  3C 41         |CMP AL,41
00401133  |.  74 14         |JE SHORT 00401149
00401135  |.  3C 42         |CMP AL,42
00401137  |.  74 10         |JE SHORT 00401149
00401139  |.  3C 43         |CMP AL,43
0040113B  |.  74 0C         |JE SHORT 00401149
0040113D  |.  3C 44         |CMP AL,44
0040113F  |.  74 08         |JE SHORT 00401149
00401141  |.  3C 45         |CMP AL,45
00401143  |.  74 04         |JE SHORT 00401149
00401145  |.  3C 46         |CMP AL,46
00401147  |.  75 07         |JNE SHORT 00401150
00401149  |>  8305 4B334000 |ADD DWORD PTR DS:[40334B],1
00401150  |>  83C3 01       |ADD EBX,1
00401153  |>  3B1D 47334000 |CMP EBX,DWORD PTR DS:[403347]
00401159  |.^ 76 A4         \JBE SHORT 004010FF
0040115B  |. A1 47334000 MOV EAX,DWORD PTR DS:[403347]
00401160  |. 3905 4B334000 CMP DWORD PTR DS:[40334B],EAX     ; si no coincide el tamaño del serial con el
00401166  |. 0F85 94000000 JNE 00401200                      ; contador nos tira fuera

La comprobación del serial la realiza sumando el valor ascii del primer dígito al valor ascii del tercero y sucesivos y a continuación restando la suma anterior al ID. Cuando finalice la comprobación de todos los dígitos del serial, el restador tiene que ser cero, de lo contrario nos tira fuera. Si el ID es cero también nos tira fuera.

Ejemplo (base 10)para ID = 4011 y SERIAL: 1-23456

  • Valores del serial: 1(49) -(no se usa) 2(50) 3(51) 4(52) 5(53) 6(54)
  • 1º + 3º: 49 + 50 = 99
  • 4011 – 99 = 3912
  • 1º + 4º: 49 + 51 = 100
  • 3912 – 100 = 3812
  • 1º + 5º: 49 + 52 = 101
  • 3812 – 101 = 3711
  • 1º + 6º: 49 + 53 = 102
  • 3711 – 102 = 3609
  • 1º + 7º: 49 + 54 = 103
  • 3609 – 103 = 3506
  • ¿3506 = 0?
0040116C  |.  33C0          XOR EAX,EAX
0040116E  |.  BB 02000000   MOV EBX,2
00401173  |.  A0 40324000   MOV AL,BYTE PTR DS:[403240]
00401178  |.  A3 43334000   MOV DWORD PTR DS:[403343],EAX
0040117D  |.  EB 13         JMP SHORT 00401192
0040117F  |>  8A83 40324000 /MOV AL,BYTE PTR DS:[EBX+403240]         ; Coje el dígito correspondiente
00401185  |.  0305 43334000 |ADD EAX,DWORD PTR DS:[403343]           ; 1ºdig + dig
0040118B  |.  2905 4F334000 |SUB DWORD PTR DS:[40334F],EAX           ; ID - (1ºdig + dig)
00401191  |.  43            |INC EBX
00401192  |>  3B1D 47334000 |CMP EBX,DWORD PTR DS:[403347]
00401198  |.^ 72 E5         \JB SHORT 0040117F
0040119A  |.  833D 4F334000 CMP DWORD PTR DS:[40334F],0              ; CHECK RESTADOR SEA = 0
004011A1  |.  75 49         JNE SHORT 004011EC
004011A3  |.  833D 3F334000 CMP DWORD PTR DS:[40333F],0              ; CHECK ID <> 0
004011AA  |.  74 40         JE SHORT 004011EC
004011AC  |.  FF35 3F334000 PUSH DWORD PTR DS:[40333F]               ; /<%d> = 0
004011B2  |.  68 00304000   PUSH OFFSET 00403000                     ; |Format = "REGISTRADO CON ID:%d"
004011B7  |.  68 40324000   PUSH OFFSET 00403240                     ; |Buf
004011BC  |.  E8 A9000000   CALL <JMP.&user32.wsprintfA>             ; \USER32.wsprintfA

Como veis, el resultado de ir restando todos los dígitos de nuestro serial con la ID debe ser cero para que el serial sea correcto.

Keygen

Lo primero que se me ocurre para obtener una solución directa es buscar una combinación de dígito + dígito que sea múltiplo del ID. Para ello podemos usar la función módulo. La función módulo lo que hace es darnos el resto de la división de dos números, de modo que si el resto es cero los números son múltiplos. Para ello debemos cruzar todos los números y letras hasta encontrar los dígitos múltiplos del ID. Un serial de este primer tipo quedaría algo así como 1-FFFFFFFFFFFFFFFFFF ya que como el primer dígito es fijo el otro se repetirá tanta veces como sea necesario para hacer que el ID sea cero.

Con nuestro reducido alfabeto, cabe la posibilidad de que no encontremos una combinación válida, por lo que tendremos que pensar en un plan B. El plan B que se me ocurre a mi es intentar forzar el plan A restando caracteres aleatorios al ID y volviendo a comprobar si encontramos múltiplos del nuevo ID. Un serial de este tipo quedaría más elegante, por ejemplo 3-A6D53B628BBBBB.

Os dejo unos cuantos números de serie.

  • Tipo A
    • ID: 1111 SERIAL: 0-55555555555
    • ID: 2500 SERIAL: 0-4444444444444444444444444
    • ID: 4982 SERIAL: 1-99999999999999999999999999999999999999999999999
    • ID: 4992 SERIAL: 0-0000000000000000000000000000000000000000000000000000
  • Tipo B
    • ID: 1112 SERIAL: 9-19247C5555
    • ID: 2499 SERIAL: A-C5ADC2233333333333333
    • ID: 4981 SERIAL: 7-C6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
    • ID: 4999 SERIAL: 4-A37BEEB8146A5CE6ECFB422B1BFF8474E852314F5A999
'Keygen for Flamer's asm keygenme
    Dim id As Integer
    Dim serial As String
    Dim tmp, tmp2, na, nb As Integer
    Dim alfabeto As Integer() = New Integer() {48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 65, 66, 67, 68, 69, 70}
    Dim r As Random = New Random
    'Button generate
    Private Sub btngen_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btngen.Click
ini:
        If txtid.TextLength <> 4 Then GoTo Mal
        id = txtid.Text
        txtdebug.Text = ""
        na = alfabeto(r.Next(1, 16))
        serial = Chr(na) & "-"
        tmp = id
        For i = 0 To alfabeto.Length - 1
            For y = 0 To alfabeto.Length - 1
                'Solución directa
                If id Mod (alfabeto(i) + alfabeto(y)) = 0 Then
                    tmp = id / (alfabeto(i) + alfabeto(y))
                    txtserial.Text = Chr(alfabeto(i)) & "-"
                    For z = 0 To tmp - 1
                        txtserial.Text &= Chr(alfabeto(y))
                    Next
                    GoTo fuera
                End If
                'Indirecta con aleatoriedad
                nb = alfabeto(r.Next(1, 16))
                tmp = tmp - (na + nb)
                serial &= Chr(nb)
                If tmp Mod (na + nb) = 0 Then
                    tmp2 = tmp / (na + nb)
                    For z = 0 To tmp2 - 1
                        serial &= Chr(nb)
                    Next
                    txtserial.Text = serial
                    GoTo fuera
                End If
                If tmp < 0 Then
                    GoTo ini
                Else
                    txtdebug.Text &= tmp & " "
                End If
            Next
        Next
Mal:
        txtserial.Text = "¿id?"
fuera:

    End Sub

Me doy cuenta que en el keygen no he utilizado el guión, pero no pasa nada, se lo dejo al lector como curiosidad.

Links


La esperada cuarta entrega de La Jungla de Cristal se metió de lleno en el mundo de los Hackers. Cuando
Se nos entrega un html con un juego que consiste en hacer clic en un botón tantas veces como podamos
El reto Se nos proporciona la imagen anterior y se nos invita a resolver la ecuación para el menor entero
Habitualmente suelo descargar shareware por diversión para evaluar de que manera protegen los programadores su software. Cada vez es más

Intro

El crackme que analizamos hoy está hecho en ensamblador y si bien su dificultad es baja, la creación del keygen es un poco liosa. Al keygen que veremos más adelante, le he dado cierta aleatoriedad para que quede más elegante.

El crackme comprueba el serial en función de un identificador de 4 dígitos que el mismo crackme genera.

Análisis

Coje nuestro serial mediante la función GetDlgItemTextA.

004010D3  |.  68 FF000000   PUSH 0FF                                 ; /MaxCount = 255.
004010D8  |.  68 40324000   PUSH OFFSET 00403240                     ; |String
004010DD  |.  68 EC030000   PUSH 3EC                                 ; |ItemID = 1004.
004010E2  |.  FF75 08       PUSH DWORD PTR SS:[ARG.1]                ; |hDialog => [ARG.1]
004010E5  |.  E8 6E010000   CALL <JMP.&user32.GetDlgItemTextA>       ; \USER32.GetDlgItemTextA
004010EA  |.  68 40324000   PUSH OFFSET 00403240                     ; /String
004010EF  |.  E8 52010000   CALL <JMP.&kernel32.lstrlenA>            ; \KERNEL32.lstrlen
004010F4  |.  A3 47334000   MOV DWORD PTR DS:[403347],EAX
004010F9  |.  33DB          XOR EBX,EBX
004010FB  |.  33C0          XOR EAX,EAX
004010FD  |.  EB 54         JMP SHORT 00401153

Comprueba que nuestro serial esté formado por números (30h – 39h), letras de la A a la F (41h – 46h) y el guión (2Dh), es decir, el alfabeto hexadecimal más el guión. Si hay algún dígito indeseado nos tira fuera.

004010FF  |>  8A83 40324000 /MOV AL,BYTE PTR DS:[EBX+403240]
00401105  |.  3C 2D         |CMP AL,2D
00401107  |.  74 40         |JE SHORT 00401149
00401109  |.  3C 30         |CMP AL,30
0040110B  |.  74 3C         |JE SHORT 00401149
0040110D  |.  3C 31         |CMP AL,31
0040110F  |.  74 38         |JE SHORT 00401149
00401111  |.  3C 32         |CMP AL,32
00401113  |.  74 34         |JE SHORT 00401149
00401115  |.  3C 33         |CMP AL,33
00401117  |.  74 30         |JE SHORT 00401149
00401119  |.  3C 34         |CMP AL,34
0040111B  |.  74 2C         |JE SHORT 00401149
0040111D  |.  3C 35         |CMP AL,35
0040111F  |.  74 28         |JE SHORT 00401149
00401121  |.  3C 36         |CMP AL,36
00401123  |.  74 24         |JE SHORT 00401149
00401125  |.  3C 37         |CMP AL,37
00401127  |.  74 20         |JE SHORT 00401149
00401129  |.  3C 38         |CMP AL,38
0040112B  |.  74 1C         |JE SHORT 00401149
0040112D  |.  3C 39         |CMP AL,39
0040112F  |.  74 18         |JE SHORT 00401149
00401131  |.  3C 41         |CMP AL,41
00401133  |.  74 14         |JE SHORT 00401149
00401135  |.  3C 42         |CMP AL,42
00401137  |.  74 10         |JE SHORT 00401149
00401139  |.  3C 43         |CMP AL,43
0040113B  |.  74 0C         |JE SHORT 00401149
0040113D  |.  3C 44         |CMP AL,44
0040113F  |.  74 08         |JE SHORT 00401149
00401141  |.  3C 45         |CMP AL,45
00401143  |.  74 04         |JE SHORT 00401149
00401145  |.  3C 46         |CMP AL,46
00401147  |.  75 07         |JNE SHORT 00401150
00401149  |>  8305 4B334000 |ADD DWORD PTR DS:[40334B],1
00401150  |>  83C3 01       |ADD EBX,1
00401153  |>  3B1D 47334000 |CMP EBX,DWORD PTR DS:[403347]
00401159  |.^ 76 A4         \JBE SHORT 004010FF
0040115B  |. A1 47334000 MOV EAX,DWORD PTR DS:[403347]
00401160  |. 3905 4B334000 CMP DWORD PTR DS:[40334B],EAX     ; si no coincide el tamaño del serial con el
00401166  |. 0F85 94000000 JNE 00401200                      ; contador nos tira fuera

La comprobación del serial la realiza sumando el valor ascii del primer dígito al valor ascii del tercero y sucesivos y a continuación restando la suma anterior al ID. Cuando finalice la comprobación de todos los dígitos del serial, el restador tiene que ser cero, de lo contrario nos tira fuera. Si el ID es cero también nos tira fuera.

Ejemplo (base 10)para ID = 4011 y SERIAL: 1-23456

  • Valores del serial: 1(49) -(no se usa) 2(50) 3(51) 4(52) 5(53) 6(54)
  • 1º + 3º: 49 + 50 = 99
  • 4011 – 99 = 3912
  • 1º + 4º: 49 + 51 = 100
  • 3912 – 100 = 3812
  • 1º + 5º: 49 + 52 = 101
  • 3812 – 101 = 3711
  • 1º + 6º: 49 + 53 = 102
  • 3711 – 102 = 3609
  • 1º + 7º: 49 + 54 = 103
  • 3609 – 103 = 3506
  • ¿3506 = 0?
0040116C  |.  33C0          XOR EAX,EAX
0040116E  |.  BB 02000000   MOV EBX,2
00401173  |.  A0 40324000   MOV AL,BYTE PTR DS:[403240]
00401178  |.  A3 43334000   MOV DWORD PTR DS:[403343],EAX
0040117D  |.  EB 13         JMP SHORT 00401192
0040117F  |>  8A83 40324000 /MOV AL,BYTE PTR DS:[EBX+403240]         ; Coje el dígito correspondiente
00401185  |.  0305 43334000 |ADD EAX,DWORD PTR DS:[403343]           ; 1ºdig + dig
0040118B  |.  2905 4F334000 |SUB DWORD PTR DS:[40334F],EAX           ; ID - (1ºdig + dig)
00401191  |.  43            |INC EBX
00401192  |>  3B1D 47334000 |CMP EBX,DWORD PTR DS:[403347]
00401198  |.^ 72 E5         \JB SHORT 0040117F
0040119A  |.  833D 4F334000 CMP DWORD PTR DS:[40334F],0              ; CHECK RESTADOR SEA = 0
004011A1  |.  75 49         JNE SHORT 004011EC
004011A3  |.  833D 3F334000 CMP DWORD PTR DS:[40333F],0              ; CHECK ID <> 0
004011AA  |.  74 40         JE SHORT 004011EC
004011AC  |.  FF35 3F334000 PUSH DWORD PTR DS:[40333F]               ; /<%d> = 0
004011B2  |.  68 00304000   PUSH OFFSET 00403000                     ; |Format = "REGISTRADO CON ID:%d"
004011B7  |.  68 40324000   PUSH OFFSET 00403240                     ; |Buf
004011BC  |.  E8 A9000000   CALL <JMP.&user32.wsprintfA>             ; \USER32.wsprintfA

Como veis, el resultado de ir restando todos los dígitos de nuestro serial con la ID debe ser cero para que el serial sea correcto.

Keygen

Lo primero que se me ocurre para obtener una solución directa es buscar una combinación de dígito + dígito que sea múltiplo del ID. Para ello podemos usar la función módulo. La función módulo lo que hace es darnos el resto de la división de dos números, de modo que si el resto es cero los números son múltiplos. Para ello debemos cruzar todos los números y letras hasta encontrar los dígitos múltiplos del ID. Un serial de este primer tipo quedaría algo así como 1-FFFFFFFFFFFFFFFFFF ya que como el primer dígito es fijo el otro se repetirá tanta veces como sea necesario para hacer que el ID sea cero.

Con nuestro reducido alfabeto, cabe la posibilidad de que no encontremos una combinación válida, por lo que tendremos que pensar en un plan B. El plan B que se me ocurre a mi es intentar forzar el plan A restando caracteres aleatorios al ID y volviendo a comprobar si encontramos múltiplos del nuevo ID. Un serial de este tipo quedaría más elegante, por ejemplo 3-A6D53B628BBBBB.

Os dejo unos cuantos números de serie.

  • Tipo A
    • ID: 1111 SERIAL: 0-55555555555
    • ID: 2500 SERIAL: 0-4444444444444444444444444
    • ID: 4982 SERIAL: 1-99999999999999999999999999999999999999999999999
    • ID: 4992 SERIAL: 0-0000000000000000000000000000000000000000000000000000
  • Tipo B
    • ID: 1112 SERIAL: 9-19247C5555
    • ID: 2499 SERIAL: A-C5ADC2233333333333333
    • ID: 4981 SERIAL: 7-C6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
    • ID: 4999 SERIAL: 4-A37BEEB8146A5CE6ECFB422B1BFF8474E852314F5A999
'Keygen for Flamer's asm keygenme
    Dim id As Integer
    Dim serial As String
    Dim tmp, tmp2, na, nb As Integer
    Dim alfabeto As Integer() = New Integer() {48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 65, 66, 67, 68, 69, 70}
    Dim r As Random = New Random
    'Button generate
    Private Sub btngen_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btngen.Click
ini:
        If txtid.TextLength <> 4 Then GoTo Mal
        id = txtid.Text
        txtdebug.Text = ""
        na = alfabeto(r.Next(1, 16))
        serial = Chr(na) & "-"
        tmp = id
        For i = 0 To alfabeto.Length - 1
            For y = 0 To alfabeto.Length - 1
                'Solución directa
                If id Mod (alfabeto(i) + alfabeto(y)) = 0 Then
                    tmp = id / (alfabeto(i) + alfabeto(y))
                    txtserial.Text = Chr(alfabeto(i)) & "-"
                    For z = 0 To tmp - 1
                        txtserial.Text &= Chr(alfabeto(y))
                    Next
                    GoTo fuera
                End If
                'Indirecta con aleatoriedad
                nb = alfabeto(r.Next(1, 16))
                tmp = tmp - (na + nb)
                serial &= Chr(nb)
                If tmp Mod (na + nb) = 0 Then
                    tmp2 = tmp / (na + nb)
                    For z = 0 To tmp2 - 1
                        serial &= Chr(nb)
                    Next
                    txtserial.Text = serial
                    GoTo fuera
                End If
                If tmp < 0 Then
                    GoTo ini
                Else
                    txtdebug.Text &= tmp & " "
                End If
            Next
        Next
Mal:
        txtserial.Text = "¿id?"
fuera:

    End Sub

Me doy cuenta que en el keygen no he utilizado el guión, pero no pasa nada, se lo dejo al lector como curiosidad.

Links


Acabo de montar AperiSolve en una Raspi que tenía por casa pensando que sería coser y cantar, pero me he
Aquí os dejo un video tutorial. El crackme lo podeis encontrar en crackmes.de.
Aviso: Este crackme forma parte de una serie de pruebas de Yoire.com que todavía está en activo. Lo ético si
http://youtu.be/b9-GdmIQINQ Lista de reproducción

Acabo de montar AperiSolve en una Raspi que tenía por casa pensando que sería coser y cantar, pero me he encontrado con que el repositorio no estaba preparado para todas las distros Linux de forma estándar. El resultado lo he colgado en Github, de modo que para montarlo en vuestra propia Raspi solo tenéis que seguir estos pasos:

1. Clonar el repositorio
git clone https://github.com/deurus/AperiSolve-Raspi3.git
cd AperiSolve-Raspi3/AperiSolve

2. Construir los contenedores
docker compose build
docker compose up -d

3. Abrir la web
http://<IP_RASPI>:5000

Si tenéis curiosidad de la adaptación que he tenido que hacer aquí están los pasos que he seguido:

1. Preparar el sistema
sudo apt update
sudo apt install -y git docker.io docker-compose
sudo usermod -aG docker $USER
newgrp docker

2. Clonar AperiSolve
git clone https://github.com/Zeecka/AperiSolve.git
cd AperiSolve

3. Crear la estructura de build para la imagen ARM/x86
nano docker-compose.yml

y pega este contenido:

FROM python:3.11-slim

RUN apt-get update && apt-get install -y \
    zip \
    p7zip-full \
    binwalk \
    foremost \
    exiftool \
    steghide \
    ruby \
    binutils \
    pngcheck \
    && rm -rf /var/lib/apt/lists/*

COPY aperisolve/ /aperisolve/

RUN pip install --no-cache-dir -r /aperisolve/requirements.txt

WORKDIR /aperisolve

CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:5000", "wsgi:app"]

4. Arreglar docker-compose.yml para ser válido y compatible

services:
  web:
    image: aperisolve-local
    build: .
    container_name: aperisolve-web
    ports:
      - "5000:5000"
    depends_on:
      - redis
      - postgres
    environment:
      DB_URI: "postgresql://aperiuser:aperipass@postgres:5432/aperisolve"

  worker:
    image: aperisolve-local
    container_name: aperisolve-worker
    depends_on:
      - redis
      - postgres
    environment:
      DB_URI: "postgresql://aperiuser:aperipass@postgres:5432/aperisolve"

  redis:
    image: redis:7
    container_name: aperisolve-redis

  postgres:
    image: postgres:16
    container_name: aperisolve-postgres
    environment:
      POSTGRES_USER: aperiuser
      POSTGRES_PASSWORD: aperipass
      POSTGRES_DB: aperisolve
    volumes:
      - postgres_data:/var/lib/postgresql/data

volumes:
  postgres_data:

5. Modificar aperisolve/config.py
nano config.py

y pega este contenido:

from pathlib import Path

IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp", ".tiff"]

WORKER_FILES = ["binwalk", "foremost", "steghide", "zsteg"]

RESULT_FOLDER = Path(__file__).parent.resolve() / "results"
RESULT_FOLDER.mkdir(parents=True, exist_ok=True)

6. Modificación de aperisolve/app.py

Sustituir la línea: app.config["SQLALCHEMY_DATABASE_URI"] = os.environ.get("DB_URI")
por:
default_db = "postgresql://aperiuser:aperipass@postgres:5432/aperisolve"
app.config["SQLALCHEMY_DATABASE_URI"] = os.environ.get("DB_URI", default_db)

7. Construir la imagen
docker build -t aperisolve-local .

8. Levantar los contenedores
docker compose down
docker compose up -d

9. Comprobar logs
docker logs aperisolve-web --tail=50
docker logs aperisolve-worker --tail=50

10. Acceder a la web
 - Desde cualquier máquina de la red local: http://IP-DE-LA-MAQUINA:5000
 - Desde la Raspi: http://localhost:5000

11. Limpieza (cuando necesites)
 - Reiniciar contenedores:
docker compose restart
 - Borrar resultados antiguos:
sudo rm -r aperisolve/results/*

Aviso: Este crackme forma parte de una serie de pruebas de Yoire.com que todavía está en activo. Lo ético si continuas leyendo este manual es que no utilices la respuesta para completar la prueba sin esfuerzo. 😉

Analizando…

Cargamos el crackme en Ollydbg y vamos a las «Referenced Strings«. Vemos una referencia muy interesante que se llama «checkkey«.

 Pinchamos sobre ella y aparecemos aquí:

Vemos una referencia a «GetDlgItemTextA» y depués un Call también interesante, vamos a explorarlo.

Entendiendo la rutina de comprobación del serial

 

Dentro del Call hay dos bucles, uno realiza una operación con nuestro serial (bucle nombre) y el otro comprueba nuestro serial con «3d34273130276a» dígito a dígito (bucle comprobación).

Bucle nombre se puede resumir así:

MOVSX EAX,BYTE PTR DS:[EBX]   --> Dígito a EAX
XOR EAX,55                    --> EAX xor 55
...
CMP BYTE PTR DS:[EBX],0       --> ¿hemos acabado?
JNZ SHORT 10001022            --> bucle
LEA ECX,DWORD PTR SS:[EBP-20] --> ECX = nuestro serial xoreado

Bucle comprobación se podría resumir así:

MOV EDX,10006000             --> EDX = "3d34273130276a"
...
MOV AL,BYTE PTR DS:[ECX]     --> AL = 1ºdígito serial xoreado
CMP AL,BYTE PTR DS:[ECX+EDX] --> AL = 1ºdígito de EDX?
JNZ SHORT 1000105A           --> Si no son iguales bad boy
INC ECX 

TEST AL,AL
JNZ SHORT 1000104A           --> bucle

Ejemplo para «deurus».

   Nombre: d  e  u  r  u  s
Ascii hex: 64 65 75 72 75 73 
   XOR 55: 31 30 20 27 20 26

Serial XOReado para deurus sería = 313020272026 que obviamente se aleja bastante de 3d34273130276a.
Por suerte XOR es una función reversible por lo que si revertimos 3d34273130276a nos dará el serial correcto.

Serial correcto XOReado: 3d 34 27 31 30 27 6a
XOR 55:                 
68 61 72 64 65 72 3F
Valor ascii:             h  a  r  d  e  r  ?

Links


Hace unos años cuando empecé a trastear con Android y animado por mi afición a la Ingeniería Inversa, decidí realizar
Intro Hoy tenemos un crackme realizado en ensamblador y sin empacar. Consiste en el típico serial asociado a un nombre
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
En Parque Jurásico (1993), la informática no es solo un elemento narrativo, es una pieza clave del suspense y del

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Introducción

Resumidamente, esta técnica consiste en ocultar información en el bit menos significativo de cada uno de los píxeles de una imagen, consiguiendo así que el cambio realizado sea invisible al ojo humano. El problema de esta técnica, es que la información oculta puede obtenerse fácilmente si esta no se ha codificado previamente o si no se sigue un patrón concreto a la hora de ocultarla.

Desde la web del reto nos avisan de que esto es un simple truco pero espectacular. Nos animan a descargar una imágen y a encontrar la solución oculta.

Aprovecho este reto para presentaros una herramienta vital al enfrentaros a ciertos retos sobre esteganografía, steganabara.

Steganabara tiene dos apartados muy interesantes, uno es «color table» y otro «bit mask«, hoy veremos en acción a «bit mask».

No os preocupéis por la solución ya que cambia para cada usuario y sesión.

Buscando la solución oculta

Abrimos steganabara y empezamos a trastear con bit mask.

stegolsb02

Al poco tiempo ya vemos que vamos bien encaminados.

stegolsb03stegolsb04

Finalmente no nos cuesta dar con la solución.

stegolsb05stegolsb06

Links

Introducción

Segunda crackme con RSA que afrontamos. Esta vez se trata de un crackme realizado en VC++ 7.0 y en sus entrañas utiliza RSA-127. Una cosa que no comenté en la entrega anterior (RSA-200), es que conviene utilizar el plugin Kanal de PEiD para localizar cuando se utilizan números grandes o determinados hashes como MD5 o SHA1.

16-02-2015 01-49-36

Otra cosa es que os quería comentar es la coletilla 127. Esta lo determina el módulo n e indica el número de bits de éste.

Funcionamiento de RSA

  1. Inicialmente es necesario generar aleatoriamente dos números primos grandes, a los que llamaremos p y q.
  2. A continuación calcularemos n como producto de p y q:
    n = p * q
  3. Se calcula fi:
    fi(n)=(p-1)(q-1)
  4. Se calcula un número natural e de manera que MCD(e, fi(n))=1 , es decir e debe ser primo relativo de fi(n). Es lo mismo que buscar un numero impar por el que dividir fi(n) que de cero como resto.
  5. Mediante el algoritmo extendido de Euclides se calcula d que es el inverso modular de e.
    Puede calcularse d=((Y*fi(n))+1)/e para Y=1,2,3,... hasta encontrar un d entero.
  6. El par de números (e,n) son la clave pública.
  7. El par de números (d,n) son la clave privada.
  8. Cifrado: La función de cifrado es.
    c = m^e mod n
  9. Descifrado: La función de descifrado es.
    m = c^d mod n

OllyDbg

Con OllyDbg analizamos la parte del código que nos interesa.

0040109B    .  68 00010000         PUSH 100                                  ; /Count = 100 (256.)
004010A0    .  52                  PUSH EDX                                  ; |Buffer = RSA127.<ModuleEntryPoint>
004010A1    .  68 EA030000         PUSH 3EA                                  ; |ControlID = 3EA (1002.)
004010A6    .  8B8C24 28020000     MOV ECX,DWORD PTR SS:[ESP+228]            ; |
004010AD    .  51                  PUSH ECX                                  ; |hWnd = NULL
004010AE    .  FF15 F0B04000       CALL DWORD PTR DS:[<&USER32.GetDlgItemTex>; \GetDlgItemTextA
004010B4    .  8D5424 04           LEA EDX,DWORD PTR SS:[ESP+4]
004010B8    .  57                  PUSH EDI
004010B9    .  52                  PUSH EDX                                  ;  RSA127.<ModuleEntryPoint>
004010BA    .  50                  PUSH EAX                                  ;  kernel32.BaseThreadInitThunk
004010BB    .  E8 201E0000         CALL RSA127.00402EE0
004010C0    .  83C4 0C             ADD ESP,0C
004010C3    .  8D9424 04010000     LEA EDX,DWORD PTR SS:[ESP+104]
004010CA    .  68 00010000         PUSH 100                                  ; /Count = 100 (256.)
004010CF    .  52                  PUSH EDX                                  ; |Buffer = RSA127.<ModuleEntryPoint>
004010D0    .  68 EB030000         PUSH 3EB                                  ; |ControlID = 3EB (1003.)
004010D5    .  8B8C24 28020000     MOV ECX,DWORD PTR SS:[ESP+228]            ; |
004010DC    .  51                  PUSH ECX                                  ; |hWnd = NULL
004010DD    .  FF15 F0B04000       CALL DWORD PTR DS:[<&USER32.GetDlgItemTex>; \GetDlgItemTextA
004010E3    .  8D9424 04010000     LEA EDX,DWORD PTR SS:[ESP+104]
004010EA    .  52                  PUSH EDX                                  ;  RSA127.<ModuleEntryPoint>
004010EB    .  8B4C24 04           MOV ECX,DWORD PTR SS:[ESP+4]
004010EF    .  51                  PUSH ECX
004010F0    .  E8 5B1F0000         CALL RSA127.00403050
004010F5    .  68 08B14000         PUSH RSA127.0040B108                      ;  ASCII "666AAA422FDF79E1D4E41EDDC4D42C51"
004010FA    .  55                  PUSH EBP
004010FB    .  E8 501F0000         CALL RSA127.00403050
00401100    .  68 2CB14000         PUSH RSA127.0040B12C                      ;  ASCII "29F8EEDBC262484C2E3F60952B73D067"
00401105    .  56                  PUSH ESI
00401106    .  E8 451F0000         CALL RSA127.00403050
0040110B    .  53                  PUSH EBX
0040110C    .  55                  PUSH EBP
0040110D    .  56                  PUSH ESI
0040110E    .  8B5424 24           MOV EDX,DWORD PTR SS:[ESP+24]
00401112    .  52                  PUSH EDX                                  ;  RSA127.<ModuleEntryPoint>
00401113    .  E8 38250000         CALL RSA127.00403650
00401118    .  53                  PUSH EBX
00401119    .  57                  PUSH EDI
0040111A    .  E8 31130000         CALL RSA127.00402450
0040111F    .  83C4 30             ADD ESP,30
00401122    .  85C0                TEST EAX,EAX                              ;  kernel32.BaseThreadInitThunk
00401124    .  74 12               JE SHORT RSA127.00401138
00401126    .  B8 01000000         MOV EAX,1
0040112B    .  81C4 08020000       ADD ESP,208
00401131    .  5B                  POP EBX                                   ;  kernel32.7590EE1C
00401132    .  5D                  POP EBP                                   ;  kernel32.7590EE1C
00401133    .  5E                  POP ESI                                   ;  kernel32.7590EE1C
00401134    .  5F                  POP EDI                                   ;  kernel32.7590EE1C
00401135    .  C2 1000             RETN 10
00401138    >  6A 40               PUSH 40                                   ; /Style = MB_OK|MB_ICONASTERISK|MB_APPLMODAL
0040113A    .  68 5CB14000         PUSH RSA127.0040B15C                      ; |Title = "Yeah!"
0040113F    .  68 50B14000         PUSH RSA127.0040B150                      ; |Text = "Nice job!!!"
00401144    .  6A 00               PUSH 0                                    ; |hOwner = NULL
00401146    .  FF15 F4B04000       CALL DWORD PTR DS:[<&USER32.MessageBoxA>] ; \MessageBoxA

El código nos proporciona el exponente público (e) y el módulo (n).

  • e = 29F8EEDBC262484C2E3F60952B73D067
  • n = 666AAA422FDF79E1D4E41EDDC4D42C51

Finalmente realiza un PowMod con el número de serie del disco C y el par de claves (e,n).

Calculando la clave privada (d)

Una vez localizados los datos anteriores lo siguiente es factorizar para obtener los primos p y q y finalmente d.

RSA127_rsatool

d = 65537

Ejemplo operacional

Nº serie disco C = -1295811883
Serial = hdd.getBytes()^d mod n
Serial = 2d31323935383131383833^65537 mod 666AAA422FDF79E1D4E41EDDC4D42C51
Serial = 1698B6CE6BE0D388C31E8E7895AF445A

RSA127_bigint

Keygen

El keygen está hecho en Java ya que permite trabajar con números grandes de forma sencilla.

JButton btnNewButton = new JButton("Generar");
        btnNewButton.addActionListener(new ActionListener() {
            public void actionPerformed(ActionEvent arg0) {
                BigInteger serial = new BigInteger("0");
                BigInteger n = new BigInteger("136135092290573418981810449482425576529");
                BigInteger d = new BigInteger("415031");
                String hdd = t1.getText();
                BigInteger tmp = new BigInteger(hdd.getBytes());
                serial = tmp.modPow(d, n);
                t2.setText(serial.toString(16).toUpperCase());
            }
        });

Links


Introducción El otro día navegando por la red fuí a dar a un mirror de la gran web "Karpoff Spanish
AVISO: Debido a que este reto está en activo no publicaré a donde pertenece. El reto en cuestión nos presenta
Introducción Hoy tenemos aquí un crackme de los que te hacen temblar las conexiones neuronales. Estamos acostumbrados al típico serial
Intro Hoy tenemos aquí otro crackme sacado del baúl de los recuerdos. En este caso se trata de una protección

Aviso: Este crackme forma parte de una serie de pruebas de Yoire.com que todavía está en activo. Lo ético si continuas leyendo este manual es que no utilices la respuesta para completar la prueba sin esfuerzo. 😉

Saltando el Anti-Debug

Abrimos el crackme con Ollydbg y nos salta una protección Anti-Debug.

Si nos fijamos en las «Text Strings» vemos que es la clásica isDebuggerPresent. Pinchamos en ella y vemos claramente el salto que debemos forzar, se encuentra en el offset 401015. Podemos invertir el salto o cambiarlo a JMP para que salte siempre.

Rutina de comprobación del serial

A simple vista vemos instrucciones como FILD y FIDIVR que trabajan con los registros FPU, por lo que tendremos que fijarnos en dichos registros.

Retomemos analizando la rutina de comprobación.

FLD DWORD PTR DS:[403080]    - Carga el entero "720300" en ST7
FSTP [LOCAL.1]               - Guarda "720300" en memoria (Local 1)
MOVSX EDX,BYTE PTR DS:[EAX]  - Coje nuestro primer dígito en ascii y lo carga en EDX
SUB EDX,30                   - Le resta 30 a EDX
PUSH EDX                     - Carga EDX en la pila
FILD DWORD PTR SS:[ESP]      - Carga el valor de EDX en ST0
POP EDX                      - Recupera el valor de la pila
FDIVR [LOCAL.1]              - Divide Local 1 entre nuestro dígito hex y lo guarda en ST0
FSTP [LOCAL.1]               - Guarda el resultado de ST0 en Local 1
INC EAX                      - Siguiente dígito
CMP BYTE PTR DS:[EAX],0      - Comprueba si quedan dígitos en nuestro serial
JNZ SHORT 05_crack.004010F4  - Bucle

Después de la rutina de comprobación simplemente comprueba el valor del resultado de la división con 1 y si es verdad serial válido.

Buscando un serial válido

Podríamos hacer fuerza bruta, pero en esta ocasión no es necesario ya que con la calculadora, boli y papel lo sacamos rápido.
720300 / 2 = 360150
360150 / 2 = 180075
180075 / 5 = 36015
36015  / 5 = 7203
7203   / 3 = 2401
2401   / 7 = 343
343    / 7 = 49
49     / 7 = 7
7      / 7 = 1

Por lo que un serial válido sería: 225537777

La rutina de comprobación del serial podría resumirse también así:

720300 MOD serial = 720300

Links


Introducción Herramientas disponibles CrkViz-1 (Serial a la vista) CrkViz-2 (Parcheando rutina aleatoria) CrkViz-3 (Nag+Keygen) CrkViz-4 (Límite de ejecuciones+Keygen) CrkViz-5 (Serial
Los retos criptográficos son muy variados y muchas veces la dificultad está en saber a que te enfrentas. En este
Primeras impresiones El crackme es el típico de usuario y número de serie. Si no introduces un nombre te salta
Introducción Aquí tenemos un crackme hecho en Java, lo que como comprobareis a continuación no es muy buena idea ya

Introducción

Esta vez vamos a analizar los CrackMes de un antiguo colaborador de Karpoff Spanish Tutor, CrkViZ. En estas cinco soluciones vamos a pelearnos con Visual Basic 5/6 nativo y Pcode, con el registro de Windows y tendremos que parchear algúna rutina antidebug. Los CrackMes son del año 2000 y aunque algunos estaban ya solucionados, los analizaremos igualmente para ver la diferencia que existe con los análisis realizados en aquellos años, sí, estamos hablando del Softice.

Herramientas disponibles

Cuando hablamos de Visual Basic 5/6, podemos destacar 3 herramientas que nos facilitan mucho la vida, VB Decompiler, VB Reformer y ExDec. Las dos primeras se defienden bien tanto con código nativo como pcode y ExDec solamente nos sirve para pcode. Aún así, si todo lo demás falla, Ollydbg nos sacará de apuros.

CrkViz-1

03-03-2015 13-16-27

03-03-2015 13-16-17

Este primer crackme está compilado en Pcode y hoy día, con las herramientas de que disponemos no supone ninguna dificultad. Tan solo debemos abrirlo con VB Decompiler y ya nos encontramos con el serial válido.

03-03-2015 13-14-18

Los opcodes obtenidos con ExDec se ven de la siguiente manera.

......
402F14: 04 FLdRfVar                local_008C
402F17: 21 FLdPrThis              
402F18: 0f VCallAd                 7b3fc340
402F1B: 19 FStAdFunc               local_0088
402F1E: 08 FLdPr                   local_0088
402F21: 0d VCallHresult            7b3fbe88
402F26: 6c ILdRf                   local_008C
402F29: 1b LitStr:                 57230198        <--------------
402F2C: Lead0/30 EqStr            
402F2E: 2f FFree1Str               local_008C
402F31: 1a FFree1Ad                local_0088
402F34: 1c BranchF:                403012
402F37: 21 FLdPrThis              
402F38: 0d VCallHresult            7b3fc2b0
402F3D: 3a LitVarStr:              ( local_00AC )  Gracias por Registrar!!      
402F42: Lead2/00 FStVarCopy       
402F46: 27 LitVar_Missing         
402F49: 27 LitVar_Missing         
402F4C: 3a LitVarStr:              ( local_00AC ) CrkViz
402F51: 4e FStVarCopyObj           local_00BC
402F54: 04 FLdRfVar                local_00BC
402F57: f5 LitI4:                  0x40  64  (...@)
402F5C: 04 FLdRfVar                local_009C
402F5F: 0a ImpAdCallFPR4:          _rtcMsgBox
402F64: 36 FFreeVar
402F6D: 27 LitVar_Missing         
402F70: 25 PopAdLdVar             
402F71: 27 LitVar_Missing
......

CrkViz-2

03-03-2015 13-18-32

Este segundo crackme también está compilado en pcode. La rutina del serial es muy sencilla pero al introducir un número aleatorio nos obliga a parchear. Cargamos el crackme en VB Decompiler y nos muestra esto:

03-03-2015 13-19-48

Básicamente vemos que genera un número aleatorio entre 1 y 999999999 y luego le suma 1. La forma de afrontar esto es parcheando. Nos fijamos en el offset aproximado (4037F2) y abrimos el crackme en un editor hexadecimal. La forma de convertir el offset que nos muestra VB Decompiler a lo que nos muestra un editor hexadecimal es la siguiente.

VBdec_offset - Image Base - VirtualOffset + RawOffset = Offset_Editor.H

4037F2 - 400000 - 1000 + 400 = 2BF2

03-03-2015 14-00-27

Una vez localizados los bytes, los cambiamos por ceros y guardamos.

01-03-2015 04-50-05 01-03-2015 04-52-10

Una vez parcheado, el serial correcto es 1.

CrkViz-3

11-03-2015 21-20-07

En esta tercera entrega, CrkViz aumentó la dificultad. El crackme está compilado en código nativo y nos enfrentamos a un serial asociado a un nombre y a una rutina antidebug que en realidad es una Nag, ya que se muestra siempre.

Afrontar la nag es muy sencillo, basta con localizarla y parchear la llamada.

CPU Disasm
Address   Hex dump          Command                                            Comments
004058E2    8D4D DC         LEA ECX,[EBP-24]
004058E5    C785 BCFDFFFF B MOV DWORD PTR SS:[EBP-244],CrkMeViz-3.004033B8     ; UNICODE "  Debugger detectado!!!   "
004058EF    C785 B4FDFFFF 0 MOV DWORD PTR SS:[EBP-24C],8
004058F9    FFD7            CALL EDI
004058FB    B9 04000280     MOV ECX,80020004
00405900    B8 0A000000     MOV EAX,0A
00405905    898D FCFDFFFF   MOV DWORD PTR SS:[EBP-204],ECX
0040590B    898D 0CFEFFFF   MOV DWORD PTR SS:[EBP-1F4],ECX
00405911    8D95 B4FDFFFF   LEA EDX,[EBP-24C]
00405917    8D8D 14FEFFFF   LEA ECX,[EBP-1EC]
0040591D    8985 F4FDFFFF   MOV DWORD PTR SS:[EBP-20C],EAX
00405923    8985 04FEFFFF   MOV DWORD PTR SS:[EBP-1FC],EAX
00405929    C785 BCFDFFFF 8 MOV DWORD PTR SS:[EBP-244],CrkMeViz-3.00403188     ; UNICODE "Error"
00405933    C785 B4FDFFFF 0 MOV DWORD PTR SS:[EBP-24C],8
0040593D    FF15 C8914000   CALL DWORD PTR DS:[<&MSVBVM50.__vbaVarDup>]
00405943    8D85 F4FDFFFF   LEA EAX,[EBP-20C]
00405949    8D8D 04FEFFFF   LEA ECX,[EBP-1FC]
0040594F    50              PUSH EAX
00405950    8D95 14FEFFFF   LEA EDX,[EBP-1EC]
00405956    51              PUSH ECX
00405957    52              PUSH EDX
00405958    8D45 DC         LEA EAX,[EBP-24]
0040595B    6A 10           PUSH 10
0040595D    50              PUSH EAX
0040595E    FF15 50914000   CALL DWORD PTR DS:[<&MSVBVM50.#595>]               ; rtcMsgBox - NOPear para evitar la NAG
00405964    8D8D F4FDFFFF   LEA ECX,[EBP-20C]

Antes de llegar al keygen vemos que realiza unas llamadas al registro de Windows, ponemos un breakpoint «bp RegOpenKeyW» y ejecutamos.

CPU Disasm
Address   Hex dump            Command                                  Comments
00405677  |.  8B8D B8FDFFFF   MOV ECX,DWORD PTR SS:[EBP-248]
0040567D  |.  B8 54334000     MOV EAX,CrkMeViz-3.00403354              ; UNICODE "<Unregister>"
00405682  |.  68 B4304000     PUSH CrkMeViz-3.004030B4                 ; UNICODE "Serial number"
00405687  |.  894A 04         MOV DWORD PTR DS:[EDX+4],ECX
0040568A  |.  8985 BCFDFFFF   MOV DWORD PTR SS:[EBP-244],EAX
00405690  |.  68 84304000     PUSH CrkMeViz-3.00403084                 ; UNICODE "Register"
00405695  |.  68 58304000     PUSH CrkMeViz-3.00403058                 ; UNICODE "CrkMeViz3"
0040569A  |.  8942 08         MOV DWORD PTR DS:[EDX+8],EAX
0040569D  |.  8B85 C0FDFFFF   MOV EAX,DWORD PTR SS:[EBP-240]
004056A3  |.  8942 0C         MOV DWORD PTR DS:[EDX+0C],EAX
004056A6  |.  FF15 C0914000   CALL DWORD PTR DS:[<&MSVBVM50.#689>] 	; rtcGetSetting - Lee el numero de serie del registro
........
0040574F  |.  68 9C304000     PUSH CrkMeViz-3.0040309C                  ; UNICODE "User Name"
00405754  |.  68 84304000     PUSH CrkMeViz-3.00403084                  ; UNICODE "Register"
00405759  |.  68 58304000     PUSH CrkMeViz-3.00403058                  ; UNICODE "CrkMeViz3"
0040575E  |.  8948 08         MOV DWORD PTR DS:[EAX+8],ECX
00405761  |.  8B8D C0FDFFFF   MOV ECX,DWORD PTR SS:[EBP-240]
00405767  |.  8948 0C         MOV DWORD PTR DS:[EAX+0C],ECX
0040576A  |.  FF15 C0914000   CALL DWORD PTR DS:[<&MSVBVM50.#689>]	; rtcGetSetting - Lee el Usuario del registro

 Reconstruyendo la llamada al registro vemos que lee de esta ruta: HKEY_CURRENT_USER\Software\VB and VBA Program Settings\CrkMeViz3\Register el contenido de User Name y del Serial number.

Quizá uno de los fallos de éste crackme, es que no comprueba la autenticidad de estos parámetros y si los modificas parece que estás registrado. Un ejemplo:

11-03-2015 22-23-28

La rutina de comprobación del serial no es para nada complicada pero recordemos que estamos tratando con VB y éste delega el trabajo duro en otras librerias de modo que tenemos que «meternos» a tracear las llamadas para ver los valores que multiplica y divide.

CPU Disasm
Address     Hex dump          Command                                            Comments
00405A86      FF15 3C914000   CALL DWORD PTR DS:[<&MSVBVM50.#518>]    ;MSVBVM50.rtcLowerCaseVar
00405A8C      8D95 14FEFFFF   LEA EDX,[EBP-1EC]
00405A92      8D8D ACFEFFFF   LEA ECX,[EBP-154]
00405A98      FFD6            CALL ESI
00405A9A      8D95 ACFEFFFF   LEA EDX,[EBP-154]
00405AA0      8D8D 4CFEFFFF   LEA ECX,[EBP-1B4]
00405AA6      FFD7            CALL EDI
00405AA8      8D95 4CFEFFFF   LEA EDX,[EBP-1B4]
00405AAE      8D8D 7CFFFFFF   LEA ECX,[EBP-84]
00405AB4      FFD7            CALL EDI
00405AB6      8D85 14FEFFFF   LEA EAX,[EBP-1EC]
00405ABC      8D8D 7CFFFFFF   LEA ECX,[EBP-84]
00405AC2      50              PUSH EAX
00405AC3      6A 01           PUSH 1
00405AC5      8D95 04FEFFFF   LEA EDX,[EBP-1FC]
00405ACB      51              PUSH ECX
00405ACC      52              PUSH EDX
00405ACD      C785 1CFEFFFF 0 MOV DWORD PTR SS:[EBP-1E4],1
00405AD7      C785 14FEFFFF 0 MOV DWORD PTR SS:[EBP-1EC],2
00405AE1      FF15 68914000   CALL DWORD PTR DS:[<&MSVBVM50.#632>]   ;MSVBVM50.rtcMidCharVar (Esto lo hace 6 veces, lo omito para abreviar.)
........
00405CE1      FF15 34914000   CALL DWORD PTR DS:[<&MSVBVM50.#516>]   ;MSVBVM50.rtcAnsiValueBstr (Lo mismo, otras 6)
........
00405E7C    C785 BCFDFFFF 2 MOV DWORD PTR SS:[EBP-244],52E
00405E86    C785 B4FDFFFF 0 MOV DWORD PTR SS:[EBP-24C],2
00405E90    50              PUSH EAX
00405E91    FF15 84914000   CALL DWORD PTR DS:[<&MSVBVM50.__vbaVarMul>]
		|
		->MSVBVM50.__vbaVarMul
			........
			741C19D3      0FB745 FE       MOVZX EAX,WORD PTR SS:[EBP-2]       ;Valor1
			741C19D7      0FB74D F2       MOVZX ECX,WORD PTR SS:[EBP-0E]      ;Valor2
			741C19DB      6BC0 12         IMUL EAX,EAX,12                     ;Valor1*Valor2
			........
00405E97    8D8D 04FEFFFF   LEA ECX,[EBP-1FC]
00405E9D    50              PUSH EAX
00405E9E    51              PUSH ECX
00405E9F    FF15 84914000   CALL DWORD PTR DS:[<&MSVBVM50.__vbaVarMul>]
00405EA5    8D95 F4FDFFFF   LEA EDX,[EBP-20C]
00405EAB    50              PUSH EAX
00405EAC    52              PUSH EDX
00405EAD    FF15 84914000   CALL DWORD PTR DS:[<&MSVBVM50.__vbaVarMul>]
00405EB3    50              PUSH EAX
00405EB4    8D85 E4FDFFFF   LEA EAX,[EBP-21C]
00405EBA    50              PUSH EAX
00405EBB    FF15 84914000   CALL DWORD PTR DS:[<&MSVBVM50.__vbaVarMul>]
00405EC1    8D8D D4FDFFFF   LEA ECX,[EBP-22C]
00405EC7    50              PUSH EAX
00405EC8    51              PUSH ECX
00405EC9    FF15 84914000   CALL DWORD PTR DS:[<&MSVBVM50.__vbaVarMul>]
00405ECF    50              PUSH EAX
00405ED0    8D95 B4FDFFFF   LEA EDX,[EBP-24C]
00405ED6    8D85 C4FDFFFF   LEA EAX,[EBP-23C]
00405EDC    52              PUSH EDX
00405EDD    50              PUSH EAX
00405EDE    FF15 94914000   CALL DWORD PTR DS:[<&MSVBVM50.__vbaVarDiv>]
		|
		->MSVBVM50.__vbaVarDiv
			........
			741C8094      DD43 08         FLD QWORD PTR DS:[EBX+8]      ;Recupera el resultado de las multiplicaciones anteriores
			741C8097      0FBF47 08       MOVSX EAX,WORD PTR DS:[EDI+8] ;EAX = 1326 (52E)
			741C809B      8945 F8         MOV DWORD PTR SS:[EBP-8],EAX
			741C809E      DA75 F8         FIDIV DWORD PTR SS:[EBP-8]    ;Divide los dos resultados
			741C80A1      DD5E 08         FSTP QWORD PTR DS:[ESI+8]
			........
00405F44      FF15 24914000   CALL DWORD PTR DS:[<&MSVBVM50.__vbaLenBstr>]          ;Len(nombre)
........
00405F85      FF15 94914000   CALL DWORD PTR DS:[<&MSVBVM50.__vbaVarDiv>]           ;Resultado anterior / Len(nombre)
........

En resumen:

  • Pasa nuestro nombre a minúsculas.
  • Obtiene el valor ascii de los 6 primeros dígitos del nombre.
  • Los multiplica entre sí y divide el resultado acumulado entre 1326 (52E).
  • Divide el resultado anterior entre el tamaño del nombre.

Ejemplo para deurus

64*65*75*72*75*73 = 1A605D70EB8
1A605D70EB8 / 52E = 5179FBF4
5179FBF4 / 6 = D9454A9

11-03-2015 21-20-17

Al estar correctamente registrados desaparece el botón de registrar.

CrkViz-4

12-03-2015 23-09-07

El cuarto crackme es prácticamente igual que el tercero salvo que en vez de nag ahora contamos con limitación de ejecuciones. Del mismo modo utiliza el registro de Windows para guardar los datos de registro y las ejecuciones que llevamos.

Ponemos un breakpoint «bp RegOpenKeyW» y llegamos a la conclusión de que la ruta es HKEY_CURRENT_USER\Software\VB and VBA Program Settings\ODBC\Register y los valores se guardan en Counter, User Name y Serial number respectivamente. Este crackme hereda el fallo del anterior y si alteramos los valores el crackme nos muestra como usuarios autorizados, aunque sabemos que no estamos registrados ya que seguimos limitados por ejecuciones. Ni que decir tiene que lo mismo que modificamos el nombre y número de serie, podemos modificar el contador a nuestro favor. Crear un archivo «Reiniciar_contador.reg» con el siguiente contenido sería suficiente.

Windows Registry Editor Version 5.00

[HKEY_CURRENT_USER\Software\VB and VBA Program Settings\ODBC]

[HKEY_CURRENT_USER\Software\VB and VBA Program Settings\ODBC\Register]
"Counter"="0"
"User Name"="deurus"
"Serial number"="12345"

El keygen es prácticamente igual que en el crackme anterior, solo cambia el divisor.

CPU Disasm
Address   Hex dump          Command                                                   Comments
........
00404BD2    C785 BCFDFFFF C MOV DWORD PTR SS:[EBP-244],6C1
00404BDC    C785 B4FDFFFF 0 MOV DWORD PTR SS:[EBP-24C],2
00404BE6    FF15 A0914000   CALL DWORD PTR DS:[<&MSVBVM50.__vbaVarMul>]
   |
    ->MSVBVM50.__vbaVarMul
	741C19F9    0FBF4F 08       MOVSX ECX,WORD PTR DS:[EDI+8]      ;Valor1
	741C19FD    0FBF43 08       MOVSX EAX,WORD PTR DS:[EBX+8]      ;Valor2
	741C1A01    0FAFC8          IMUL ECX,EAX                       ;Valor1*Valor2
........
00404BEC    8D8D 04FEFFFF   LEA ECX,[EBP-1FC]
00404BF2    50              PUSH EAX
00404BF3    51              PUSH ECX
00404BF4    FF15 A0914000   CALL DWORD PTR DS:[<&MSVBVM50.__vbaVarMul>]
00404BFA    8D95 F4FDFFFF   LEA EDX,[EBP-20C]
00404C00    50              PUSH EAX
00404C01    52              PUSH EDX
00404C02    FF15 A0914000   CALL DWORD PTR DS:[<&MSVBVM50.__vbaVarMul>]
00404C08    50              PUSH EAX
00404C09    8D85 E4FDFFFF   LEA EAX,[EBP-21C]
00404C0F    50              PUSH EAX
00404C10    FF15 A0914000   CALL DWORD PTR DS:[<&MSVBVM50.__vbaVarMul>]
00404C16    8D8D D4FDFFFF   LEA ECX,[EBP-22C]
00404C1C    50              PUSH EAX
00404C1D    51              PUSH ECX
00404C1E    FF15 A0914000   CALL DWORD PTR DS:[<&MSVBVM50.__vbaVarMul>]
00404C24    50              PUSH EAX
00404C25    8D95 B4FDFFFF   LEA EDX,[EBP-24C]
00404C2B    8D85 C4FDFFFF   LEA EAX,[EBP-23C]
00404C31    52              PUSH EDX
00404C32    50              PUSH EAX
00404C33    FF15 B0914000   CALL DWORD PTR DS:[<&MSVBVM50.__vbaVarDiv>]
   |
    ->MSVBVM50.__vbaVarDiv
	741C8094    DD43 08         FLD QWORD PTR DS:[EBX+8]              ; Recupera el resultado de las multiplicaciones anteriores
	741C8097    0FBF47 08       MOVSX EAX,WORD PTR DS:[EDI+8]         ; EAX = 1729 (6C1)
	741C809B    8945 F8         MOV DWORD PTR SS:[EBP-8],EAX
	741C809E    DA75 F8         FIDIV DWORD PTR SS:[EBP-8]

00404C39    8BD0            MOV EDX,EAX
........
00404CA0    FF15 3C914000   CALL DWORD PTR DS:[<&MSVBVM50.__vbaLenBstr>]  ;Len(nombre)
........
00404CF1    FF15 B0914000   CALL DWORD PTR DS:[<&MSVBVM50.__vbaVarDiv>]   ;Resultado anterior / Len(nombre)

En resumen:

  • Pasa nuestro nombre a minúsculas.
  • Obtiene el valor ascii de los 6 primeros dígitos del nombre.
  • Los multiplica entre sí y divide el resultado acumulado entre 1729 (6C1).
  • Divide el resultado anterior entre el tamaño del nombre.

Ejemplo para deurus

64*65*75*72*75*73 = 1A605D70EB8
1A605D70EB8 / 6C1 = 3E7C594A
3E7C594A / 6 = A6A0EE2

CrkViz-5

11-03-2015 23-23-16

Este último crackme está compilado en código nativo y simplemente se trata de una comparación lineal. La única diferencia reside en que no hay botón de registro, la comprobación la gestiona un evento «On Change«, de modo que está comprobando el tamaño del serial que introducimos y cuando éste tiene 8 dígitos llegamos aquí.

........
0040A64F         .  C745 9C CDD4DD02    MOV DWORD PTR SS:[EBP-64],2DDD4CD      ;2DDD4CD = 48092365
0040A656         .  C745 94 03800000    MOV DWORD PTR SS:[EBP-6C],8003
0040A65D         .  FF15 08C14000       CALL DWORD PTR DS:[<&MSVBVM50.__vbaVa> ;MSVBVM50.__vbaVarTstEq
0040A663         .  66:85C0             TEST AX,AX
0040A666         .  0F84 BA000000       JE CrkMeViZ.0040A726                   ;Si salta BAD  BOY
........

Luego el serial correcto es 48092365.

Notas finales

¿Ha sido indoloro no?, claro que sí, Visual Basic es un coñazo de tracear pero hay que reconocer que con el tiempo las herramientas han mejorado mucho y nuestra vida es mucho más sencilla. Bueno, pués esto ha sido todo, como siempre os dejo todo el material utilizado y un Keygen.

12-03-2015 23-06-33

Enlaces

Los retos criptográficos son muy variados y muchas veces la dificultad está en saber a que te enfrentas. En este caso pasa eso, te dan un código y si no has visto algo parecido en la vida, no sabes por donde empezar. El título del autor da una pequeña pista pero para los desconocedores no es suficiente. La pista es el título y dice «WTF?!?» y el código a descifrar es el siguiente:

[-]>[-]<
>+++++++++++[<+++++++++++>-]<.
>+++[<--->-]<-.
>++[<++>-]<++.
+.
>++++[<---->-]<-.
---.
+++.
.
>+++[<+++>-]<.
>+++[<--->-]<+.
>++++[<++++>-]<-.
>++++[<---->-]<--.
>+++[<+++>-]<-.
>++[<-->-]<--.
-.

Si eres una persona con recursos, realizaras varias búsquedas por la red y al final llegarás a la conclusión de que te enfrentas a BRAINFUCK, un lenguaje de programación esotérico como ya vimos en el reto de Root-Me.

Enlaces

Primeras impresiones

El crackme es el típico de usuario y número de serie. Si no introduces un nombre te salta un messagebox indicándotelo y si introduces cualquier información sale un mensaje de error.
Si dejamos solamente el serial en blanco nos sale un mensaje de error muy interesante diciéndonos que introduzcamos un número entre 1 y 2^32. Por lo tanto ya sabemos que nuestro serial está entre 1 y 4294967296.
PEiD no arroja resultados pero una primera impresión con Ollydbg hace creer que está programado en ensamblador y que no está comprimido.

Al ataque con Ollydbg

Cargamos el crackme en Ollydbg y hacemos click derecho Search for > Names
Vemos dos referencias interesantes como son:
  •  &USER32.GetDlgItemInt
  •  &USER32.GetDlgItemTextA
Ponemos sendos breakpoints y damos al play.
Vemos que para en USER32.GetDlgItemTextAy que retorna al offset 4010E7
 
Vamos a 4010E7 y vemos que pasa.
 
Hace un Test eax,eax por si hemos introducido algún nombre y si no es así nos muestra la nag.
Continuamos con la ejecución y para en el siguiente breakpoint, esta vez el referente a USER32.GetDlgItemInt, vamos al offset 401108 a ver que nos espera.
 
Se puede ver claramente que carga en EAX nuestro número de serie en hexa, lo compara con ESI que vale 0 y si son iguales nag de error y si no continua a 401120 donde guarda en la pila nuestro nombre y serial y llama al offset 401000.
 
 Veamos que hay en el offset 401000.
 
Aquí vemos una primera parte con un bucle en el que interviene nuestro nombre y donde obtendremos el “HashName” y posteriormente una operaciones aritméticas en las que finalmente modifica el valor de EAX. Tengamos en cuenta que la comprobación final es un Test eax,eax o lo que es lo mismo, comprueba si EAX = 0 y si es 0 salta al mensaje de error como vemos en la imagen siguiente.
En resumen:
  • Obtenemos el HashName.
  • Realizamos unas operaciones a ese HashName (LOCAL.1) y al serial introducido (ARG.2).
  • Si EAX <> 0 entonces serial correcto.

Sacando el “HashName”

Veamos un ejemplo de obtención del hashname para el usuario “abc”. El bucle se repetirá tantas veces como letras tenga el nombre.

Entendiendo la comprobación del serial

 
En resumen:
  • Necesitamos que EAX <> 0.
  • Necesitamos que (HashName XOR Serial) = 0 ya que:
a.       La negación de 0 es 0 –>NEG(0) = 0
b.      La resta con acarreo de 0 – 0 = 0 –>SBB 0,0 = 0
 
Hay que tener en cuenta que la resta con acarreo (SBB) de cualquier número, dará como resultado en EAX = FFFFFFFF, que al incrementar en 1 quedará en 0.
Por lo tanto si cumplimos las condiciones anteriormente expuestas, al incrementar EAX con INC EAX, este quedará en 1 haciendo nuestro serial válido.

Generando el serial válido

 Las operaciones que se realizan sobre nuestro serial son NOT, SUB y XOR. Por suerte para nosotros son reversibles quedando nuestro serial así:
Serial válido = [NOT(HashName) + 0xBADC0DE5] XOR 0x1337C0DE
Para el nombre “abc” sería:
[(NOT(734111798) + 3134983653)] XOR 322420958 = 2620237168

 Keygen en ensamblador

Como no es propósito de este manual enseñar a hacer un keygen desde 0, muestro el código importante y adjunto los links del código fuente. Si quieres ver como se hace un keygen básico en ASM desde cero mira el tutorial del Keygen para el KeygenMe#01 de eBuC.

Enlaces

 Crackme + Keygen en ASM + WinASM studio 5.1.5 [31MB]

En este reto se nos entrega un archivo WAV de 9,92 MB. Tras escucharlo y analizarlo por encima con Audacity
AVISO: Debido a que este reto está en activo no publicaré a donde pertenece. Ya sabéis que los retos stego
Karpoff.es Hace unos días intenté contactar con Karpoff ya que fué una inspiración para mi y muchos otros, lo conseguí
AperiSolve es un conjunto de herramientas de análisis esteganográfico que nos ayuda a echar un primer vistazo cuando sospechamos que

En este reto se nos entrega un archivo WAV de 9,92 MB. Tras escucharlo y analizarlo por encima con Audacity no llego a ningún lado por lo que me tiro al descarte de herramientas conocidas, y en ésta ocasión sale a escena DeepSound.

Sin más dilación extraemos el JPG y continuamos.

La aparición en escena de DeepSound me hace sospechar sobre el uso de herramientas conocidas y ¡bingo!, sale a escena StegHide. En esta ocasión el autor del reto nos lo ha puesto fácil y la extracción no requiere clave.

Al abrir el archivo TXT como texto vemos lo siguiente:

y si lo abrimos con un editor hexadecimal vemos esto otro:

Claramente el archivo esconde algo que por la repetición de los caracteres me hace sospechar de un simple XOR y efectivamente la flag está XOReada. Tras un ataque preliminar, digamos que los árboles no me dejaban ver el bosque, de modo que limpié los bytes correspondientes a la frase «this 󠁓󠁈󠁓󠁻󠁴is 󠀰󠀰󠁟󠀳󠀴the 󠁳󠁹󠁟󠁭󠀴flag 󠁮󠁽󠀠:)» y procesé de nuevo obteniendo por fin la ansiada flag.

RAW bytes
FF FE 74 00 68 00 69 00 73 00 20 00 40 DB 53 DC 40 DB 48 DC 40 DB 53 DC 40 DB 7B DC 40 DB 74 DC 69 00 73 00 20 00 40 DB 30 DC 40 DB 30 DC 40 DB 5F DC 40 DB 33 DC 40 DB 34 DC 74 00 68 00 65 00 20 00 40 DB 73 DC 40 DB 79 DC 40 DB 5F DC 40 DB 6D DC 40 DB 34 DC 66 00 6C 00 61 00 67 00 20 00 40 DB 6E DC 40 DB 7D DC 40 DB 20 DC 3A 00 29 00

Cleaned bytes [quitando this 󠁓󠁈󠁓󠁻󠁴is 󠀰󠀰󠁟󠀳󠀴the 󠁳󠁹󠁟󠁭󠀴flag 󠁮󠁽󠀠:)]
FF FE 40 DB 53 DC 40 DB 48 DC 40 DB 53 DC 40 DB 7B DC 40 DB 74 DC 40 DB 30 DC 40 DB 30 DC 40 DB 5F DC 40 DB 33 DC 40 DB 34 DC 40 DB 73 DC 40 DB 79 DC 40 DB 5F DC 40 DB 6D DC 40 DB 34 DC 40 DB 6E DC 40 DB 7D DC 40 DB 20 DC


clave XOR == 00fc60fb

Resultado
S   H   S   {   t   0   0   _   3   4   s   y   _   m   4   n   }

AVISO: Debido a que este reto está en activo no publicaré a donde pertenece.

Ya sabéis que los retos stego son muy variopintos. El otro día me encontré con uno que parecía que iba a ser complejo pero en realidad era bastante sencillo.

Tras varias pruebas complejas infructuosas, se me ocurrió descomponer por canales y efectivamente ese era el camino. Para ello yo utilicé la herramienta StegSolve de mi querido Caesum, pero podéis resolverlo incluso online con Pinetools.

Descomposición RGB

Karpoff.es

Hace unos días intenté contactar con Karpoff ya que fué una inspiración para mi y muchos otros, lo conseguí y se me ocurrió hacerle una entrevista, aquí tenéis el resultado.

Para los recién llegados diré que, Karpoff Spanish Tutor era (y sigue siendo aunque no se actualice), una gran web colaborativa donde encontrar cantidad de manuales y programas en Castellano.

deurus: ¿Qué te llevó a realizar la web?, es decir, que te hizo levantarte una mañana y decir, venga, voy a realizar una web sobre ingeniería inversa.

Karpoff: Pues mira, fue de la siguiente manera. Por aquel entonces (te hablo de los 90 y poco) yo pasaba mi tiempo libre intentando saltar las protecciones de los programas que conseguía generalmente en revistas de informática.

Desconocía que existía un mundillo dedicado a esas artes.

En los años 90 no había internet ni nada parecido que yo sepa, sobre el 95 creo recordar, telefónica saco una cosa que se llamaba Infobia y era una especie de intranet de telefónica donde accedías a un contenido muy limitado, pero te permitía salir de alguna manera bastante limitada también a lo que conocemos como internet (todo era mega lento, velocidades de uno o dos kb por segundo) con módem y llamadas analógicas.

No se como, ya que no existia o no era conocido Google tampoco había casi buscadores, conocí la famosa y maravillosa pagina de «Fravia» dedicada a la ingeniería inversa con muchísima documentación, y proyectos de estudio de protecciones, lamentablemente para el momento hispano, toda la documentación estaba en ingles .

Investigando conocí paginas hispanas con proyectos interesantes (aunque muchas de ellas aun siendo hispanas publicaban todo en ingles)

Conocí también otra pagina, el “ECD” estudio colectivo de desprotecciones + WTK en castellano e ingles que me sorprendió gratamente y donde se publicaban proyectos propios del grupo WTK y de otros grupos como estado+porcino.

los tres grupos hispanos del momento eran WTK, TNT y KUT, pertenecí a TNT durante algún tiempo, aunque el objetivo del grupo no me convencía ya que era exclusivamente la creación de cracks a mansalva por lo que no estuve más de un año.

Yo echaba de menos un sitio como “Fravia” pero en castellano donde todos los interesados pudiéramos colaborar y ayudarnos con temas de ingeniería inversa.

Ya en los 90 y mucho, todo lo relacionado con internet había evolucionado bastante, las conexiones también eran mas rápidas, ya no hacia falta conectarte a infobia sino directamente a internet.

Yo disponía de mucho tiempo libre y empecé un proyecto en solitario “Karpoff Spanish Tutor” mas conocido como “la pagina de karpoff” con proyectos de mi cosecha y con temas que me gustaban mucho, como la programación, los compiladores el software en general etc.

Luego todo lo demás fue llegando poco a poco, a la gente le gustaba y tenia muchísimas ganas de aprender y sobre todo de colaborar.

El proyecto alcanzo unos niveles impresionantes en cuanto a colaboración y recepción de material, había días que estaba mas de 14 horas actualizando la pagina y buscando nuevos servidores para alojarla, ya que me los cerraban casi semanalmente. Y la verdad.. cada vez me costaba mas tiempo mantener la pagina.

Luego gracias a Red Futura tuvimos un hostin de calidad y gratuito.

El proyecto era tan amplio que me fue imposible conciliar vida laboral y vida en internet todo esto empezaba a ser incompatible.

deurus: ¿Empezaste solo o erais un grupo de amiguetes?

Karpoff: Esta te la he contestado en la primera pregunta, vamos… que empecé yo solo.

deurus: ¿Echas de menos el proyecto?

Karpoff: Hoy en día no. Hace falta muchísimo tiempo libre y muchísima dedicación a nivel organizativo.

Echo de menos el movimiento que se creo y la actividad que alcanzo el movimiento cracking hispano. Salían grupos de cracker con nuevos proyectos y paginas hasta de debajo de las piedras 🙂 la ingenieria inversa se puso un poco de moda, conocí a gente muy interesante como Ricardo Narvaja, Numi_tor, Demian y muchas otras personas con muchos conocimientos.

Después de cerrar la pagina todo se quedo un poco cojo y todo el movimiento se empezó a diluir bastante rápido.

deurus: ¿Lo retomarías día de hoy?

Karpoff: La verdad es que no, ya no es mi tiempo, ahora me dedico al trabajo y mi familia y en ratos libres intento reventar algún programa. Sobre todo crackmes.

deurus: ¿Tienes o colaboras activamente en algún proyecto relacionado con la Ingeniería Inversa? 

Karpoff: No, no tengo tiempo. Mantengo contacto por correo con gente de que conocí en esa época y me sorprende que la gente no se olvida de mí. Recibo bastante correo en esta cuenta pidiéndome alguna entrevistilla, opiniones y muchos muchos agradecimientos de mucha gente por la página.

deurus: Yo por aquel entonces tenía 17 años, ¿se le puede preguntar la edad a Karpoff?

Karpoff: Pues yo tengo 45, por aquel entonces tenia unos 29 . La ingeniería inversa siempre fue mi pasión. Desde bien pequeño mi obsesión ha sido conocer como y porque funcionaba todo 🙂 hasta el punto de desmontar todo aquello que me llamaba la atención, mi madre estaba desesperada ya que dejaba todo destripado y muchas veces sin posiblilidad de reparacion.

deurus: ¿Te dedicas a algo relacionado con la informática?

Karpoff: Si, desde esos tiempos me encargo de los sistemas informáticos y equipos técnicos de una empresa bastante conocida, además ese fue uno de los principales motivos del cierre de la página.

Hubo gente interesada en seguir con el proyecto, aunque finalmente todo quedó en nada. Supongo que vieron que el proyecto requería muchísimo tiempo y mucho mucho trabajo.

Me dio mucha lastima no poder seguir con la página y mucha más que nadie se hiciera cargo de ella.

No hace mucho al desaparecer los redireccionadores “come.to” adquirí un dominio “karpoff.es” donde enlace tres mirror de la página para dejar un punto de acceso a ellos.

deurus: Finalmente ¿quieres decir algo a los lectores?

Karpoff: Pues sí, sobre todo dar las gracias a los que me conocen y tuvieron relación con la página, siempre me han hecho sentir grande y siempre tuve mucha colaboración y muchos ánimos por parte de los lectores.

Para los que no me conocen y les gusta la ingeniería inversa, decirles que lo que se aprende crackeando no lo enseñan en ningún sitio 🙂 y es muy muy gratificante.

deurus: Muchas gracias por tu atención, ha sido un placer.

Karpoff: Muchas gracias a ti, me ha hecho mucha ilusión y me ha gustado mucho tu blog.

Saludos !!

Karpoff

AperiSolve es un conjunto de herramientas de análisis esteganográfico que nos ayuda a echar un primer vistazo cuando sospechamos que una imagen esconde algo.

Zsteg es una herramienta especializada en la detección y extracción de información oculta en imágenes, especialmente en formatos PNG y BMP. Está orientada a la esteganografía basada en bit-planes y es muy popular en entornos CTF y análisis forense, gracias a su capacidad para automatizar búsquedas exhaustivas de datos escondidos en los bits menos significativos (LSB) y en configuraciones de color poco habituales. Su principal fortaleza es que no se limita a examinar un único plano: prueba sistemáticamente combinaciones de canales (R, G, B, A), número de bits, orden de lectura y posicionamiento, detectando patrones que podrían pasar inadvertidos en una revisión manual.

Entre sus características más destacadas se encuentran la identificación automática de firmas de archivos (ZIP, PNG, texto ASCII, GZIP, etc.), la extracción directa de bitstreams reconstruidos y el soporte para diferentes rutas de exploración, como b1,rgb,lsb,xy, que describen exactamente cómo se han recuperado los datos. Esta capacidad de correlacionar parámetros técnicos con resultados concretos convierte a zsteg en una herramienta muy eficiente tanto para localizar contenido oculto como para entender la técnica esteganográfica aplicada.

En AperiSolve se utiliza únicamente la parte de Zsteg encargada de ejecutar el análisis automático y devolver todas las detecciones posibles de esteganografía LSB en imágenes PNG y BMP. Concretamente, AperiSolve llama al comando zsteg <imagen> tal como está implementado en el módulo analyze_zsteg , y captura la salida completa línea por línea. Esta salida incluye todas las combinaciones probadas de bit-planes (b1, b2…), canales (r, g, b, a), orden de bits (lsb/msb) y métodos de recorrido (xy), junto con cualquier coincidencia que zsteg reconozca como firma de archivo o texto. Es decir, AperiSolve no aplica filtros ni interpretación adicional: muestra exactamente lo que zsteg detecta y lo organiza para que el usuario pueda identificar rápidamente si existe un archivo embebido, contenido ASCII, o algún patrón de interés.

En AperiSolve veremos algo como esto:

... 
b1,a,lsb,xy         .. 
b1,a,msb,xy         .. 
b1,rgb,lsb,xy       .. file: Zip archive data, at least v1.0 to extract, compression method=store
b1,rgb,msb,xy       .. 
b1,bgr,lsb,xy       .. 
b1,bgr,msb,xy       .. 
b1,rgba,lsb,xy      .. 
b1,rgba,msb,xy      .. file: OpenPGP Public Key
b1,abgr,lsb,xy      .. 
b1,abgr,msb,xy      .. file: OpenPGP Secret Key
b2,r,lsb,xy         .. 
b2,r,msb,xy         .. text: "P@UPUUPAAUU@"
b2,g,lsb,xy         .. text: "(ahOFyIS!"
...

Para entender mejor a que se refiere todo esto vamos a repasar lo básico.

¿Qué es LSB y qué es MSB?

Cuando hablamos de esteganografía en imágenes PNG/BMP, nos referimos a manipular bits dentro de los canales de color (R, G, B, A). Cada canal tiene un valor de 0–255, es decir, 8 bits:

R = 11001010
G = 00110101
B = 11100001

LSB Least Significant Bit (bit menos significativo). Es el bit más débil, el de la derecha:

1100101[0]   ← LSB

Modificarlo cambia muy poco el color, por eso se usa en esteganografía.
Ejemplo: cambiar 11001010 ↦ 11001011 no cambia el color perceptible.

MSB Most Significant Bit (bit más significativo). Es el bit más importante, el de la izquierda:

[1]1001010   ← MSB

Modificarlo sí altera mucho el color. A veces se usa pero suele ser detectable.

Cuando Zsteg muestra una línea del estilo b1,rgb,lsb,xy .. file: Zip archive data, está indicando que ha analizado la imagen extrayendo bits según la ruta especificada —en este caso, 1 bit por píxel (b1), combinando los canales rojo, verde y azul (rgb), utilizando el bit menos significativo (lsb) y recorriendo los píxeles en orden normal de lectura (xy)— y que, tras recomponer esos bits, el resultado coincide con la cabecera reconocible de un tipo de archivo real. Por eso aparece “file: Zip archive data”: significa que los bits ocultos forman un flujo válido cuya firma corresponde a un archivo ZIP. En otras ocasiones puede detectar texto ASCII, PNG, JPEG u otros formatos. En resumen, cuando Zsteg muestra esta línea no solo indica dónde se ocultan los datos, sino que confirma que lo recuperado es un archivo auténtico y probablemente extraíble, ya que la estructura binaria coincide con un formato conocido.

Si vemos que Zsteg nos ofrece algo interesante, podemos extraerlo mediante el comando:

zsteg -E b1,rgb,lsb,xy imagen.png > dump.bin

También es habitual usar herramientas como StegSolve. En este caso debemos dirigirnos a Analyse > Data extract para comprobar lo encontrado por zsteg y extraerlo mediante Save Bin.

Zsteg> Significado <StegSolve
b1Extrae 1 bit por canal (bit plano 0, el menos significativo).En Bit Planes, marca Red 0, Green 0, Blue 0. Solo esos.
rgbUsa R + G + B en ese orden para reconstruir los bytes.En Bit Plane Order, selecciona RGB.
lsbLee los bits empezando por el LSB (bit 0) antes que el MSB.En Bit Order, selecciona LSB First.
xyRecorre la imagen por filas (izquierda → derecha, arriba → abajo).En Extract By, elige Row.

Más allá de este caso concreto, conviene recordar que la esteganografía no se limita a los LSB: existen métodos basados en paletas, metadatos, manipulación de PNG chunks, secuencias alfa, audio incrustado o capas completas en formatos no comprimidos. Por ello, un análisis completo debería combinar la búsqueda clásica de LSB con herramientas complementarias como binwalk, foremost, exiftool, strings, o incluso análisis manual de cabeceras hexadecimales.