Solución para el KeygenMe ASM de Flamer

Intro

El crackme que analizamos hoy está hecho en ensamblador y si bien su dificultad es baja, la creación del keygen es un poco liosa. Al keygen que veremos más adelante, le he dado cierta aleatoriedad para que quede más elegante.

El crackme comprueba el serial en función de un identificador de 4 dígitos que el mismo crackme genera.

Análisis

Coje nuestro serial mediante la función GetDlgItemTextA.

004010D3  |.  68 FF000000   PUSH 0FF                                 ; /MaxCount = 255.
004010D8  |.  68 40324000   PUSH OFFSET 00403240                     ; |String
004010DD  |.  68 EC030000   PUSH 3EC                                 ; |ItemID = 1004.
004010E2  |.  FF75 08       PUSH DWORD PTR SS:[ARG.1]                ; |hDialog => [ARG.1]
004010E5  |.  E8 6E010000   CALL <JMP.&user32.GetDlgItemTextA>       ; \USER32.GetDlgItemTextA
004010EA  |.  68 40324000   PUSH OFFSET 00403240                     ; /String
004010EF  |.  E8 52010000   CALL <JMP.&kernel32.lstrlenA>            ; \KERNEL32.lstrlen
004010F4  |.  A3 47334000   MOV DWORD PTR DS:[403347],EAX
004010F9  |.  33DB          XOR EBX,EBX
004010FB  |.  33C0          XOR EAX,EAX
004010FD  |.  EB 54         JMP SHORT 00401153

Comprueba que nuestro serial esté formado por números (30h – 39h), letras de la A a la F (41h – 46h) y el guión (2Dh), es decir, el alfabeto hexadecimal más el guión. Si hay algún dígito indeseado nos tira fuera.

004010FF  |>  8A83 40324000 /MOV AL,BYTE PTR DS:[EBX+403240]
00401105  |.  3C 2D         |CMP AL,2D
00401107  |.  74 40         |JE SHORT 00401149
00401109  |.  3C 30         |CMP AL,30
0040110B  |.  74 3C         |JE SHORT 00401149
0040110D  |.  3C 31         |CMP AL,31
0040110F  |.  74 38         |JE SHORT 00401149
00401111  |.  3C 32         |CMP AL,32
00401113  |.  74 34         |JE SHORT 00401149
00401115  |.  3C 33         |CMP AL,33
00401117  |.  74 30         |JE SHORT 00401149
00401119  |.  3C 34         |CMP AL,34
0040111B  |.  74 2C         |JE SHORT 00401149
0040111D  |.  3C 35         |CMP AL,35
0040111F  |.  74 28         |JE SHORT 00401149
00401121  |.  3C 36         |CMP AL,36
00401123  |.  74 24         |JE SHORT 00401149
00401125  |.  3C 37         |CMP AL,37
00401127  |.  74 20         |JE SHORT 00401149
00401129  |.  3C 38         |CMP AL,38
0040112B  |.  74 1C         |JE SHORT 00401149
0040112D  |.  3C 39         |CMP AL,39
0040112F  |.  74 18         |JE SHORT 00401149
00401131  |.  3C 41         |CMP AL,41
00401133  |.  74 14         |JE SHORT 00401149
00401135  |.  3C 42         |CMP AL,42
00401137  |.  74 10         |JE SHORT 00401149
00401139  |.  3C 43         |CMP AL,43
0040113B  |.  74 0C         |JE SHORT 00401149
0040113D  |.  3C 44         |CMP AL,44
0040113F  |.  74 08         |JE SHORT 00401149
00401141  |.  3C 45         |CMP AL,45
00401143  |.  74 04         |JE SHORT 00401149
00401145  |.  3C 46         |CMP AL,46
00401147  |.  75 07         |JNE SHORT 00401150
00401149  |>  8305 4B334000 |ADD DWORD PTR DS:[40334B],1
00401150  |>  83C3 01       |ADD EBX,1
00401153  |>  3B1D 47334000 |CMP EBX,DWORD PTR DS:[403347]
00401159  |.^ 76 A4         \JBE SHORT 004010FF
0040115B  |. A1 47334000 MOV EAX,DWORD PTR DS:[403347]
00401160  |. 3905 4B334000 CMP DWORD PTR DS:[40334B],EAX     ; si no coincide el tamaño del serial con el
00401166  |. 0F85 94000000 JNE 00401200                      ; contador nos tira fuera

La comprobación del serial la realiza sumando el valor ascii del primer dígito al valor ascii del tercero y sucesivos y a continuación restando la suma anterior al ID. Cuando finalice la comprobación de todos los dígitos del serial, el restador tiene que ser cero, de lo contrario nos tira fuera. Si el ID es cero también nos tira fuera.

Ejemplo (base 10)para ID = 4011 y SERIAL: 1-23456

  • Valores del serial: 1(49) -(no se usa) 2(50) 3(51) 4(52) 5(53) 6(54)
  • 1º + 3º: 49 + 50 = 99
  • 4011 – 99 = 3912
  • 1º + 4º: 49 + 51 = 100
  • 3912 – 100 = 3812
  • 1º + 5º: 49 + 52 = 101
  • 3812 – 101 = 3711
  • 1º + 6º: 49 + 53 = 102
  • 3711 – 102 = 3609
  • 1º + 7º: 49 + 54 = 103
  • 3609 – 103 = 3506
  • ¿3506 = 0?
0040116C  |.  33C0          XOR EAX,EAX
0040116E  |.  BB 02000000   MOV EBX,2
00401173  |.  A0 40324000   MOV AL,BYTE PTR DS:[403240]
00401178  |.  A3 43334000   MOV DWORD PTR DS:[403343],EAX
0040117D  |.  EB 13         JMP SHORT 00401192
0040117F  |>  8A83 40324000 /MOV AL,BYTE PTR DS:[EBX+403240]         ; Coje el dígito correspondiente
00401185  |.  0305 43334000 |ADD EAX,DWORD PTR DS:[403343]           ; 1ºdig + dig
0040118B  |.  2905 4F334000 |SUB DWORD PTR DS:[40334F],EAX           ; ID - (1ºdig + dig)
00401191  |.  43            |INC EBX
00401192  |>  3B1D 47334000 |CMP EBX,DWORD PTR DS:[403347]
00401198  |.^ 72 E5         \JB SHORT 0040117F
0040119A  |.  833D 4F334000 CMP DWORD PTR DS:[40334F],0              ; CHECK RESTADOR SEA = 0
004011A1  |.  75 49         JNE SHORT 004011EC
004011A3  |.  833D 3F334000 CMP DWORD PTR DS:[40333F],0              ; CHECK ID <> 0
004011AA  |.  74 40         JE SHORT 004011EC
004011AC  |.  FF35 3F334000 PUSH DWORD PTR DS:[40333F]               ; /<%d> = 0
004011B2  |.  68 00304000   PUSH OFFSET 00403000                     ; |Format = "REGISTRADO CON ID:%d"
004011B7  |.  68 40324000   PUSH OFFSET 00403240                     ; |Buf
004011BC  |.  E8 A9000000   CALL <JMP.&user32.wsprintfA>             ; \USER32.wsprintfA

Como veis, el resultado de ir restando todos los dígitos de nuestro serial con la ID debe ser cero para que el serial sea correcto.

Keygen

Lo primero que se me ocurre para obtener una solución directa es buscar una combinación de dígito + dígito que sea múltiplo del ID. Para ello podemos usar la función módulo. La función módulo lo que hace es darnos el resto de la división de dos números, de modo que si el resto es cero los números son múltiplos. Para ello debemos cruzar todos los números y letras hasta encontrar los dígitos múltiplos del ID. Un serial de este primer tipo quedaría algo así como 1-FFFFFFFFFFFFFFFFFF ya que como el primer dígito es fijo el otro se repetirá tanta veces como sea necesario para hacer que el ID sea cero.

Con nuestro reducido alfabeto, cabe la posibilidad de que no encontremos una combinación válida, por lo que tendremos que pensar en un plan B. El plan B que se me ocurre a mi es intentar forzar el plan A restando caracteres aleatorios al ID y volviendo a comprobar si encontramos múltiplos del nuevo ID. Un serial de este tipo quedaría más elegante, por ejemplo 3-A6D53B628BBBBB.

Os dejo unos cuantos números de serie.

  • Tipo A
    • ID: 1111 SERIAL: 0-55555555555
    • ID: 2500 SERIAL: 0-4444444444444444444444444
    • ID: 4982 SERIAL: 1-99999999999999999999999999999999999999999999999
    • ID: 4992 SERIAL: 0-0000000000000000000000000000000000000000000000000000
  • Tipo B
    • ID: 1112 SERIAL: 9-19247C5555
    • ID: 2499 SERIAL: A-C5ADC2233333333333333
    • ID: 4981 SERIAL: 7-C6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
    • ID: 4999 SERIAL: 4-A37BEEB8146A5CE6ECFB422B1BFF8474E852314F5A999
'Keygen for Flamer's asm keygenme
    Dim id As Integer
    Dim serial As String
    Dim tmp, tmp2, na, nb As Integer
    Dim alfabeto As Integer() = New Integer() {48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 65, 66, 67, 68, 69, 70}
    Dim r As Random = New Random
    'Button generate
    Private Sub btngen_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btngen.Click
ini:
        If txtid.TextLength <> 4 Then GoTo Mal
        id = txtid.Text
        txtdebug.Text = ""
        na = alfabeto(r.Next(1, 16))
        serial = Chr(na) & "-"
        tmp = id
        For i = 0 To alfabeto.Length - 1
            For y = 0 To alfabeto.Length - 1
                'Solución directa
                If id Mod (alfabeto(i) + alfabeto(y)) = 0 Then
                    tmp = id / (alfabeto(i) + alfabeto(y))
                    txtserial.Text = Chr(alfabeto(i)) & "-"
                    For z = 0 To tmp - 1
                        txtserial.Text &= Chr(alfabeto(y))
                    Next
                    GoTo fuera
                End If
                'Indirecta con aleatoriedad
                nb = alfabeto(r.Next(1, 16))
                tmp = tmp - (na + nb)
                serial &= Chr(nb)
                If tmp Mod (na + nb) = 0 Then
                    tmp2 = tmp / (na + nb)
                    For z = 0 To tmp2 - 1
                        serial &= Chr(nb)
                    Next
                    txtserial.Text = serial
                    GoTo fuera
                End If
                If tmp < 0 Then
                    GoTo ini
                Else
                    txtdebug.Text &= tmp & " "
                End If
            Next
        Next
Mal:
        txtserial.Text = "¿id?"
fuera:

    End Sub

Me doy cuenta que en el keygen no he utilizado el guión, pero no pasa nada, se lo dejo al lector como curiosidad.

Links


https://www.youtube.com/watch?v=iOYAn4l4wco Lista de reproducción
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
Intro Hoy vamos a hacer algo diferente, vamos a hacer un keygen con la propia víctima. El término anglosajón para
Intro Se suele decir que para cada problema hay una solución. Si esto lo llevamos al terreno stego podemos decir

ThisIsLegal.com – Realistic Challenge 4

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Introducción

Realistic Challenge 4: There is a site offering protection against hackers to website owners, the service is far too overpriced and the people running the service don’t know anything about security. Look around their site, and see how protected it is.

Hay un sitio que ofrece protección contra los hackers. El servicio tiene un precio abusivo, echa un vistazo a la web y evalúa su pretección.

Analizando a la víctima

Vemos un escueto menú pero con cosas interesantes.

Pinchamos sobre «Testimonials» y a continuación en «Customer 1»

Vemos que hay solo 3 «customers», vamos a introducir manualmente un 5 haber que pasa.

Ok, nos genera el siguiente error.

Probamos ahora con un enlace interno que nos genera el siguiente error.

http://www.thisislegal.com/newr/src/read.php?customer=../orders.php

Nos llama la atención «../beqref.cuc«. Parece una encriptación simple, probemos a poner eso mismo en el navegador.

http://www.thisislegal.com/newr/src/read.php?customer=../beqref.cuc

 

Nuestras sospechas son acertadas, ahora el error muestra esto.

Explotando a la víctima

Probamos varias cosas y al final conseguimos algo relevante con «order2.php«.

http://www.thisislegal.com/newr/src/read.php?customer=../beqre2.cuc
Tenemos un directorio interesante «secure«, si entramos en el nos salta un Login típico protegido con «.htaccess«. Lo lógico a continuación es hacernos con el archivo «.htpasswd«
http://www.thisislegal.com/newr/src/read.php?customer=../frpher/.ugcnffjq

 

Una vez obtenido el contenido del archivo «.htpasswd» lo siguiente es crackear el password con John the Ripper. Nos logueamos en la carpeta secure y reto superado.

Links

LaFarge’s Crackme 2 – Keygen por Injerto

Intro

Hoy vamos a hacer algo diferente, vamos a hacer un keygen con la propia víctima. El término anglosajón para esto es «selfkeygening» y no es que esté muy bien visto por los reversers pero a veces nos puede sacar de apuros.

La víctima elegida es el Crackme 2 de LaFarge. Está hecho en ensamblador.

Injerto Light

Primeramente vamos a realizar un injerto light, con esto quiero decir que vamos a mostrar el serial bueno en la MessageBox de error.

Abrimos Olly y localizamos el código de comprobación del serial, tenemos suerte ya que el serial se muestra completamente y no se comprueba byte a byte ni cosas raras. En la imagen inferior os muestro el serial bueno para el nombre deurus y el mensaje de error. Como podeis observar el serial bueno se saca de memoria con la instrucción PUSH 406749 y el mensaje de error con PUSH 406306.

parche01

Si cambiamos el PUSH del serial por el de el mensaje de error ya lo tendriámos. Nos situamos encima del PUSH 406306 y pulsamos espacio, nos saldrá un diálogo con el push, lo modificamos y le damos a Assemble.

10-09-2014 20-37-18

Ahora el crackme cada vez que le demos a Check it! nos mostrará:

nagserial

Keygen a partir de la víctima

Pero no nos vamos a quedar ahí. Lo interesante sería que el serial bueno lo mostrara en la caja de texto del serial. Esto lo vamos a hacer con la función user32.SetDlgItemTextA.

setdlgitemtext

Según dice la función necesitamos el handle de la ventana, el ID de la caja de texto y el string a mostrar. La primera y segunda la obtenemos fijándonos en la función GetDlgItemTextA que recoje el serial introducido por nosotros. La string es el PUSH 406749.

handleandid

Con esto ya tenemos todo lo que necesitamos excepto el espacio dentro del código, en este caso lo lógico es parchear las MessageBox de error y acierto. Las seleccionamos, click derecho y Edit > Fill with NOPs.

10-09-2014 20-39-24

nopeamos

Ahora escribimos el injerto.

injertokeygen

Finalmente con Resource Hack cambiamos el aspecto del programa para que quede más profesional y listo. Tenemos pendiente hacer el keygen puro y duro, venga agur.

10-09-2014 21-04-52

Links


Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
AVISO: Debido a que este reto está en activo no publicaré a donde pertenece. Ya sabéis que los retos stego
Intro Extensión PPM Clave cifrada Un nuevo lenguaje de programación Enlaces Intro Hoy tenemos aquí un reto de esteganografía bastante
Intro Hoy nos enfrentamos a un crackme realizado en Delphi con un algoritmo bastante sencillo. Está empacado con UPX pero

Tron – Reto IA de yoire.com

Introducción

Hace tiempo que me aficioné a los retos de Hacking y Cracking, y si bien la mayoría de ellos consisten en desencriptar una clave o realizar ingeniería inversa sobre un ejecutable, también los hay sobre programación pura y dura.

En esta ocasión se nos proporciona un código «muestra» parecido a PHP o C++ y tenemos que ingeniarnoslas para mejorarlo y ganar a la máquina.

Objetivo del juego y normas

El objetivo de esta misión es ganar a Tr0n en su propio juego: las carreras de motos. Se te proporcionará un programa (código) funcional para que veas como se controla el vehiculo. Usando tu inteligencia, tendrás que entender su uso y mejorarlo, ya que no es lo suficientemente bueno como para ganar a Tr0n. Tr0n lleva ya bastante tiempo en la parrilla de juegos y es bastante habilidoso 🙂

Cuando venzas a Tr0n un mínimo de 5 veces consecutivas, se te dará por superada esta prueba.

Buena suerte!!!

[ Available functions / Funciones disponibles ]
direction() returns current direction, change to a new one with direction([newdir])
getX(), getY() returns X and Y coordinates
collisionDistance() | collisionDistance([anydir]) returns the distance until collision
Note: parameters [*dir] can be empty or one of this values: UP DOWN LEFT or RIGHT

[ Constants / Constantes ]
UP DOWN LEFT RIGHT MAX_X MAX_Y

[ Rules / Reglas ]
Try to survive driving your bike and … / Intenta sobrevivir conduciendo tu moto y…
Don’t cross any line / No cruces ninguna línea
or crash with the corners! / o choques con las esquinas!

[ Mission / Mision ]
Use well this controller and beat Tr0n 5 consecutive times to score in this game
Usa bien este controlador y vence a Tr0n 5 veces consecutivas para puntuar en este juego

Código inicial

Nada más comenzar vemos que hemos perdido nuestra primera partida con el siguiente código:

	function controller(playerController $c){
		if($c->direction()==UP && $c->getY()<10){
			if(rand(0,1)==0) $c->direction(LEFT);
				else $c->direction(RIGHT);
			goto done;
		}
		if($c->direction()==DOWN && MAX_Y-$c->getY()<10){
			if(rand(0,1)==0) $c->direction(LEFT);
				else $c->direction(RIGHT);
			goto done;
		}
		if($c->direction()==LEFT && $c->getX()<10){
			if(rand(0,1)==0) $c->direction(UP);
				else $c->direction(DOWN);
			goto done;
		}
		if($c->direction()==RIGHT && MAX_X-$c->getX()<10){
			if(rand(0,1)==0) $c->direction(UP);
				else $c->direction(DOWN);
		}
		done:
	}

Nosotros somos el AZUL y la máquina es el VERDE.

loose_inicial

Primeras modificaciones

Lo primero que tenemos que modificar son las distancias de las coordenadas que estan puestas en «<10» al mínimo, que sería «<2«. También sustituir la aleatoriedad «rand(0,1)==0» por algo más útil y comenzar a usar la función «collisionDistance()«.

Como podéis observar en el código inferior, usamos la función «collisionDistance()» para detectar cuando estamos a punto de chocar «collisionDistance() ==1» y para detectar a que lado nos conviene más girar en función de donde podamos recorrer más distancia «if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT); else $c->direction(RIGHT);«.

if($c->direction()==UP && $c->getY()==1 && $c->collisionDistance() ==1){
			if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT);
				else $c->direction(RIGHT);
		}
if($c->direction()==DOWN && MAX_Y-$c->getY()<2 || $c->collisionDistance() ==1){
			if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT);
				else $c->direction(RIGHT);
		}
if($c->direction()==LEFT && $c->getX()==1 && $c->collisionDistance() ==1){
			if($c->collisionDistance([UP]) >2) 
                                $c->direction(UP);
				else 
                                $c->direction(DOWN);
		}
if($c->direction()==RIGHT && MAX_X-$c->getX()<2 || $c->collisionDistance() ==1){
			if($c->collisionDistance([UP]) >2) $c->direction(UP);
				else $c->direction(DOWN);
				
		}

Terminando la faena

El código anterior de por sí no nos resuelve mucho si no afinamos un poco más, comprobando todos las posibles colisiones y tomando la dirección correcta en función de la mayor distancia a recorrer.

    if($c->collisionDistance([UP])==1 || $c->collisionDistance() ==1){
             if($c->collisionDistance([LEFT]) > $c->collisionDistance([RIGHT]))
               $c->direction(LEFT);
             else 
               $c->direction(RIGHT);
     }
     if($c->collisionDistance([DOWN])==1 || $c->collisionDistance() ==1){
            if($c->collisionDistance([LEFT]) > $c->collisionDistance([RIGHT]))
               $c->direction(LEFT);
             else 
               $c->direction(RIGHT);
     }
     if($c->collisionDistance([RIGHT])==1 || $c->collisionDistance() ==1){
             if($c->collisionDistance([UP]) > $c->collisionDistance([DOWN]))
               $c->direction(UP);
             else 
               $c->direction(DOWN);
     }
     if($c->collisionDistance([LEFT])==1 || $c->collisionDistance() ==1){
          if($c->collisionDistance([UP]) > $c->collisionDistance([DOWN]))
               $c->direction(UP);
             else 
               $c->direction(DOWN);
     }

Código ganador

El código que utilicé yo para ganar a Tron es el siguiente:

function controller(playerController $c){
uno:
if($c->direction()==UP && $c->getY()==1 && $c->collisionDistance() ==1){
			if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT);
				else $c->direction(RIGHT);
				
		}
if($c->direction()==DOWN && MAX_Y-$c->getY()<2 || $c->collisionDistance() ==1){
			if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT);
				else $c->direction(RIGHT);
				
		}
if($c->direction()==LEFT && $c->getX()==1 && $c->collisionDistance() ==1){
			if($c->collisionDistance([UP]) >2) 
                                $c->direction(UP);
				else 
                                $c->direction(DOWN);
				
		}
if($c->direction()==RIGHT && MAX_X-$c->getX()<2 || $c->collisionDistance() ==1){
			if($c->collisionDistance([UP]) >2) $c->direction(UP);
				else $c->direction(DOWN);
				
		}
dos:
    if($c->collisionDistance([UP])==1 || $c->collisionDistance() ==1){
             if($c->collisionDistance([LEFT]) > $c->collisionDistance([RIGHT]))
               $c->direction(LEFT);
             else 
               $c->direction(RIGHT);
     }
     if($c->collisionDistance([DOWN])==1 || $c->collisionDistance() ==1){
            if($c->collisionDistance([LEFT]) > $c->collisionDistance([RIGHT]))
               $c->direction(LEFT);
             else 
               $c->direction(RIGHT);
     }
     if($c->collisionDistance([RIGHT])==1 || $c->collisionDistance() ==1){
             if($c->collisionDistance([UP]) > $c->collisionDistance([DOWN]))
               $c->direction(UP);
             else 
               $c->direction(DOWN);
     }
     if($c->collisionDistance([LEFT])==1 || $c->collisionDistance() ==1){
          if($c->collisionDistance([UP]) > $c->collisionDistance([DOWN]))
               $c->direction(UP);
             else 
               $c->direction(DOWN);
     }
		done:
	}

Mis jugadas ganadoras:

01

02

03

04

05

El código no es infalible ya que como comprabaréis vosotros mismos, no se puede ganar siempre por el mero hecho de la aleatoriedad y de la suerte. Cuando dispongais de un código decente, ejecutarlo varias veces para estar seguros antes de desecharlo.

Curiosidades

Como se suele decir, la banca siempre gana, y en este caso no iba a ser menos y es que en caso de empate ¡la banca gana!

empate

 

Por último deciros que podéis utilizar el código ya que la web detecta los códigos ganadores para que no se repitan.

Enlaces

Reto forense de HackThis!!

Intro

We require your services once again. An employee from our company had recently been identified as a known criminal named Brett Thwaits. He is considered to have stolen missile launch codes from the US navy which unfortunately were handed to us for a brief period of time. As of now, we are accussed of the theft and unless we do something about it, we’re gonna end in some serious trouble. Before Brett left, he formatted the thumbdrive which used to store the launch codes. Fortunately, our system had made a backup image of the drive. See if you can recover the fourth launch code. Good luck!

Requerimos una vez más sus servicios. Un empleado de nuestra empresa había sido identificado recientemente como el conocido criminal Brett Thwaites. Se considera que ha robado los códigos de lanzamiento de misiles de la Armada de Estados Unidos, que por desgracia fueron entregados a nosotros por un breve período de tiempo. A partir de ahora, se nos acusa del robo y a menos que hagamos algo al respecto, vamos a tener serios problemas. Antes de que Brett se fuera formateó el dispositivo que se usa para almacenar los códigos de lanzamiento. Afortunadamente, nuestro sistema había hecho una copia de seguridad de la unidad. Mira a ver si puedes recuperar los cuatro códigos de lanzamiento. ¡Buena suerte!

Análisis del archivo

  • Fichero: forensics1
  • Extensión: img
  • Tamaño: 25 MB (26.214.400 bytes)
  • Hash MD5: 56e4cd5b8f076ba8b7c020c7339caa2b

Echamos un vistazo al archivo con un editor hexadecimal y vemos encabezados de tipos de archivos conocidos, por lo que la unidad no está encriptada. Al no estar encriptada la imagen, usaremos una herramienta de creación propia, Ancillary. En esta ocasión usaremos la versión 2 alpha, que actualmente está en desarrollo, pero podéis usar tranquilamente la versión 1.x.

Ancillary nos muestra lo que ha encontrado en el archivo por lo que pasamos a analizarlo.

2016-03-06_11-20-52

Como siempre os digo en este tipo de retos, es difícil discriminar unos ficheros en favor de otros, ya que no sabemos si lo que buscamos va a estar en una imagen, documento u otro tipo de fichero codificado o no.

2016-03-06_11-33-55

Tras analizar todos los ficheros, rápidamente suscitan nuestro interés los ficheros RAR, y más cuando el fichero que contienen es un fichero de audio y su nombre es tan sugerente como «conversation_dtmf.wav«. Como podéis apreciar en la imagen, el fichero RAR está protegido con clave por lo que necesitamos esquivar ese obstaculo.

2016-03-06_11-35-32

Recuperando una clave de un archivo RAR

En este caso el software que voy a utilizar es cRARk, pero podéis utilizar cualquier otro. Como se muestra en la imagen de abajo, mi procesador es más bien modesto pero la clave no tiene más que tres dígitos por lo que no supone ninguna dificultad recuperarla.

2016-03-06_11-42-40

DTMF (Dual-Tone Multi-Frequency)

Una vez recuperado el archivo WAV, al reproducirlo escuchamos 16 tonos telefónicos que inmediatamente me recuerdan las aventuras del mítico «Capitán Crunch«. Os animo a leer la historia de John Draper y su famosa «Blue Box» ya que no tiene desperdicio y forma parte de la historia del Phreaking.

Por si no conocías la historia, el propio nombre del fichero wav nos da la pista clave de qué buscar al contener las siglas «DTMF«.

Al ser pulsada en el teléfono la tecla correspondiente al dígito que quiere marcar, se envían dos tonos, de distinta frecuencia: uno por columna y otro por fila en la que esté la tecla, que la central decodifica a través de filtros especiales, detectando qué dígito se marcó.

No tenemos más que buscar un decodificador de tonos para obtener los preciados códigos de lanzamiento.

2016-03-06_11-44-24

Links

Blooper Tech Movie II – Hackers

En esta ocasión vamos a hablar de una película de culto de los años 90, Hackers – Piratas Informáticos. La verdad es que aunque puede ser entretenida, tecnológicamente es una pesadilla y es que esta película es un claro ejemplo de cuando Hollywood prefiere agradar visualmente a representar escenas realistas.

Tras cuatro minutos en los que se nos presenta a Dade (Jonny Lee Miller) y sus problemas con la ley a una temprana edad, saltamos unos años después hasta ver a Dade encerrado en su habitación volviendo a las andadas intentando acceder ilegítimamente a los servidores de una cadena de televisión. Para ello hace uso de algo muy conocido en el mundillo Hacker, la Ingeniería Social, y es que aunque ahora disponemos de «cierta» conciencia en seguridad informática, en los años 90 no había ninguna. Bien, el caso es que Dade llama a las oficinas de la citada cadena de televisión a una hora en la que no hay más que el vigilante de seguridad y éste le proporciona un número que debemos suponer que es la IP de un Módem y comienza la intrusión.

BTM

Para empezar, se le ve al protagonista escribir comandos cuando en la pantalla no hay más que una animación en algo parecido a una ventana de terminal al estilo «Commander», pero no vemos lo que escribe, algo irreal.

vlcsnap-2015-11-25-18h00m25s936

A continuación y como por arte de magia entra en el sistema y lo que se muestra es una animación parpadeante con el logo de la compañia y el nombre del sistema al que estamos accediendo, también irreal.

vlcsnap-2015-11-25-12h43m18s762

Finalmente nos muestra sus intenciones, y son nada más y nada menos que cambiar la programación actual simplemente cambiando de VHS, inmejorable. A continuación os muestro la secuencia.

Por lo menos nos queda el consuelo de que cambia la tertulia de un tipejo con ciertos prejuicios raciales por una programación más interesante como «The Outer limits«, aquí conocida como «Más allá del límite«.

El resto de escenas informáticas de la película carecen de veracidad, la única que se salva, puede ser cuando accede al servidor del Instituto para programar el sistema contra incendios y vengarse de Kate (Angelina Jolie), ya que las imágenes que aparecen son de los primeros entornos gráficos de Mac.

vlcsnap-2015-11-25-18h29m08s043

vlcsnap-2015-11-25-18h29m15s390

vlcsnap-2015-11-25-18h29m31s550

Es extraño que casi todas las intrusiones las realiza desde su propia casa, algo poco inteligente, ya que por muy bueno que seas, siempre dejas huellas. Solo cuando se enfrentan a un Super-Hacker se empiezan a tomar las cosas en serio y realizan los ataques desde cabinas telefónicas.

En la película También hacen mención al Phreaking y a algunos de los libros que eran famosos por aquella época pero poco más que destacar. Por todo esto y mucho más, y aunque me caen igual de bien tanto Angelina como Jonny, la película se merece un majestuoso sello de BTM.

hackers_sello

Enlaces


Introducción Esta es la tercera y última entrega de los crackmes de Cruehead. En esta ocasión nos enfrentamos a un
Hoy en día, la descarga de contenido multimedia de ciertas webs es imposible o muy difícil. En ciertos casos lo
Introducción Esta vez se trata de un crackme realizado en VC++ 5.0/6.0 y en sus entrañas utiliza RSA-24. En este
Introducción Objetivo del juego y normas Código inicial Primeras modificaciones Terminando la faena Código ganador Curiosidades Enlaces Introducción Hace tiempo

Solución al KeygenMe1 (RSA200) de Dihux

Introducción

Empezamos con lo que espero que sea una serie de crackmes RSA. En este caso en particular y como el propio autor nos adelanta, se trata de RSA-200.

En criptografía, RSA (Rivest, Shamir y Adleman) es un sistema criptográfico de clave pública desarrollado en 1977. Es el primer y más utilizado algoritmo de este tipo y es válido tanto para cifrar como para firmar digitalmente.

 Funcionamiento de RSA

  1. Inicialmente es necesario generar aleatoriamente dos números primos grandes, a los que llamaremos p y q.
  2. A continuación calcularemos n como producto de p y q:
    n = p * q
  3. Se calcula fi:
    fi(n)=(p-1)(q-1)
  4. Se calcula un número natural e de manera que MCD(e, fi(n))=1 , es decir e debe ser primo relativo de fi(n). Es lo mismo que buscar un numero impar por el que dividir fi(n) que de cero como resto.
  5. Mediante el algoritmo extendido de Euclides se calcula d que es el inverso modular de e.
    Puede calcularse d=((Y*fi(n))+1)/e para Y=1,2,3,... hasta encontrar un d entero.
  6. El par de números (e,n) son la clave pública.
  7. El par de números (d,n) son la clave privada.
  8. Cifrado: La función de cifrado es.
    c = m^e mod n
  9. Descifrado: La función de descifrado es.
    m = c^d mod n

OllyDbg

Con OllyDbg analizamos la parte del código que nos interesa.

00401065  |>push    19                          ; /Count = 19 (25.)
00401067  |>push    00404330                    ; |Buffer = dihux_ke.00404330
0040106C  |>push    2711                        ; |ControlID = 2711 (10001.)
00401071  |>push    dword ptr [ebp+8]           ; |hWnd
00401074  |>call    <GetDlgItemTextA>           ; \GetDlgItemTextA
00401079  |>cmp     eax, 5                      ;  Tamaño nombre >= 5
0040107C  |>jb      00401214
00401082  |>cmp     eax, 14                     ;  Tamaño nombre <= 0x14
00401085  |>ja      00401214
0040108B  |>mov     [404429], eax
00401090  |>push    96                          ; /Count = 96 (150.)
00401095  |>push    00404349                    ; |Buffer = dihux_ke.00404349
0040109A  |>push    2712                        ; |ControlID = 2712 (10002.)
0040109F  |>push    dword ptr [ebp+8]           ; |hWnd
004010A2  |>call    <GetDlgItemTextA>           ; \GetDlgItemTextA
004010A7  |>test    al, al
........
004010D8  |>xor     ecx, ecx                    ;  Case 0 of switch 004010B6
004010DA  |>/push    0
004010DC  |>|call    <__BigCreate@4>
004010E1  |>|mov     [ecx*4+404411], eax
004010E8  |>|inc     ecx
004010E9  |>|cmp     ecx, 6
004010EC  |>\jnz     short 004010DA
004010EE  |>push    dword ptr [404411]          ; /Arg3 = 00B60000
004010F4  |>push    10                          ; |16??
004010F6  |>push    0040401F                    ; |Arg1 = 0040401F ASCII "8ACFB4D27CBC8C2024A30C9417BBCA41AF3FC3BD9BDFF97F89"
004010FB  |>call    <__BigIn@12>                ; \dihux_ke.004013F3
00401100  |>push    dword ptr [404415]          ; /Arg3 = 00C70000
00401106  |>push    10                          ; |Arg2 = 00000010
00401108  |>push    00404019                    ; |Arg1 = 00404019 ASCII "10001"
0040110D  |>call    <__BigIn@12>                ; \dihux_ke.004013F3
00401112  |>push    dword ptr [404425]          ; /Arg3 = 00CB0000
00401118  |>push    10                          ; |Arg2 = 00000010
0040111A  |>push    00404349                    ; |Arg1 = 00404349 ASCII "123456789123456789"
0040111F  |>call    <__BigIn@12>                ; \dihux_ke.004013F3
00401124  |>push    00404330                    ; /String = "deurus"
00401129  |>call    <lstrlenA>                  ; \lstrlenA
0040112E  |>push    dword ptr [404419]
00401134  |>push    eax
00401135  |>push    00404330                    ;  ASCII "deurus"
0040113A  |>call    <__BigInB256@12>
0040113F  |>push    dword ptr [404421]          ;  c
00401145  |>push    dword ptr [404411]          ;  n = 8ACFB4D27CBC8C2024A30C9417BBCA41AF3FC3BD9BDFF97F89
0040114B  |>push    dword ptr [404415]          ;  e = 10001
00401151  |>push    dword ptr [404425]          ;  serial
00401157  |>call    <__BigPowMod@16>            ;  c = serial^e (mod n)
0040115C  |>mov     eax, 1337
00401161  |>push    0                           ; /Arg4 = 00000000
00401163  |>push    dword ptr [40441D]          ; |x
00401169  |>push    eax                         ; |0x1337
0040116A  |>push    dword ptr [404421]          ; |c
00401170  |>call    <__BigDiv32@16>             ; \x = c/0x1337
00401175  |>push    dword ptr [40441D]          ;  x
0040117B  |>push    dword ptr [404419]          ;  nombre
00401181  |>call    <__BigCompare@8>            ; ¿x = nombre?
00401186  |>jnz     short 0040119C
00401188  |>push    0                           ; /Style = MB_OK|MB_APPLMODAL
0040118A  |>push    00404014                    ; |Title = "iNFO"
0040118F  |>push    00404004                    ; |Text = "Serial is valid"
00401194  |>push    dword ptr [ebp+8]           ; |hOwner
00401197  |>call    <MessageBoxA>               ; \MessageBoxA
0040119C  |>xor     ecx, ecx
0040119E  |>/push    dword ptr [ecx*4+404411]
004011A5  |>|call    <__BigDestroy@4>
004011AA  |>|inc     ecx
004011AB  |>|cmp     ecx, 6
004011AE  |>\jnz     short 0040119E

 Lo primero que observamos es que el código nos proporciona el exponente público (e) y el módulo (n).

  • e = 10001
  • n = 8ACFB4D27CBC8C2024A30C9417BBCA41AF3FC3BD9BDFF97F89

A continuación halla c = serial^d mod n. Finalmente Divide c entre 0x1337 y lo compara con el nombre.

Como hemos visto en la teoría de RSA, necesitamos hallar el exponente privado (d) para poder desencriptar, según la fórmula vista anteriormente.

  • Fórmula original: m=c^d mod n
  • Nuestra fórmula: Serial = x^d mod n. Siendo x = c * 0x1337

Calculando un serial válido

Existen varios ataques a RSA, nosotros vamos a usar el de factorización. Para ello vamos a usar la herramienta RSA Tool. Copiamos el módulo (n), el exponente público (e) y factorizamos (Factor N).

rsatool1

Hallados los primos p y q, hallamos d (Calc. D).

rsatool4

Una vez obtenido d solo nos queda obtener x, que recordemos es nombre * 0x1337.

Cuando decimos nombre nos referimos a los bytes del nombre en hexadecimal, para deurus serían 646575727573.

Ejemplo operacional

Nombre: deurus

x = 646575727573 * 0x1337 = 7891983BA4EC4B5
Serial = x^d mod n
Serial = 7891983BA4EC4B5^32593252229255151794D86C1A09C7AFCC2CCE42D440F55A2D mod 8ACFB4D27CBC8C2024A30C9417BBCA41AF3FC3BD9BDFF97F89
Serial = FD505CADDCC836FE32E34F5F202E34D11F385DEAD43D87FCD

Como la calculadora de Windows se queda un poco corta para trabajar con números tan grandes, vamos a usar la herramienta Big Integer Calculator. A continuación os dejo unas imágenes del proceso.

bigint_1

bigint_2

crackme_dihux_solved

Keygen

En esta ocasión hemos elegido Java ya que permite trabajar con números grandes de forma sencilla, os dejo el código más importante.

dihux_keygenme1_keygen

JButton btnNewButton = new JButton("Generar");
btnNewButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent arg0) {
BigInteger serial = new BigInteger("0");
BigInteger n = new BigInteger("871332984042175151665553882265818310920539633758381377421193");//módulo
BigInteger d = new BigInteger("316042180198461106401603389463895139535543421270452849695277");//exponente privado
BigInteger x = new BigInteger("4919");//0x1337
String nombre = t1.getText();
BigInteger nombre2 = new BigInteger(nombre.getBytes());
nombre2 = nombre2.multiply(x);
serial = nombre2.modPow(d, n);
t2.setText(serial.toString(16).toUpperCase());
}
});

Links


Introducción Funcionamiento de RSA OllyDbg Calculando la clave privada (d) Ejemplo operacional Keygen Links Introducción Segunda crackme con RSA que
Introducción Funcionamiento de RSA OllyDbg Calculando un serial válido Ejemplo operacional Keygen Links Introducción Empezamos con lo que espero que
http://youtu.be/mk_rzitZ4CM Lista de reproducción
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en

Solución al Crackme Zebra 1.1 de aLoNg3x

Introducción

Hoy tenemos aquí un crackme de los que te hacen temblar las conexiones neuronales. Estamos acostumbrados al típico serial asociado a un nombre y a veces nos sorprenden.

El crackme data del año 2000, está realizado por aLoNg3x y lo tenéis colgado en crackmes.de. En crackmes.de también disponéis de una solución muy elegante realizada por cronos, pero que no acaba de saciar nuestro afán de descubrir todas las soluciones posibles.

El algoritmo

Abrimos el crackme con Olly y enseguida encontramos la rutina de comprobación junto con los mensajes de éxito y error. Os dejo la rutina comentada como siempre.

004012D7   |.  83C4 08             ADD ESP,8                                 ;  
004012DA   |.  09C0                OR EAX,EAX                                ;  
004012DC   |. /74 16               JE SHORT Zebrone.004012F4                 ;  Salta a Bad boy
004012DE   |. |6A 00               PUSH 0                                    ; /Style = MB_OK|MB_APPLMODAL
004012E0   |. |68 26324000         PUSH Zebrone.00403226                     ; |Title = "Great !!!"
004012E5   |. |68 30324000         PUSH Zebrone.00403230                     ; |Text = "Congratulations, you have cracked the Zebra Crackme ver 1.1"
004012EA   |. |FF75 08             PUSH [ARG.1]                              ; |hOwner = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
004012ED   |. |E8 C6010000         CALL <JMP.&USER32.MessageBoxA>            ; \MessageBoxA
004012F2   |. |EB 14               JMP SHORT Zebrone.00401308
004012F4   |> \6A 00               PUSH 0                                    ; /Style = MB_OK|MB_APPLMODAL
004012F6   |.  68 F8314000         PUSH Zebrone.004031F8                     ; |Title = "Hmmmm :P"
004012FB   |.  68 01324000         PUSH Zebrone.00403201                     ; |Text = "Sorry... The Serial isn't correct :Þ"
00401300   |.  FF75 08             PUSH [ARG.1]                              ; |hOwner = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
00401303   |.  E8 B0010000         CALL <JMP.&USER32.MessageBoxA>            ; \MessageBoxA
00401308   |>  31C0                XOR EAX,EAX
0040130A   |.  40                  INC EAX
0040130B   |.  EB 39               JMP SHORT Zebrone.00401346
0040130D   |>  6A 00               PUSH 0                                    ; /Result = 0
0040130F   |.  FF75 08             PUSH [ARG.1]                              ; |hWnd = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
00401312   |.  E8 89010000         CALL <JMP.&USER32.EndDialog>              ; \EndDialog
00401317   |.  31C0                XOR EAX,EAX
00401319   |.  40                  INC EAX
0040131A   |.  EB 2A               JMP SHORT Zebrone.00401346
0040131C   |>  6A 00               PUSH 0                                    ; /Style = MB_OK|MB_APPLMODAL
0040131E   |.  68 40304000         PUSH Zebrone.00403040                     ; |Title = "Zebra ver. 1.1"
00401323   |.  68 4F304000         PUSH Zebrone.0040304F                     ; |Text = "This is the 1.1 Zebra Crackme, Thanks to Quequero and Koma, to have said me a bug of the previous version. (It was due to an orrible cpu appoximation). As usually you cannot patch this .EXE, you've to find one of the many correct solut"...
00401328   |.  FF75 08             PUSH [ARG.1]                              ; |hOwner = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
0040132B   |.  E8 88010000         CALL <JMP.&USER32.MessageBoxA>            ; \MessageBoxA
00401330   |.  31C0                XOR EAX,EAX
00401332   |.  40                  INC EAX
00401333   |.  EB 11               JMP SHORT Zebrone.00401346
00401335   |>  6A 00               PUSH 0                                    ; /Result = 0
00401337   |.  FF75 08             PUSH [ARG.1]                              ; |hWnd = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
0040133A   |.  E8 61010000         CALL <JMP.&USER32.EndDialog>              ; \EndDialog
0040133F   |.  31C0                XOR EAX,EAX
00401341   |.  40                  INC EAX
00401342   |.  EB 02               JMP SHORT Zebrone.00401346
00401344   |>  31C0                XOR EAX,EAX
00401346   |>  C9                  LEAVE
00401347   \.  C2 1000             RETN 10
================================================================
0040134A   /$  55                  PUSH EBP
0040134B   |.  89E5                MOV EBP,ESP
0040134D   |.  83EC 68             SUB ESP,68
00401350   |.  FF75 08             PUSH [ARG.1]                              ; /x1
00401353   |.  E8 78010000         CALL <JMP.&CRTDLL.atof>                   ; \atof
00401358   |.  DD55 E8             FST QWORD PTR SS:[EBP-18]
0040135B   |.  83EC 08             SUB ESP,8
0040135E   |.  DD1C24              FSTP QWORD PTR SS:[ESP]
00401361   |.  E8 82010000         CALL <JMP.&CRTDLL.floor>
00401366   |.  DD5D F8             FSTP QWORD PTR SS:[EBP-8]
00401369   |.  FF75 0C             PUSH [ARG.2]                              ; /x2
0040136C   |.  E8 5F010000         CALL <JMP.&CRTDLL.atof>                   ; \atof
00401371   |.  DD55 D8             FST QWORD PTR SS:[EBP-28]
00401374   |.  83EC 08             SUB ESP,8
00401377   |.  DD1C24              FSTP QWORD PTR SS:[ESP]
0040137A   |.  E8 69010000         CALL <JMP.&CRTDLL.floor>
0040137F   |.  83C4 18             ADD ESP,18
00401382   |.  DD55 F0             FST QWORD PTR SS:[EBP-10]
00401385   |.  DC4D F8             FMUL QWORD PTR SS:[EBP-8]
00401388   |.  D9EE                FLDZ
0040138A   |.  DED9                FCOMPP                                    ;  floor(x1)*floor(x2)=0 ???
0040138C   |.  DFE0                FSTSW AX                                  ;  <<Store status word
0040138E   |.  9E                  SAHF                                      ;  <<Store AH into FLAGS
0040138F   |.  75 07               JNZ SHORT Zebrone.00401398                ;  Si salta todo OK
00401391   |.  31C0                XOR EAX,EAX
00401393   |.  E9 96000000         JMP Zebrone.0040142E                      ;  Bad boy
00401398   |>  DD45 F8             FLD QWORD PTR SS:[EBP-8]                  ;  <<Floating point load
0040139B   |.  DC5D F0             FCOMP QWORD PTR SS:[EBP-10]               ;  x1 = x2 ???
0040139E   |.  DFE0                FSTSW AX                                  ;  <<Store status word
004013A0   |.  9E                  SAHF                                      ;  <<Store AH into FLAGS
004013A1   |.  75 07               JNZ SHORT Zebrone.004013AA                ;  Si salta todo OK
004013A3   |.  31C0                XOR EAX,EAX
004013A5   |.  E9 84000000         JMP Zebrone.0040142E                      ;  Bad boy
004013AA   |>  DD45 F8             FLD QWORD PTR SS:[EBP-8]                  ;  <<Floating point load
004013AD   |.  DD5D C8             FSTP QWORD PTR SS:[EBP-38]
004013B0   |.  D9E8                FLD1                                      ;  Carga 1 en el stack
004013B2   |.  DD55 C0             FST QWORD PTR SS:[EBP-40]                 ;  <<Floating point store
004013B5   |.  DC5D C8             FCOMP QWORD PTR SS:[EBP-38]               ;  x1 > 1 ???
004013B8   |.  DFE0                FSTSW AX                                  ;  <<Store status word
004013BA   |.  9E                  SAHF                                      ;  <<Store AH into FLAGS
004013BB   |.  77 2D               JA SHORT Zebrone.004013EA                 ;  Si salta bad boy
004013BD   |.  DF2D 38304000       FILD QWORD PTR DS:[403038]                ;  <<Load integer>> 2540BE400 = 10^10
004013C3   |.  DD55 B8             FST QWORD PTR SS:[EBP-48]                 ;  <<Floating point store
004013C6   |.  DC5D C8             FCOMP QWORD PTR SS:[EBP-38]               ;  x1 < 10^10 ???
004013C9   |.  DFE0                FSTSW AX                                  ;  <<Store status word
004013CB   |.  9E                  SAHF                                      ;  <<Store AH into FLAGS
004013CC   |.  72 1C               JB SHORT Zebrone.004013EA                 ;  Si salta bad boy
004013CE   |.  DD45 F0             FLD QWORD PTR SS:[EBP-10]                 ;  <<Floating point load
004013D1   |.  DD5D B0             FSTP QWORD PTR SS:[EBP-50]                ;  <<Store and pop
004013D4   |.  DD45 C0             FLD QWORD PTR SS:[EBP-40]                 ;  <<Floating point load
004013D7   |.  DC5D B0             FCOMP QWORD PTR SS:[EBP-50]               ;  x2 > 1 ???
004013DA   |.  DFE0                FSTSW AX                                  ;  <<Store status word
004013DC   |.  9E                  SAHF                                      ;  <<Store AH into FLAGS
004013DD   |.  77 0B               JA SHORT Zebrone.004013EA                 ;  Si salta bad boy
004013DF   |.  DD45 B8             FLD QWORD PTR SS:[EBP-48]                 ;  <<Floating point load>> carga 10^10
004013E2   |.  DC5D B0             FCOMP QWORD PTR SS:[EBP-50]               ;  x2 < 10^10 ???
004013E5   |.  DFE0                FSTSW AX                                  ;  <<Store status word
004013E7   |.  9E                  SAHF                                      ;  <<Store AH into FLAGS
004013E8   |.  73 04               JNB SHORT Zebrone.004013EE                ;  Salta si menor
004013EA   |>  31C0                XOR EAX,EAX
004013EC   |.  EB 40               JMP SHORT Zebrone.0040142E                ;  Bad boy
004013EE   |>  DD45 F8             FLD QWORD PTR SS:[EBP-8]                  ;  <<Floating point load>> carga x1
004013F1   |.  D9FE                FSIN                                      ;  Sin(x1)
004013F3   |.  DD5D A8             FSTP QWORD PTR SS:[EBP-58]                ;  <<Store and pop
004013F6   |.  DD45 F0             FLD QWORD PTR SS:[EBP-10]                 ;  <<Floating point load>> carga x2
004013F9   |.  D9FE                FSIN                                      ;  Sin(x2)
004013FB   |.  DD5D A0             FSTP QWORD PTR SS:[EBP-60]                ;  <<Store and pop
004013FE   |.  DD45 A8             FLD QWORD PTR SS:[EBP-58]                 ;  <<Floating point load
00401401   |.  DC4D A0             FMUL QWORD PTR SS:[EBP-60]                ;  Sin(x1) * Sin(x2)
00401404   |.  DF2D 30304000       FILD QWORD PTR DS:[403030]                ;  <<Load integer>> 2386F26FC10000 = 10^16
0040140A   |.  DEC9                FMULP ST(1),ST                            ;  10^16 * (Sin(x1) * Sin(x2))
0040140C   |.  83EC 08             SUB ESP,8
0040140F   |.  DD1C24              FSTP QWORD PTR SS:[ESP]                   ;  <<Store and pop
00401412   |.  E8 D1000000         CALL <JMP.&CRTDLL.floor>
00401417   |.  83C4 08             ADD ESP,8
0040141A   |.  DD5D 98             FSTP QWORD PTR SS:[EBP-68]
0040141D   |.  D9EE                FLDZ                                      ;  <<Load 0.0 onto stack
0040141F   |.  DC5D 98             FCOMP QWORD PTR SS:[EBP-68]               ;  10^16 * (Sin(x1) * Sin(x2)) = 0 ???
00401422   |.  DFE0                FSTSW AX
00401424   |.  9E                  SAHF                                      ;  <<Store AH into FLAGS
00401425   |.  75 05               JNZ SHORT Zebrone.0040142C                ;  Si NO salta todo OK
00401427   |.  31C0                XOR EAX,EAX
00401429   |.  40                  INC EAX
0040142A   |.  EB 02               JMP SHORT Zebrone.0040142E
0040142C   |>  31C0                XOR EAX,EAX
0040142E   |>  C9                  LEAVE
0040142F   \.  C3                  RETN

La primera dificultad que podemos encontrar es que utiliza instrucciones FPU y coma flotante, ya que si no tenemos la vista entrenada nos puede resultar un engorro. Superado esto, la rutina de comprobación se puede resumir así:

  • x1 * x2 != 0
  • x1 != x2
  • x1 > 1 y < 10^10
  • x2 > 1 y < 10^10
  • Floor[10^16 * sin(x1) * sin(x2)] = 0

A priori no parece que tenga mucha dificultad, pero vamos a analizarlo más concienzudamente. Necesitamos que la parte entera del resultado de la multiplicación sea 0, algo que parece sencillo, pero fíjate que la constante 10^16 nos obliga a su vez, a que el resultado del seno sea muy pequeño, cosa que como comprobaréis limita mucho los resultados satisfactorios.

Repasando trigonometría

Cuando nos enseñó nuestro profesor la función del seno nos hizo el siguiente dibujo:

circunferencia_e

Partiendo de la circunferencia unitaria, podemos concluir que el seno de alpha es igual a la altura x. Como lo que nos interesa a nosotros es que el seno sea muy pequeño, en realidad estamos buscando que la x sea lo más pequeña posible. Llegamos entonces a la conclusión de que las soluciones para enteros entre 1 y 10^10 van a ser muy reducidas. Además nos percatamos que el ángulo alpha va a tener que estar muy proximo a 0º – 360 (0 – 2π) y a 180º (π). En el siguiente gráfico queda claro el estrecho margen en el que nos movemos.

circunferencia_angulos_e

Si habéis leído la solución de cronos ahora le encontraréis algo más de sentido a por que él utilizó fracciones continuas de π y cogió como resultado los numeradores más cercanos a 10^10, en su caso 245850922 y 411557987.

Análisis operacional

Vamos a analizar un ejemplo operacional.

sin( x rad)
sin(245850922) = 6,1180653830011163142712109862972e-9
sin(411557987) = 2,536716051963676479648989773448e-9

sin(245850922)*sin(411557987) = 1,5519794664022230015882605365808e-17

10^16 * 1,5519794664022230015882605365808e-17 = 0,15519794664022230015882605365808

Floor(0,15519794664022230015882605365808) = 0

Como veis, el exponente negativo (^-17) debe ser mayor que el positivo (^16) para tener éxito.

Fuerza bruta

Lo que vamos a hacer a continuación es buscar todos los senos con exponente negativo ^-8 ó ^-9 de enteros entre 1 y 10^10, y vamos a cruzar los resultados para determinar todos los resultados válidos.

Preparamos el programa y le dejamos trabajar. En principio vamos a filtrar todos los resultados que tengan exponente negativo y luego ya aislaremos los que nos interesan. Esto lo hago por curiosidad.

aprox

La fuerza bruta nos arroja 63663 resultados con exponente negativo entre ^-5 y ^-9, de los cuales solamente nos quedamos con 65, que son los comprendidos a exponentes de entre ^-8 y ^-9. Los números mágicos son los siguientes:

magicnumbers

Los rojos son exponentes ^-9, el resto ^-8.

La mayoría de estos números solo valen con ciertas combinaciones, de hecho, ninguno vale para todos. Esto se debe, a parte del propio exponente, a que hay senos positivos y negativos y para hacer válido a un seno negativo hay que combinarlo con otro negativo. Esto último se debe únicamente a la interpretación que hace el crackme.

 Finalmente cruzamos los resultados y obtenemos 44 combinaciones de seriales válidos que si obviamos repeticiones se reducen a la mitad.

 checker

Combinaciones válidas:

seriales

Conclusiones

Podemos concluir que para cada 10^10 enteros hay 22 soluciones posibles. Finalmente comentar que si aLoNg3x no hubiera puesto el límite en 10^10, habría soluciones infinitas.

Links


Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
Introducción Herramientas utilizadas Desempacado con Ollydbg 2 (Videotutorial) Desempacado con Ollydbg 1 (Videotutorial) Análisis de la rutina del número de
Intro Hoy nos enfrentamos a un crackme realizado en Delphi con un algoritmo bastante sencillo. Está empacado con UPX pero

CanYouHack.it Mobile2 Challenge – Follow The Web (English)

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Table of Contents

Intro

This crackme is for the challenge Mobile 2 of canyouhack.it.
This time you need to understand how the crackme works over the web.

Decompiling

The crackme is given again at Google Play, so the first step is to install and recover the APK for decompiling. The latter, I leave to you.
Open the victim with APK Studio and view the content of Mobile2.java
First we view one link:
http://canyouhack.it/Content/Challenges/Mobile/2/index.php
 If we go to the link, we view one string like a hash: 68a571bcf7bc9f76d43bf931f413ab2c. Umm, it’s like MD5. Go to decrypt online and we get the pass: «canyouhack.it». But if we test this password in the crackme, surprise!, nothing happens. We need to continue analyzing the code. Later we view the next interesting link:
«http://canyouhack.it/Content/Challenges/Mobile/2/submit.php?Token=» + Mobile2.token + «&Attempts=»
The program submit one token and concatenate with the number of attempts. Ok but what is the token and what is the number of attempts?
In this point we have to try with the information we already have.
Testing with the link of bottom we get “Nice try!” message.
http://canyouhack.it/Content/Challenges/Mobile/2/submit.php?Token=68a571bcf7bc9f76d43bf931f413ab2c&&Attempts=0
Testing with the link of bottom we get “Very Good, the password is Top*****!” message.
http://canyouhack.it/Content/Challenges/Mobile/2/submit.php?Token=68a571bcf7bc9f76d43bf931f413ab2c&&Attempts=1

  Links