Hoy tenemos un crackme realizado en Visual C++ 6. Es el típico serial asociado a un nombre.
El algoritmo
Localizamos con Olly la rutina de comprobación del serial y empezamos a analizar. Vemos una serie de Calls que lo único que hacen es comprobar el tamaño de nuestro nombre y serial y si es <5 dígitos nos tira afuera.
Una vez pasada la traba anterior procede con un bucle para el nombre y otro para el serial. Yo he metido deurus y 123456. El bucle del nombre hace xor al los dígitos ascii con un valor incremental a partir de 1. Reconvierte el valor resultante en su caracter correspondiente y lo almacena.
Introducción A quien va dirigido Comprobaciones previas Lo que necesitamos Presupuesto Ejemplo de instalación Preguntas frecuentes Glosario Notas finales Introducción
Acabo de montar AperiSolve en una Raspi que tenía por casa pensando que sería coser y cantar, pero me he encontrado con que el repositorio no estaba preparado para todas las distros Linux de forma estándar. El resultado lo he colgado en Github, de modo que para montarlo en vuestra propia Raspi solo tenéis que seguir estos pasos:
1. Clonar el repositorio
git clone https://github.com/deurus/AperiSolve-Raspi3.git
cd AperiSolve-Raspi3/AperiSolve
2. Construir los contenedores
docker compose build
docker compose up -d
3. Abrir la web
http://<IP_RASPI>:5000
Si tenéis curiosidad de la adaptación que he tenido que hacer aquí están los pasos que he seguido:
1. Preparar el sistema
sudo apt update
sudo apt install -y git docker.io docker-compose
sudo usermod -aG docker $USER
newgrp docker
2. Clonar AperiSolve
git clone https://github.com/Zeecka/AperiSolve.git
cd AperiSolve
3. Crear la estructura de build para la imagen ARM/x86
nano docker-compose.yml
y pega este contenido:
FROM python:3.11-slim
RUN apt-get update && apt-get install -y \
zip \
p7zip-full \
binwalk \
foremost \
exiftool \
steghide \
ruby \
binutils \
pngcheck \
&& rm -rf /var/lib/apt/lists/*
COPY aperisolve/ /aperisolve/
RUN pip install --no-cache-dir -r /aperisolve/requirements.txt
WORKDIR /aperisolve
CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:5000", "wsgi:app"]
4. Arreglar docker-compose.yml para ser válido y compatible
services:
web:
image: aperisolve-local
build: .
container_name: aperisolve-web
ports:
- "5000:5000"
depends_on:
- redis
- postgres
environment:
DB_URI: "postgresql://aperiuser:aperipass@postgres:5432/aperisolve"
worker:
image: aperisolve-local
container_name: aperisolve-worker
depends_on:
- redis
- postgres
environment:
DB_URI: "postgresql://aperiuser:aperipass@postgres:5432/aperisolve"
redis:
image: redis:7
container_name: aperisolve-redis
postgres:
image: postgres:16
container_name: aperisolve-postgres
environment:
POSTGRES_USER: aperiuser
POSTGRES_PASSWORD: aperipass
POSTGRES_DB: aperisolve
volumes:
- postgres_data:/var/lib/postgresql/data
volumes:
postgres_data:
5. Modificar aperisolve/config.py
nano config.py
y pega este contenido:
from pathlib import Path
IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp", ".tiff"]
WORKER_FILES = ["binwalk", "foremost", "steghide", "zsteg"]
RESULT_FOLDER = Path(__file__).parent.resolve() / "results"
RESULT_FOLDER.mkdir(parents=True, exist_ok=True)
6. Modificación de aperisolve/app.py
Sustituir la línea: app.config["SQLALCHEMY_DATABASE_URI"] = os.environ.get("DB_URI")
por:
default_db = "postgresql://aperiuser:aperipass@postgres:5432/aperisolve"
app.config["SQLALCHEMY_DATABASE_URI"] = os.environ.get("DB_URI", default_db)
7. Construir la imagen
docker build -t aperisolve-local .
8. Levantar los contenedores
docker compose down
docker compose up -d
9. Comprobar logs
docker logs aperisolve-web --tail=50
docker logs aperisolve-worker --tail=50
10. Acceder a la web
- Desde cualquier máquina de la red local: http://IP-DE-LA-MAQUINA:5000
- Desde la Raspi: http://localhost:5000
11. Limpieza (cuando necesites)
- Reiniciar contenedores:
docker compose restart
- Borrar resultados antiguos:
sudo rm -r aperisolve/results/*
En el BTM anterior nos remontábamos al año 2006 para ver un pequeño gazapo ocurrido en la serie Dexter. En esta ocasión vamos a hablar sobre un pequeño detalle de una serie actual, Absentia. No es un gazapo, pero es algo bastante poco creíble hoy día.
La escena la protagoniza Emily Byrne (Stana Katic) y en ella se ve a Emily buscar algo sospechoso en un portátil.
Primer detalle
En la primera imagen y antes de que Emily haga clic en Documents, se puede apreciar un acceso directo que reza Browser con un icono de la bola del mundo y una lupa. Muy chulo pero para darle más credibilidad a la escena se podía mostrar un acceso directo de Chrome, Firefox o Internet Explorer que son los navegadores más usados.
Where is my Browser?
Para rematar…
A lo que vamos. Emily decide mirar en la carpeta Documents > Videos y para su sorpresa está vacía. Pero como Emily es una mujer de recursos decide comprobar si hay archivos ocultos y para ello retoca las opciones de carpeta.
¡Tachán!, como por arte de magia aparecen todas las carpetas del supuesto asesino con todo tipo de vídeos incriminatorios. Como he comentado anteriormente, parece poco creíble pensar que algo que te puede llevar a la cárcel de por vida sea protegido de forma tan pobre.
El crackme que analizamos hoy está hecho en ensamblador y si bien su dificultad es baja, la creación del keygen es un poco liosa. Al keygen que veremos más adelante, le he dado cierta aleatoriedad para que quede más elegante.
El crackme comprueba el serial en función de un identificador de 4 dígitos que el mismo crackme genera.
Análisis
Coje nuestro serial mediante la función GetDlgItemTextA.
Comprueba que nuestro serial esté formado por números (30h – 39h), letras de la A a la F (41h – 46h) y el guión (2Dh), es decir, el alfabeto hexadecimal más el guión. Si hay algún dígito indeseado nos tira fuera.
La comprobación del serial la realiza sumando el valor ascii del primer dígito al valor ascii del tercero y sucesivos y a continuación restando la suma anterior al ID. Cuando finalice la comprobación de todos los dígitos del serial, el restador tiene que ser cero, de lo contrario nos tira fuera. Si el ID es cero también nos tira fuera.
Ejemplo (base 10)para ID = 4011 y SERIAL: 1-23456
Valores del serial: 1(49) -(no se usa) 2(50) 3(51) 4(52) 5(53) 6(54)
Como veis, el resultado de ir restando todos los dígitos de nuestro serial con la ID debe ser cero para que el serial sea correcto.
Keygen
Lo primero que se me ocurre para obtener una solución directa es buscar una combinación de dígito + dígito que sea múltiplo del ID. Para ello podemos usar la función módulo. La función módulo lo que hace es darnos el resto de la división de dos números, de modo que si el resto es cero los números son múltiplos. Para ello debemos cruzar todos los números y letras hasta encontrar los dígitos múltiplos del ID. Un serial de este primer tipo quedaría algo así como 1-FFFFFFFFFFFFFFFFFF ya que como el primer dígito es fijo el otro se repetirá tanta veces como sea necesario para hacer que el ID sea cero.
Con nuestro reducido alfabeto, cabe la posibilidad de que no encontremos una combinación válida, por lo que tendremos que pensar en un plan B. El plan B que se me ocurre a mi es intentar forzar el plan A restando caracteres aleatorios al ID y volviendo a comprobar si encontramos múltiplos del nuevo ID. Un serial de este tipo quedaría más elegante, por ejemplo 3-A6D53B628BBBBB.
'Keygen for Flamer's asm keygenme
Dim id As Integer
Dim serial As String
Dim tmp, tmp2, na, nb As Integer
Dim alfabeto As Integer() = New Integer() {48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 65, 66, 67, 68, 69, 70}
Dim r As Random = New Random
'Button generate
Private Sub btngen_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btngen.Click
ini:
If txtid.TextLength <> 4 Then GoTo Mal
id = txtid.Text
txtdebug.Text = ""
na = alfabeto(r.Next(1, 16))
serial = Chr(na) & "-"
tmp = id
For i = 0 To alfabeto.Length - 1
For y = 0 To alfabeto.Length - 1
'Solución directa
If id Mod (alfabeto(i) + alfabeto(y)) = 0 Then
tmp = id / (alfabeto(i) + alfabeto(y))
txtserial.Text = Chr(alfabeto(i)) & "-"
For z = 0 To tmp - 1
txtserial.Text &= Chr(alfabeto(y))
Next
GoTo fuera
End If
'Indirecta con aleatoriedad
nb = alfabeto(r.Next(1, 16))
tmp = tmp - (na + nb)
serial &= Chr(nb)
If tmp Mod (na + nb) = 0 Then
tmp2 = tmp / (na + nb)
For z = 0 To tmp2 - 1
serial &= Chr(nb)
Next
txtserial.Text = serial
GoTo fuera
End If
If tmp < 0 Then
GoTo ini
Else
txtdebug.Text &= tmp & " "
End If
Next
Next
Mal:
txtserial.Text = "¿id?"
fuera:
End Sub
Me doy cuenta que en el keygen no he utilizado el guión, pero no pasa nada, se lo dejo al lector como curiosidad.
Alerta de Spoiler: El reto está en activo a fecha de publicación.
Spoiler alert: The challenge is still alive.
Este tipo de retos son de lo más variopinto pero una de las primeras cosas que se suele hacer es ver el código fuente y fijarse en los enlaces para hacernos una idea del tipo de vulnerabilidades a explotar. Empezamos por explorar el código fuente.
A simple vista no hay nada sospechoso pero me llama la atención el enlace de la imagen del gatito «source/cat.gif«. Si fisgamos dentro de la carpeta «source» podemos ver que nos muestra el contenido de la carpeta como se puede apreciar en la imagen a continuación.
Contenido de la carpeta source
La carpeta «app» suena interesante. Hacemos clic y vemos lo siguiente.
Notice: Undefined index: commit in C:/xampp/htdocs/challenge-land/Realistic/shop/source/app/index.php on line 2
Vemos que el error mostrado muestra más información de la debida y la aprovecharemos en beneficio propio. Aquí la clave está en el fichero index.php y en el parámetro commit. Haremos una prueba para ver que vamos por el buen camino.
Hay varias respuestas sugerentes pero quizá la más relevante es la 8. Ahora bien, solo falta encontrar donde introducir el usuario y la clave.
Si volvemos a la página principal vemos en el enlace algo interesante, me refiero a index.php?page=index. Tras probar varias cosas la que funciona es la típica, admin.
Al entrar vemos que nos redirige al index de nuevo tras pocos segundos. Aquí hay dos opciones, desactivar javascript para evitar la redirección o entrar directamente a la página admin.php. Optamos por el camino fácil entrando directamente en admin.php:
El otro día navegando por la red fuí a dar a un mirror de la gran web «Karpoff Spanish Tutor«. Para los que no la conozcais, debeis saber que fué una referencia para el Cracking en la escena nacional. Contenía manuales, cursos, utilidades y todo lo que te pudieras imaginar y/o necesitar para iniciarte en el mundillo del Cracking. Por aquel entonces yo era un cigoto en esto de la Ingeniería Inversa pero la web de Karpoff sentó mis bases y contribuyó a mi afán por saber y compartir. El lector debería saber que estamos hablando de finales de los 90, por lo que este crackme y sucesivos de la web de Karpoff ahora pueden parecer más fáciles pero hay que tener en cuenta que ahora tenemos mejores herramientas.
El objetivo es sacar un serial valido o hacer un generador de llaves, esta hecho para newbies y no tiene ninguna otra proteccion.
El crackme está hecho en Delphi y no tiene ningún tipo de protección antidebug ni nada por el estilo.
El algoritmo
Abrimos Delphi Decompiler y buscamos en los eventos el botón de registro, en este caso se llama «focusClick» y vemos que su RVA apunta a la dirección «442AEC«, lo apuntamos y abrimos el crackme con Ollydbg.
En Olly pulsamos Ctrl+G e introducimos el offset anterior. Un poco más abajo vemos un Call interesante, entramos en el.
Dentro del Call vemos a simple vista dos funciones muy interesantes como son «GetVolumeInformationA» y «GetUserNameA«.
Traceamos el código y vemos que obtiene el número de serie del disco C y el usuario de windows y finalmente los concatena. Se puede ver a simple vista en el Stack o Pila.
No necesitamos saber nada más, probamos el número de serie cazado y funciona. Os adjunto el keygen hecho en C++.
Introducción Herramientas utilizadas Desempacado con Ollydbg 2 (Videotutorial) Desempacado con Ollydbg 1 (Videotutorial) Análisis de la rutina del número de
En Parque Jurásico (1993), la informática no es solo un elemento narrativo, es una pieza clave del suspense y del conflicto. A diferencia de otras películas donde las pantallas muestran interfaces ficticias o visualmente espectaculares pero irreales, Parque Jurásico opta por una aproximación sorprendentemente sobria y auténtica.
Durante bastantes escenas, se nos muestran terminales, ventanas de código y comandos que, lejos de ser decorativos, pertenecen a sistemas reales utilizados por programadores profesionales de principios de los años 90. Este detalle, que puede pasar desapercibido para el público general, resulta especialmente interesante desde un punto de vista técnico. En otras palabras, el trabajo de producción es excelente y destaca como una de las películas más respetuosas con la informática real de su época.
No es “código de película”: es software real
Uno de los puntos más interesantes es que el código que aparece en pantalla no fue escrito para la película. No hay pseudocódigo, ni pantallas diseñadas solo para quedar bonitas en cámara. Lo que se ve es software real, ejecutándose en el entorno Macintosh Programmer’s Workshop (MPW), el kit oficial de Apple para desarrolladores en aquellos años. El sistema operativo que se reconoce es un Macintosh clásico (System 7) corriendo sobre máquinas de la serie Quadra, auténticos pepinos para la época. Vamos, que cuando John Hammond decía aquello de «no hemos reparado en gastos», también iba en serio en lo informático.
«No hemos reparado en gastos»
En este punto no se le puede reprochar demasiado a la película. En líneas generales es bastante fiel a la novela, aunque la resolución del problema de seguridad se aborda de forma distinta. En el libro es el ingeniero Ray Arnold quien detecta el fallo y consigue reconducir la situación. En la película, sin embargo, el personaje desaparece cuando va a los barracones a restablecer la corriente del parque, con el resultado que todos conocemos.
Lo curioso es que muchos personajes sí cambian de forma notable con respecto al libro, el niño es mayor y más friki de los ordenadores, Ray Arnold no muere y acaba salvando la situación, o Gennaro es más atlético y bastante más valiente. Sin embargo, el gran disparate técnico permanece intacto.
En la novela se menciona de pasada a un equipo de informáticos de Cambridge que supuestamente colaboró en el diseño del software. Aun así, la puesta en marcha y la explotación del sistema recaen prácticamente en una sola persona, Dennis Nedry. Evidentemente, tanto al libro como al guion les viene de perlas que todo dependa de una única persona para que el desastre sea posible, pero cuesta aceptar que en un parque donde todo está duplicado, el control informático central dependa de una sola persona.
Curiosamente, en uno de los monitores de Nedry se puede ver una foto de Oppenheimer con la frase «Beginning of baby boom», de la que podemos sacar la conclusión de que Nedry es perfectamente consciente de que su trabajo puede tener consecuencias catastróficas e irreversibles. También es un maravilloso guiño del equipo de producción que nos está indicando exactamente donde se va originar el desastre.
Al final, Parque Jurásico no va de dinosaurios, ni siquiera de genética. Va de personas. Y, más concretamente, de personas con demasiado poder y muy pocos compañeros de equipo y poca supervisión.
Desde el punto de vista informático, la película es casi entrañable. Todo es serio, profesional y real… hasta que descubrimos que el sistema más complejo jamás construido depende, en la práctica, de un solo programador cabreado, mal pagado y con demasiadas líneas de código en la cabeza. Ningún comité de arquitectura, ninguna auditoría externa, ningún segundo par de ojos. Solo Dennis Nedry y su teclado. ¿Qué podía salir mal?
Lo curioso es que ni la película ni el libro se molestan en disimularlo demasiado. Te hablan de sistemas redundantes, de seguridad, de control absoluto… pero el corazón digital del parque es un castillo de naipes. Eso sí, un castillo de naipes programado en máquinas de primera, con software real y pantallas que hoy siguen pareciendo más creíbles que muchas producciones actuales.
Quizá por eso Parque Jurásico envejece tan bien. Porque, incluso cuando se equivoca, lo hace con honestidad. No intenta venderte magia disfrazada de tecnología. Te muestra ordenadores de verdad, código de verdad y errores muy humanos. Y al final, tanto en la novela como en la película, el mensaje es el mismo, puedes clonar dinosaurios, diseñar parques imposibles y rodearte de la mejor tecnología del mundo, que si todo depende de una sola persona, tarde o temprano, el sistema se vendrá abajo.
Y no, el problema no eran los dinosaurios, nunca lo fueron.
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.
Realistic Challenge 4: There is a site offering protection against hackers to website owners, the service is far too overpriced and the people running the service don’t know anything about security. Look around their site, and see how protected it is.
Hay un sitio que ofrece protección contra los hackers. El servicio tiene un precio abusivo, echa un vistazo a la web y evalúa su pretección.
Analizando a la víctima
Vemos un escueto menú pero con cosas interesantes.
Pinchamos sobre «Testimonials» y a continuación en «Customer 1»
Vemos que hay solo 3 «customers», vamos a introducir manualmente un 5 haber que pasa.
Ok, nos genera el siguiente error.
Probamos ahora con un enlace interno que nos genera el siguiente error.
Tenemos un directorio interesante «secure«, si entramos en el nos salta un Login típico protegido con «.htaccess«. Lo lógico a continuación es hacernos con el archivo «.htpasswd«
Una vez obtenido el contenido del archivo «.htpasswd» lo siguiente es crackear el password con John the Ripper. Nos logueamos en la carpeta secure y reto superado.
Este Crackme está basado en la protección de DVD Audio Extractor 4.3. Afrontaremos dos partes, una primera donde desempacaremos PECompact 2.x y otra donde analizaremos la rutina de comprobación del número de serie. Os adelante que la única dificultad reside en desempacar ya que la rutina del serial es bastante floja.
El motivo que me ha llevado a realizar un apartado para Ollydbg 1 y otro para Ollydbg 2 es principalmente por que con Ollydbg 2 lo haremos desde Windows 7 x64 y con Ollydbg 1 desde Windos 7 x32.
3. Ponemos un breakpoint de la siguiente manera «bp VirtualFree» con la ayuda del plugin CmdBar.
4. Pulsamos F9 dos veces y aparecemos aquí.
5. A continuación pulsamos Ctrl+F9 y veremos esto.
6. Pulsamos F8 hasta salir del RETN anterior y veremos esto.
7. Al final vemos lo que estábamos buscando. El JMP EAX es el salto que nos lleva al punto de entrada original (OEP). Ponemos un breakpoint en JMP EAXy pulsamos F9, cuando se detenga Ollydbg, pulsamos F8 y aparecemos aquí.
8. Ya tenemos a PECompact contra las cuerdas, ahora mismo tenemos el Crackme desempacado en memoria.
Hacemos click en Plugins > OllyDumpEx > Dump process y veremos esto.
Pulsamos en Dump y esto nos generará un archivo que se llama DAE430_CrackMe_dump.
9. A continuación con Import Reconstructor seleccionamos el crackme y pulsamos IAT AutoSearch y Get Imports.
Veremos unas importaciones NO válidas, pulsamos en Show Invalid y las clickamos con el botón derecho > Delete thunks.
Finalmente pulsamos Fix Dump y elegimos el crackme dumpeado anteriormente. Con esto ya hemos finalizado el desempacado.
Pulsamos F8 hasta el segundo Call y en éste entramos con F7.
Seguimos con F8.
Buscamos JMP EAX, le ponemos un breakpoint y ejecutamos hast que pare en el.
Situados en JMP EAX, pulsamos F8 y llegamos al OEP.
Dumpeamos.
Reconstruimos las importaciones.
1. Cargamos el crackme en Ollydbg y vemos esto.
2. Pulsamos F8 hasta que veamos dos Calls. Pulsamos F8 hasta el segundo Call y cuando estemos situados encima de él pulsamos F7 para entrar en el.
Dentro del segundo call veremos esto.
3. Seguimos con F8 y llegamos aquí.
4. Sin tracear, nos desplazamos por el código hasta encontrar un poco más abajo JMP EAX. Le ponemos un breakpoint y pulsamos F9.
5. Cuando estemos situados en JMP EAX pulsamos F8 y llegamos al punto de entrada original (OEP).
6. Ahora con el plugin OllyDump vamos a dumpear el ejecutable que tenemos desempacado en memoria.
Dumpeamos.
7. Finalmente con Import reconstructor arreglamos las importaciones.
Análisis de la rutina del número de serie
Cargamos en Ollydbg el crackme desempacado y en las referencias de texto encontramos el mensaje «Gracias por registrarte». Pulsamos en él y llegamos a la rutina de comprobación del serial que desgranamos a continuación.
- El nombre debe tener más de 3 dígitos aunque no lo usa para el número de serie.
- El serial tiene 12 dígitos dividiendose en tres partes, 111122223333.
- La primera parte 1111 es comparada directamente con DA1X.
- Segunda parte (2222), para los dígitos 5º, 6º, 7º y 8º hace lo siguiente:
dígito *4 + dígito = A
A*8 + dígito=B
B/100 = C
C/4 = D
dígito/80 = E
E-D = F
F*4*F = G
G*4+G = H
digito - H = I
I+41 = J
GUARDA J EN LA MEMORIA 22FAFA
**Todo esto se puede resumir en dígito mod 19 + 41
- Tercera parte (3333). Finalmente compara el resultado del 5º, 6º, 7º y 8º dígitos con el 9º, 10º, 11º y 12º dígitos.
Ejemplo:
Serial = DA1X12345678
1 - (31h mod 19h) + 41h = 48h(Y)
2 - (32h mod 19h) + 41h = 41h(A)
3 - (33h mod 19h) + 41h = 42h(B)
4 - (34h mod 19h) + 41h = 43h(C)
Compara Y con 5
Compara A con 6
Compara B con 7
Compara C con 8
Luego el serial correcto sería DA1X1234YABC
Aviso: Este crackme forma parte de una serie de pruebas de Yoire.com que todavía está en activo. Lo ético si continuas leyendo este manual es que no utilices la respuesta para completar la prueba sin esfuerzo. 😉
Saltando el Anti-Debug
Abrimos el crackme con Ollydbg y nos salta una protección Anti-Debug.
Si nos fijamos en las «Text Strings» vemos que es la clásica isDebuggerPresent. Pinchamos en ella y vemos claramente el salto que debemos forzar, se encuentra en el offset 401015. Podemos invertir el salto o cambiarlo a JMP para que salte siempre.
Rutina de comprobación del serial
A simple vista vemos instrucciones como FILD y FIDIVR que trabajan con los registros FPU, por lo que tendremos que fijarnos en dichos registros.
Retomemos analizando la rutina de comprobación.
FLD DWORD PTR DS:[403080] - Carga el entero "720300" en ST7
FSTP [LOCAL.1] - Guarda "720300" en memoria (Local 1)
MOVSX EDX,BYTE PTR DS:[EAX] - Coje nuestro primer dígito en ascii y lo carga en EDX
SUB EDX,30 - Le resta 30 a EDX
PUSH EDX - Carga EDX en la pila
FILD DWORD PTR SS:[ESP] - Carga el valor de EDX en ST0
POP EDX - Recupera el valor de la pila
FDIVR [LOCAL.1] - Divide Local 1 entre nuestro dígito hex y lo guarda en ST0
FSTP [LOCAL.1] - Guarda el resultado de ST0 en Local 1
INC EAX - Siguiente dígito
CMP BYTE PTR DS:[EAX],0 - Comprueba si quedan dígitos en nuestro serial
JNZ SHORT 05_crack.004010F4 - Bucle
Después de la rutina de comprobación simplemente comprueba el valor del resultado de la división con 1 y si es verdad serial válido.
Buscando un serial válido
Podríamos hacer fuerza bruta, pero en esta ocasión no es necesario ya que con la calculadora, boli y papel lo sacamos rápido.
Aquí tenemos un CrackMe diferente a lo que estamos acostumbrados, ya que en vez del típico número de serie asociado a un nombre la comprobación se realiza mediante checkboxes con una matriz de 7×3. El CrackMe está realizado en Visual C++ lo que facilita en parte encontrar rápidamente la rutina de comprobación.
Comprobación
004013C5 > /8B7424 10 MOV ESI,[DWORD SS:ESP+10] ;
004013C9 . |33FF XOR EDI,EDI
004013CB > |8B86 74304000 MOV EAX,[DWORD DS:ESI+403074] ;
004013D1 . |8BCB MOV ECX,EBX
004013D3 . |50 PUSH EAX
004013D4 . |E8 6F020000 CALL <JMP.&MFC42.#3092_CWnd::GetDlgItem> ; Lee el estado del checkbox
004013D9 . |8B48 20 MOV ECX,[DWORD DS:EAX+20]
004013DC . |6A 00 PUSH 0
004013DE . |6A 00 PUSH 0
004013E0 . |68 F0000000 PUSH 0F0
004013E5 . |51 PUSH ECX ;
004013E6 . |FFD5 CALL NEAR EBP
004013E8 . |3B86 20304000 CMP EAX,[DWORD DS:ESI+403020] ; Comprueba el estado del checkbox (1 activado 0 desactivado)
004013EE . |75 20 JNZ SHORT Matrix_C.00401410 ; Salto a chico malo
004013F0 . |47 INC EDI ; Incrementa contador
004013F1 . |83C6 04 ADD ESI,4
004013F4 . |83FF 07 CMP EDI,7 ; ¿Hemos terminado de leer las columnas? ¿contador = 7?
004013F7 .^|7C D2 JL SHORT Matrix_C.004013CB ; si terminan las columnas deja pasar
004013F9 . |8B4424 10 MOV EAX,[DWORD SS:ESP+10]
004013FD . |83C0 1C ADD EAX,1C ; contador de filas
00401400 . |83F8 54 CMP EAX,54 ; 3 filas = 1C+1C+1C=54
00401403 . |894424 10 MOV [DWORD SS:ESP+10],EAX
00401407 .^\7C BC JL SHORT Matrix_C.004013C5 ; ¿Hemos terminado de leer la fila? ¿contador = 54?
00401409 . 68 D8304000 PUSH Matrix_C.004030D8 ; ASCII "Registration successful!"
0040140E . EB 05 JMP SHORT Matrix_C.00401415
00401410 > 68 C8304000 PUSH Matrix_C.004030C8 ; ASCII "Not registered!"
En la rutina de comprobación se ve fácil un CMP EDI,7 por lo que podemos deducir que si el creador no se ha molestado mucho la comprobación se realiza de izquierda a derecha y de arriba hacia abajo.
Orden de comprobación
Tal es así que si ponemos un breakpoint en 4013E8, podemos ir sacando el estado correcto de los checkboxes sin mucha molestia.
Toda esta aventura comienza con un archivo llamado pretty_raw, sin extensión. Porque sí. Porque las extensiones son una invención heredada de CP/M, precursor de MS-DOS, que Windows terminó de popularizar. Porque son innecesarias. Y porque echo de menos cuando los archivos se reconocían por sus permisos… y no por cómo se llamaban.
Como iba diciendo, todo esto comienza mediante el análisis de pretty_raw. Mirando debajo de la falda con un editor hexadecimal encontramos unos cuantos bytes aleatorios hasta dar con una cabecera PNG.
Si atendemos a la captura, justo antes de la cabecera PNG tenemos 116.254 bytes (0x1C61E). Tomad nota que este número será relevante más adelante.
Extraemos el PNG, lo visualizamos y lo pasamos por todas las herramientas habidas y por haber. Nada funciona. Volvemos a visualizarlo con atención y vemos que hace referencia a un archivo llamado flag.png con unas dimensiones que no coinciden con la extraída.
Toca centrarse y pensar en que camino tomar. Hemos gastado tiempo con el PNG extraído y quizá lo mejor sea centrarse en los bytes que inicialmente hemos descartado. En concreto se trata de un bloque de 116.254 bytes, pero espera, 1570×74=116.180 bytes. ¡Mierda!, no coincide exactamente con los bytes extraídos. Bueno, da igual. Si suponemos que el PNG que buscamos no tiene compresión y que cada pixel ocupa un byte (escala de grises y 8 bits), su tamaño depende únicamente de la geometría y de cómo se almacenan las filas en memoria. Vamos a procesarlo con Python para salir de dudas.
import numpy as np
from PIL import Image
INPUT_FILE = "pretty_raw"
OUTPUT_FILE = "pretty_raw_flag.png"
WIDTH = 1570 # ¿estás seguro?
HEIGHT = 74
DEPTH = 8 # bits
# Leer archivo como RAW
with open(INPUT_FILE, "rb") as f:
raw = f.read()
expected_size = WIDTH * HEIGHT
if len(raw) < expected_size:
raise ValueError("El archivo no tiene suficientes datos")
# Convertir a array numpy (grayscale 8 bits)
img = np.frombuffer(raw[:expected_size], dtype=np.uint8)
img = img.reshape((HEIGHT, WIDTH))
# Crear imagen
image = Image.fromarray(img, mode="L")
image.save(OUTPUT_FILE)
print(f"Imagen generada correctamente: {OUTPUT_FILE}")
El script nos devuelve un PNG válido pero con las letras torcidas. Tras darle vueltas me di cuenta de que si en el script usamos como WIDTH=1571 en lugar de 1570, la imagen resultante es correcta y tiene todo el sentido del mundo ya que 1571×74=116.254, que son exactamente los bytes que se encuentran antes del png señuelo.
Aunque el ancho visible de la imagen es de 1570 píxeles, cada fila ocupa realmente 1571 bytes. Ese byte adicional actúa como relleno (padding) y forma parte del stride o bytes por fila. Ignorar este detalle lleva a un desplazamiento erróneo acumulativo y por eso se ve la imagen torcida. En este caso concreto da igual ya que el texto se aprecia, pero si el reto hubiera sido más exigente no se vería nada.
Antes que nada, es importante saber que un archivo ELF en Linux es equivalente a un archivo EXE en Windows. Dicho esto, es bastante común encontrarnos con ejecutables ELF en diversos CTFs (Capture The Flag), y a menudo representan un desafío para aquellos no familiarizados con el uso cotidiano de Linux. Sin embargo, tengo una buena noticia si no eres aficionado de Linux: existen herramientas que permiten realizar un análisis preliminar para determinar si es necesario abordar el problema desde Linux o si podemos resolverlo directamente desde Windows. Estas herramientas facilitan una transición más cómoda para los usuarios de Windows, permitiéndoles interactuar eficazmente con archivos ELF.
ELF
Un archivo ELF (Executable and Linkable Format) es un formato común de archivo para archivos ejecutables, código objeto, bibliotecas compartidas y volcados de memoria en sistemas basados en Unix, como Linux. Es el estándar de formato de archivo para programas compilados y enlazados en este tipo de sistemas operativos.
La cabecera de un archivo ELF es una estructura de datos al comienzo del archivo que proporciona información esencial sobre el contenido y la forma de procesar el archivo. Esta cabecera es fundamental para que el sistema operativo y otros programas puedan interpretar correctamente el archivo ELF. Aquí están los componentes clave de la cabecera de un archivo ELF:
Identificación (e_ident): Esta sección incluye la magia del archivo ELF, representada por los primeros cuatro bytes 0x7F 'E' 'L' 'F'. También incluye información como la clase del archivo (32 o 64 bits), la codificación de datos (endianness), y la versión del formato ELF.
Tipo (e_type): Indica el tipo de archivo ELF, como EXEC (ejecutable), DYN (biblioteca compartida), REL (relocalizable), entre otros.
Máquina (e_machine): Especifica la arquitectura de hardware para la cual se diseñó el archivo, por ejemplo, x86, ARM.
Versión (e_version): La versión del formato ELF, generalmente establecida en 1.
Punto de Entrada (e_entry): La dirección de memoria virtual donde comienza la ejecución del proceso.
Desplazamiento del Program Header (e_phoff): Indica dónde comienza el encabezado del programa en el archivo.
Desplazamiento del Section Header (e_shoff): Indica dónde comienza el encabezado de la sección en el archivo.
Flags (e_flags): Banderas específicas del procesador.
Tamaño de esta cabecera (e_ehsize): El tamaño de la cabecera ELF.
Tamaño del Program Header (e_phentsize): El tamaño de una entrada del encabezado del programa.
Número de entradas del Program Header (e_phnum): El número total de entradas en el encabezado del programa.
Tamaño del Section Header (e_shentsize): El tamaño de una entrada del encabezado de la sección.
Número de entradas del Section Header (e_shnum): El número total de entradas en el encabezado de la sección.
Índice del Section Header Table (e_shstrndx): El índice del encabezado de la sección que contiene los nombres de las secciones.
El reto
Se nos proporciona un fichero de 20KB que rápidamente catalogamos como ELF.
Para realizar un análisis preliminar siempre uso DogBolt, que no es más que un decompilador online con la ventaja de que usa varios motores y de esta forma casi siempre te da una decompilación aceptable. La versión actual tiene disponibles 11 motores y además es open source, ¿Qué más se puede pedir?
Echamos un vistazo y enseguida encontramos algo interesante.
La flag parece codificada de modo que vamos a indagar acerca de la función FUN_0010285d
Dentro de la función FUN_0010285d vemos que nuestra flag codificada la procesa la función FUN_00102752
Aquí os diría que depende de vuestra experiencia en programación veríais que se está procesando byte a byte la cadena de entrada (param_1) y haciendo a cada byte un XOR (^) con el param_3 (que es 1 según vemos en la llamada de la función FUN_00102752), pero en estos tiempos que corren vamos a preguntar a ChatGPT que opina.
ChatGPT
Le pido a ChapGPT que me analice el código y me responde:
Este código en C define una función llamada FUN_00102752 que realiza una operación de XOR (exclusivo OR) byte a byte sobre un bloque de memoria. La función toma tres parámetros:
long param_1: Este parámetro es tratado como una dirección de memoria. Se utiliza como la base de un bloque de memoria sobre el que se realizará la operación.
ulong param_2: Este parámetro especifica el tamaño del bloque de memoria que será afectado por la operación.
byte param_3: Este es el valor de un solo byte que se utilizará en la operación XOR.
El cuerpo de la función consiste en un bucle for que itera sobre el bloque de memoria:
int local_c se declara como una variable local y se inicializa en 0. Esta variable actúa como un contador para el bucle.
La condición del bucle (ulong)(long)local_c < param_2 asegura que el bucle se ejecute sobre el rango completo del bloque de memoria especificado por param_2.
Dentro del bucle, *(byte *)(param_1 + local_c) = *(byte *)(param_1 + local_c) ^ param_3; realiza la operación XOR. Aquí, *(byte *)(param_1 + local_c) accede al byte actual en el bloque de memoria. Este byte se modifica aplicándole un XOR con param_3. La operación XOR se realiza entre el byte actual en la memoria y el valor de param_3, y el resultado se escribe de nuevo en la misma ubicación de memoria.
En resumen, la función FUN_00102752 modifica un bloque de memoria aplicando una operación XOR con un valor dado (param_3) a cada byte dentro del rango de memoria especificado desde param_1 hasta param_1 + param_2. Este tipo de operación es común en tareas como la manipulación de datos para cifrado/descifrado o para la generación de patrones específicos en un bloque de datos.
by ChatGPT
Ahora imaginad que no sois muy dados a programar o simplemente estáis vagos de modo que volvemos a recurrir a ChatGPT con el promt «Haz un XOR 1 con javascript a la cadena: gmfzuihr^vr^o^drx^nod^shfiu|» a lo que responde:
function xorString(str) { return Array.from(str).map(char => String.fromCharCode(char.charCodeAt(0) ^ 1)).join(»); }
Este un crackme muy interesante para principiantes ya que la rutina no es muy compleja. Está hecho en ensamblador.
Saltar el antidebug
Arrancamos el crackme en Olly damos al play y se cierra. Buscamos en las «Intermodular Calls» y vemos «IsDebuggerPresent«, clickamos sobre ella y vemos el típico call, lo NOPeamos.
Aquí vemos el call.
Call Nopeado.
Encontrando un serial válido
Encontrar en serial válido en esta ocasión es muy sencillo, basta con buscar en las «String References» el mensaje de «Bad boy» y fijarse en la comparación.
El algoritmo
Si nos fijamos en el serial generado nos da muchas pistas pero vamos a destriparlo ya que tampoco tiene mucha complicación. De nuevo miramos en las «String references» y clickamos sobre el mensaje de «bad boy«. Encima de los mensajes vemos claramente la rutina de creación del serial.
Comprueba si el dígito está es mayúsculas y si está le sume 2C al valor ascii.
Suma el valor ascii de todos los dígitos menos el último.
SUM + 29A
SUM * 3039
SUM – 17
SUM * 9
Finalmente concatena letras siguiendo este criterio:
Len(nombre) = 4 -> coje la última letra
Len(nombre) = 5 -> coje las dos últimas
Len(nombre) = 6 -> coje las tres últimas
Len(nombre) = 7 -> coje las cuatro últimas
Len(nombre) = 8 -> coje las cinco últimas
Len(nombre) = 9 -> coje las seis últimas
Len(nombre) = A -> coje las siete últimas
Ejemplo para deurus
d e u r u (s)
64+65+75+72+75 = 225
225 + 29A = 4BF
4BF * 3039 = E4DE87
E4DE87 - 17 = E4DE70
E4DE70 * 9 = 80BD1F0
;Pasamos a decimal y concatenamos
134992368rus
Ejemplo para Deurus
D e u r u (s)
44(+2C)+65+75+72+75 = 25D
25D + 29A = 4F7
4BF * 3039 = EF6AFF
EF6AFF - 17 = EF6AE8
EF6AE8 * 9 = 86AC228
;Pasamos a decimal y concatenamos
141214248rus
Como curiosidad decirtos que con el tiempo valores del estilo 29A y 3039 os pegarán rápido al ojo ya que equivalen a 666 y 12345 en decimal. Por cierto 29A fue un grupo de hackers creadores de virus muy conocido en la escena Nacional e Internacional.
Lo que más me ha gustado del capítulo es el guiño que han hecho a la RaspBerry PI. La escena transcurre al inicio del capítulo cuando uno de los protagonistas se conecta a un vehículo para hackearlo con una Raspi 3 Model B con varios pines del GPIO doblados. Os dejo unas capturas a continuación donde se aprecia el logo.
Captura del episodio
Captura del episodio
Captura del episodio
Captura del episodio
La conexión
Ya puestos, la conexión parece micro usb tipo B. Al fondo se ve lo que parece un puerto HDMI.
Captura del episodio
Captura del episodio
Captura del episodio
Cable comercial
La pifia
Lo que no me ha gustado es que al fijarme en el software que corre en el vehículo aparece un flamante OMNIBOOT.EXE con un aspecto parecido al símbolo de sistema, es decir, nos intentan vender que en un futuro el software que gestiona el vehículo es alguna variación de Windows, algo poco probable a día de hoy al menos. Con este tipo de predicciones no se puede escupir hacia arriba pero actualmente es más probable un nucleo tipo Linux u otro propietario al estilo Tesla.
Software del vehículo
Os dejo todas las capturas relevantes a continuación.
Aquí tenemos un Crackme clásico creado por Scarebyte hallá por el año 2000 y que cuenta con varias fases siendo un crackme muy interesante para iniciarse o simplemente para divertirse. Al estar realizado en Delphi, los apartados de las checkboxes y de las trackbars se simplifican y mucho, pero aún así hay que currarselo un poco para dejar todo bien atado. Si os fijáis en las soluciones que aparecen en crackmes.de, en aquellos años se usaba DEDE y aunque yo usaré otra herramienta, DEDE sigue siendo igual de útil.
Desempacado
PEiD nos dice que nos enfrentamos a ASPack 1.08.03 -> Alexey Solodovnikov, así que vamos al lío.
Eliminar la NAG
Tan sencillo como poner un Breakpoint a User32.MessageBoxA. La llamada a NOPear está en la dirección 441CF2.
Password
Desde las string references localizamos los mensajes de chico bueno y chico malo que nos llevan al código a analizar.
0044C3CD |. E8 5294FDFF CALL CrackMe_.00425824
0044C3D2 |. 8B45 FC MOV EAX,[LOCAL.1]
0044C3D5 |. E8 9A76FBFF CALL CrackMe_.00403A74
0044C3DA |. 83F8 0C CMP EAX,0C ; Lengh C = 12
0044C3DD |. 0F85 53010000 JNZ CrackMe_.0044C536 ; Salto a chico malo
0044C3E3 |. 8D55 FC LEA EDX,[LOCAL.1]
0044C3E6 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C3EC |. E8 3394FDFF CALL CrackMe_.00425824
0044C3F1 |. 8B45 FC MOV EAX,[LOCAL.1]
0044C3F4 |. 8038 43 CMP BYTE PTR DS:[EAX],43 ; 1º dígito serial = C
0044C3F7 |. 0F85 27010000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C3FD |. 8D55 F8 LEA EDX,[LOCAL.2]
0044C400 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C406 |. E8 1994FDFF CALL CrackMe_.00425824
0044C40B |. 8B45 F8 MOV EAX,[LOCAL.2]
0044C40E |. 8078 03 6F CMP BYTE PTR DS:[EAX+3],6F ; 4º dígito serial = o
0044C412 |. 0F85 0C010000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C418 |. 8D55 F4 LEA EDX,[LOCAL.3]
0044C41B |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C421 |. E8 FE93FDFF CALL CrackMe_.00425824
0044C426 |. 8B45 F4 MOV EAX,[LOCAL.3]
0044C429 |. 8078 08 6F CMP BYTE PTR DS:[EAX+8],6F ; 9º dígito serial = o
0044C42D |. 0F85 F1000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C433 |. 8D55 F0 LEA EDX,[LOCAL.4]
0044C436 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C43C |. E8 E393FDFF CALL CrackMe_.00425824
0044C441 |. 8B45 F0 MOV EAX,[LOCAL.4]
0044C444 |. 8078 01 6C CMP BYTE PTR DS:[EAX+1],6C ; 2º dígito serial = l
0044C448 |. 0F85 D6000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C44E |. 8D55 EC LEA EDX,[LOCAL.5]
0044C451 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C457 |. E8 C893FDFF CALL CrackMe_.00425824
0044C45C |. 8B45 EC MOV EAX,[LOCAL.5]
0044C45F |. 8078 04 20 CMP BYTE PTR DS:[EAX+4],20 ; 5º dígito serial = espacio
0044C463 |. 0F85 BB000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C469 |. 8D55 E8 LEA EDX,[LOCAL.6]
0044C46C |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C472 |. E8 AD93FDFF CALL CrackMe_.00425824
0044C477 |. 8B45 E8 MOV EAX,[LOCAL.6]
0044C47A |. 8078 0A 52 CMP BYTE PTR DS:[EAX+A],52 ; 11º dígito serial = R
0044C47E |. 0F85 A0000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C484 |. 8D55 E4 LEA EDX,[LOCAL.7]
0044C487 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C48D |. E8 9293FDFF CALL CrackMe_.00425824
0044C492 |. 8B45 E4 MOV EAX,[LOCAL.7]
0044C495 |. 8078 07 75 CMP BYTE PTR DS:[EAX+7],75 ; 8º dígito serial = u
0044C499 |. 0F85 85000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C49F |. 8D55 E0 LEA EDX,[LOCAL.8]
0044C4A2 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C4A8 |. E8 7793FDFF CALL CrackMe_.00425824
0044C4AD |. 8B45 E0 MOV EAX,[LOCAL.8]
0044C4B0 |. 8078 09 6E CMP BYTE PTR DS:[EAX+9],6E ; 10º dígito serial = n
0044C4B4 |. 75 6E JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C4B6 |. 8D55 DC LEA EDX,[LOCAL.9]
0044C4B9 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C4BF |. E8 6093FDFF CALL CrackMe_.00425824
0044C4C4 |. 8B45 DC MOV EAX,[LOCAL.9]
0044C4C7 |. 8078 02 6E CMP BYTE PTR DS:[EAX+2],6E ; 3º dígito serial = n
0044C4CB |. 75 57 JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C4CD |. 8D55 D8 LEA EDX,[LOCAL.10]
0044C4D0 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C4D6 |. E8 4993FDFF CALL CrackMe_.00425824
0044C4DB |. 8B45 D8 MOV EAX,[LOCAL.10]
0044C4DE |. 8078 05 69 CMP BYTE PTR DS:[EAX+5],69 ; 6º dígito serial = i
0044C4E2 |. 75 40 JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C4E4 |. 8D55 D4 LEA EDX,[LOCAL.11]
0044C4E7 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C4ED |. E8 3293FDFF CALL CrackMe_.00425824
0044C4F2 |. 8B45 D4 MOV EAX,[LOCAL.11]
0044C4F5 |. 8078 0B 6E CMP BYTE PTR DS:[EAX+B],6E ; 12º dígito serial = n
0044C4F9 |. 75 29 JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C4FB |. 8D55 D0 LEA EDX,[LOCAL.12]
0044C4FE |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C504 |. E8 1B93FDFF CALL CrackMe_.00425824
0044C509 |. 8B45 D0 MOV EAX,[LOCAL.12]
0044C50C |. 8078 06 67 CMP BYTE PTR DS:[EAX+6],67 ; 7º dígito serial = g
0044C510 |. 75 12 JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C512 |. BA 78C54400 MOV EDX,CrackMe_.0044C578 ; ASCII "Right Password"
0044C517 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C51D |. E8 3293FDFF CALL CrackMe_.00425854
0044C522 |. EB 22 JMP SHORT CrackMe_.0044C546
0044C524 |> BA 90C54400 MOV EDX,CrackMe_.0044C590 ; ASCII "Wrong Password"
0044C529 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C52F |. E8 2093FDFF CALL CrackMe_.00425854
0044C534 |. EB 10 JMP SHORT CrackMe_.0044C546
0044C536 |> BA 90C54400 MOV EDX,CrackMe_.0044C590 ; ASCII "Wrong Password"
Chequeo rápido
ABCD EFGHIJK
Clno iguonRn
; 1º dígito serial = C
; 4º dígito serial = o
; 9º dígito serial = o
; 2º dígito serial = l
; 5º dígito serial = espacio
; 11º dígito serial = R
; 8º dígito serial = u
; 10º dígito serial = n
; 3º dígito serial = n
; 6º dígito serial = i
; 12º dígito serial = n
; 7º dígito serial = g
Básicamente chequea la frase «Cool Running» de forma desordenada como se ve justo encima, siendo el password correcto «Clno iguonRn«. Os dejo el código para que lo analicéis.
Nº serie asociado a un nombre
De nuevo con las string references localizamos el código.
0044C648 /. 55 PUSH EBP
0044C649 |. 8BEC MOV EBP,ESP
0044C64B |. 83C4 F8 ADD ESP,-8
0044C64E |. 53 PUSH EBX
0044C64F |. 56 PUSH ESI
0044C650 |. 33C9 XOR ECX,ECX
0044C652 |. 894D F8 MOV [LOCAL.2],ECX
0044C655 |. 8BF0 MOV ESI,EAX
0044C657 |. 33C0 XOR EAX,EAX
0044C659 |. 55 PUSH EBP
0044C65A |. 68 83C74400 PUSH CrackMe_.0044C783
0044C65F |. 64:FF30 PUSH DWORD PTR FS:[EAX]
0044C662 |. 64:8920 MOV DWORD PTR FS:[EAX],ESP
0044C665 |. 33C0 XOR EAX,EAX
0044C667 |. 8945 FC MOV [LOCAL.1],EAX
0044C66A |. A1 80F84400 MOV EAX,DWORD PTR DS:[44F880] ; Eax = Nombre
0044C66F |. E8 0074FBFF CALL CrackMe_.00403A74
0044C674 |. 83F8 06 CMP EAX,6 ; Cmp lengh nombre con 6
0044C677 |. 0F8E F0000000 JLE CrackMe_.0044C76D ; Salta si <= 6
0044C67D |. A1 80F84400 MOV EAX,DWORD PTR DS:[44F880] ; Eax = Nombre
0044C682 |. E8 ED73FBFF CALL CrackMe_.00403A74
0044C687 |. 83F8 14 CMP EAX,14 ; Cmp lengh nombre con 20 (14h)
0044C68A |. 0F8D DD000000 JGE CrackMe_.0044C76D ; salta si >= 20
0044C690 |. A1 80F84400 MOV EAX,DWORD PTR DS:[44F880]
0044C695 |. E8 DA73FBFF CALL CrackMe_.00403A74
0044C69A |. 85C0 TEST EAX,EAX
0044C69C |. 7E 17 JLE SHORT CrackMe_.0044C6B5
0044C69E |. BA 01000000 MOV EDX,1
0044C6A3 |> 8B0D 80F84400 /MOV ECX,DWORD PTR DS:[44F880] ; Bucle in
0044C6A9 |. 0FB64C11 FF |MOVZX ECX,BYTE PTR DS:[ECX+EDX-1]
0044C6AE |. 014D FC |ADD [LOCAL.1],ECX ; Suma dig nombre y guarda en 12FBC4
0044C6B1 |. 42 |INC EDX
0044C6B2 |. 48 |DEC EAX
0044C6B3 |.^ 75 EE \JNZ SHORT CrackMe_.0044C6A3 ; Bucle out
0044C6B5 |> A1 84F84400 MOV EAX,DWORD PTR DS:[44F884] ; Eax = Compañia
0044C6BA |. E8 B573FBFF CALL CrackMe_.00403A74
0044C6BF |. 83F8 02 CMP EAX,2 ; Cmp lengh compañia con 2
0044C6C2 |. 7E 18 JLE SHORT CrackMe_.0044C6DC ; Salta si <= 2
0044C6C4 |. A1 84F84400 MOV EAX,DWORD PTR DS:[44F884] ; Eax = Compañia
0044C6C9 |. E8 A673FBFF CALL CrackMe_.00403A74
0044C6CE |. 83F8 08 CMP EAX,8 ; Cmp lengh compañia con 8
0044C6D1 |. 7D 09 JGE SHORT CrackMe_.0044C6DC ; Salta si >= 8
0044C6D3 |. 8B45 FC MOV EAX,[LOCAL.1] ; Eax = sum nombre
0044C6D6 |. 6BC0 02 IMUL EAX,EAX,2 ; Sum nombre * 2
0044C6D9 |. 8945 FC MOV [LOCAL.1],EAX
0044C6DC |> 68 98C74400 PUSH CrackMe_.0044C798 ; ASCII "I Love Cracking and "
0044C6E1 |. 8D55 F8 LEA EDX,[LOCAL.2]
0044C6E4 |. 8B45 FC MOV EAX,[LOCAL.1]
0044C6E7 |. E8 68B0FBFF CALL CrackMe_.00407754
0044C6EC |. FF75 F8 PUSH [LOCAL.2] ; sum del nombre
0044C6EF |. 68 B8C74400 PUSH CrackMe_.0044C7B8 ; ASCII " Girls ;)"
0044C6F4 |. B8 8CF84400 MOV EAX,CrackMe_.0044F88C
0044C6F9 |. BA 03000000 MOV EDX,3
0044C6FE |. E8 3174FBFF CALL CrackMe_.00403B34 ; Concatena 1º frase + sum nombre + 2ºfrase
0044C703 |. 33C0 XOR EAX,EAX
0044C705 |. 8945 FC MOV [LOCAL.1],EAX
0044C708 |. A1 88F84400 MOV EAX,DWORD PTR DS:[44F888] ; Eax = Serial
0044C70D |. E8 6273FBFF CALL CrackMe_.00403A74
0044C712 |. 8BD8 MOV EBX,EAX
0044C714 |. A1 8CF84400 MOV EAX,DWORD PTR DS:[44F88C]
0044C719 |. E8 5673FBFF CALL CrackMe_.00403A74
0044C71E |. 3BD8 CMP EBX,EAX ; Compara tamaño frase con tamaño serial
0044C720 |. 75 4B JNZ SHORT CrackMe_.0044C76D
0044C722 |. A1 88F84400 MOV EAX,DWORD PTR DS:[44F888]
0044C727 |. E8 4873FBFF CALL CrackMe_.00403A74
0044C72C |. 85C0 TEST EAX,EAX
0044C72E |. 7E 27 JLE SHORT CrackMe_.0044C757
0044C730 |. BA 01000000 MOV EDX,1
0044C735 |> 8B0D 88F84400 /MOV ECX,DWORD PTR DS:[44F888] ; Bucle in -->
0044C73B |. 0FB64C11 FF |MOVZX ECX,BYTE PTR DS:[ECX+EDX-1]
0044C740 |. 034D FC |ADD ECX,[LOCAL.1]
0044C743 |. 8B1D 8CF84400 |MOV EBX,DWORD PTR DS:[44F88C]
0044C749 |. 0FB65C13 FF |MOVZX EBX,BYTE PTR DS:[EBX+EDX-1] ; Compara dígito a dígito nuestro serial
0044C74E |. 2BCB |SUB ECX,EBX ; con la concatenación anterior
0044C750 |. 894D FC |MOV [LOCAL.1],ECX
0044C753 |. 42 |INC EDX
0044C754 |. 48 |DEC EAX
0044C755 |.^ 75 DE \JNZ SHORT CrackMe_.0044C735 ; <-- Bucle out
0044C757 |> 837D FC 00 CMP [LOCAL.1],0
0044C75B |. 75 10 JNZ SHORT CrackMe_.0044C76D ; Salta si algo ha ido mal
0044C75D |. 8B86 14030000 MOV EAX,DWORD PTR DS:[ESI+314]
0044C763 |. BA CCC74400 MOV EDX,CrackMe_.0044C7CC ; "You have found the correct Serial :)"
En resumen
Tamaño del nombre entre 7 y 19.
Tamaño de la compañía entre 3 y 7 aunque no interviene en el serial.
Suma los valores ascii de los dígitos del nombre y lo multiplica por 2.
Concatena «I Love Cracking and » + «sum del nombre» + » Girls ;)».
Checkbox
Para afrontar esta parte del reto vamos a usar una herramienta llamada Interactive Delphi Reconstructoro IDR. En su día la mejor herramienta era DEDE, pero IDR a mi parecer es algo más potente.
Básicamente IDR nos permite sin quebraderos de cabeza localizar el código del botón que comprueba la secuencia de checkboxes correcta. Cargamos el crackme en IDR y dentro de la pestaña «Units (F2)«, abajo del todo hacemos doble click sobre «F Crack» y vemos que nos muestra todos los controles del formulario. El botón que nos interesa se llama «SpeedButton3«.
Si hacemos doble click sobre el nos muestra el código que se muestra a continuación.
Como podéis apreciar, las checkboxes involucradas son la 3, 5, 6, 9, 11, 12, 13, 15, 19 y 20. Solo nos falta saber cuales se corresponden con esa numeración y aquí ya depende de cada uno, yo en su día saqué los números a mano mediante el orden de tabulación, pero ya que tenemos IDR, el nos va a dar la solución de una forma sencilla y rápida.
Vamos a la pestaña «Forms (F5)«, seleccionamos la opción Form y hacemos doble click sobre el formulario.
Veréis que aparece el formulario con todos los recursos, incluso los puedes modificar. Localizar los checkboxes ahora es un juego de niños.
Os dejo un vídeo.
Trackbar
De nuevo, con la ayuda de IDR, localizamos la parte del código y analizamos su funcionamiento. Esta parte es la más divertida ya que requiere de un keygen pero en vez de coger el número de serie de una caja de texto lo obtiene de 5 trackbars como muestra la siguiente imagen.
1) Siendo nuestro serial : 1 2 3 4 5
a b c d e
2) Realiza las operaciones matemáticas:
Round(((Cos(sqrt(b^3+5)) + (-sqrt(a+1)) + Ln(c*3+1) + (-sqrt(d+2)) + ((e*3)/2))+0.37)*1000))
3) Obtenemos un hash resultante de 5415
4) XORea los dígitos de la siguiente manera:
(5)35 xor 86 = B6
(4)34 xor 83 = BD
(1)31 xor 86 = B7
(5)35 xor 8D = B8
De modo que tenemos B6BDB7B8
5) Compara B6BDB7B8 con B5BAB2BA
6) Revertimos el XOR para obtener el hash bueno
B5 xor 86 = 36(6)
BA xor 83 = 33(3)
B2 xor 86 = 34(4)
BA xor 8D = 37(7)
Luego el hash bueno es 6347
7) Debemos hacer fuerza bruta buscando:
Round(((Cos(sqrt(b^3+5)) + (-sqrt(a+1)) + Ln(c*3+1) + (-sqrt(d+2)) + ((e*3)/2))+0.37)*1000)) = 6347
Para obtener los seriales válidos podemos hacer bucles recursivos hasta recorrer las 10^5 opciones posibles. Una forma de hacerlo en VBNet es la siguiente.
Dim tmp As Double
Dim an, bn, cn, dn, en As Integer
For an = 0 To 9
For bn = 0 To 9
For cn = 0 To 9
For dn = 0 To 9
For en = 0 To 9
tmp = Round(((Cos(Sqrt((Pow(bn, 3)) + 5)) + (-Sqrt(an + 1)) + Log(cn * 3 + 1) + (-Sqrt(dn + 2)) + ((en * 3) / 2) + 0.37) * 1000))
txtdebug.Text = "a-b-c-d-e = Hash || " & an & "-" & bn & "-" & cn & "-" & dn & "-" & en & " = " & tmp
If tmp = 6347 Then
ListBox1.Items.Add("Serial: " & an & bn & cn & dn & en)
End If
Application.DoEvents()
Next
Next
Next
Next
Next
Os dejo como siempre el crackme y el keygen en los enlaces.
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.
If we go to the link, we view one string like a hash: 68a571bcf7bc9f76d43bf931f413ab2c. Umm, it’s like MD5. Go to decrypt online and we get the pass: «canyouhack.it». But if we test this password in the crackme, surprise!, nothing happens. We need to continue analyzing the code. Later we view the next interesting link:
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.
Realistic Challenge 2: You have heard about people being targeted by a new religion called Egitology. Another hacker infiltrated the group and discovered that the list of people they target is stored on the site but he doesn’t know where.
Break into the site, find the file and remove it. Also leave no evidence that you was ever there so they wont realise until its too late!
El enunciado del reto nos dice que tenemos que localizar la lista de objetivos y eliminarla sin dejar evidencias.
Analizando la seguridad de la víctima
Echamos un vistazo y vemos que tienen un Login para usuarios registrados, este será nuestro primer testeo.
Lo primero que se no viene a la cabeza con un formulario de este tipo es Inyección SQL, probamos varios métodos y tenemos suerte.
User: admin
Pass: ‘ or 1=1–‘;
Vemos que hemos entrado como admin y enseguida nos llama la atención «Back up Database«. Pulsamos a ver que pasa.
Obtenemos el hash de las claves de los usuarios Admin y SuperAdmin. Por suerte son hashes MD5. Obtenemos la clave de SuperAdmin y nos loguemos.
Solo nos queda borrar la lista de objetivos y nuestras huellas. Para ello borramos los siguientes archivos y reto superado.
Lista de objetivos: root/misc/targets
Logs: root/images/logs
AVISO: Debido a que este reto está en activo no publicaré a donde pertenece.
Ya sabéis que los retos stego son muy variopintos. El otro día me encontré con uno que parecía que iba a ser complejo pero en realidad era bastante sencillo.
Tras varias pruebas complejas infructuosas, se me ocurrió descomponer por canales y efectivamente ese era el camino. Para ello yo utilicé la herramienta StegSolve de mi querido Caesum, pero podéis resolverlo incluso online con Pinetools.
Segunda crackme con RSA que afrontamos. Esta vez se trata de un crackme realizado en VC++ 7.0 y en sus entrañas utiliza RSA-127. Una cosa que no comenté en la entrega anterior (RSA-200), es que conviene utilizar el plugin Kanal de PEiD para localizar cuando se utilizan números grandes o determinados hashes como MD5 o SHA1.
Otra cosa es que os quería comentar es la coletilla 127. Esta lo determina el módulo n e indica el número de bits de éste.
Funcionamiento de RSA
Inicialmente es necesario generar aleatoriamente dos números primos grandes, a los que llamaremos p y q.
A continuación calcularemos n como producto de p y q:
n = p * q
Se calcula fi:
fi(n)=(p-1)(q-1)
Se calcula un número natural e de manera que MCD(e, fi(n))=1 , es decir e debe ser primo relativo de fi(n). Es lo mismo que buscar un numero impar por el que dividir fi(n) que de cero como resto.
Mediante el algoritmo extendido de Euclides se calcula d que es el inverso modular de e.
Puede calcularse d=((Y*fi(n))+1)/e para Y=1,2,3,... hasta encontrar un d entero.
El par de números (e,n) son la clave pública.
El par de números (d,n) son la clave privada.
Cifrado: La función de cifrado es.
c = m^e mod n
Descifrado: La función de descifrado es.
m = c^d mod n
OllyDbg
Con OllyDbg analizamos la parte del código que nos interesa.
El código nos proporciona el exponente público (e) y el módulo (n).
e = 29F8EEDBC262484C2E3F60952B73D067
n = 666AAA422FDF79E1D4E41EDDC4D42C51
Finalmente realiza un PowMod con el número de serie del disco C y el par de claves (e,n).
Calculando la clave privada (d)
Una vez localizados los datos anteriores lo siguiente es factorizar para obtener los primos p y q y finalmente d.
d = 65537
Ejemplo operacional
Nº serie disco C = -1295811883
Serial = hdd.getBytes()^d mod n
Serial = 2d31323935383131383833^65537 mod 666AAA422FDF79E1D4E41EDDC4D42C51
Serial = 1698B6CE6BE0D388C31E8E7895AF445A
Keygen
El keygen está hecho en Java ya que permite trabajar con números grandes de forma sencilla.
JButton btnNewButton = new JButton("Generar");
btnNewButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent arg0) {
BigInteger serial = new BigInteger("0");
BigInteger n = new BigInteger("136135092290573418981810449482425576529");
BigInteger d = new BigInteger("415031");
String hdd = t1.getText();
BigInteger tmp = new BigInteger(hdd.getBytes());
serial = tmp.modPow(d, n);
t2.setText(serial.toString(16).toUpperCase());
}
});
Aquí tenemos un CrackMe diferente a lo que estamos acostumbrados, ya que en vez del típico número de serie asociado a un nombre la comprobación se realiza mediante checkboxes con una matriz de 7×3. El CrackMe está realizado en Visual C++ lo que facilita en parte encontrar rápidamente la rutina de comprobación.
Comprobación
004013C5 > /8B7424 10 MOV ESI,[DWORD SS:ESP+10] ;
004013C9 . |33FF XOR EDI,EDI
004013CB > |8B86 74304000 MOV EAX,[DWORD DS:ESI+403074] ;
004013D1 . |8BCB MOV ECX,EBX
004013D3 . |50 PUSH EAX
004013D4 . |E8 6F020000 CALL <JMP.&MFC42.#3092_CWnd::GetDlgItem> ; Lee el estado del checkbox
004013D9 . |8B48 20 MOV ECX,[DWORD DS:EAX+20]
004013DC . |6A 00 PUSH 0
004013DE . |6A 00 PUSH 0
004013E0 . |68 F0000000 PUSH 0F0
004013E5 . |51 PUSH ECX ;
004013E6 . |FFD5 CALL NEAR EBP
004013E8 . |3B86 20304000 CMP EAX,[DWORD DS:ESI+403020] ; Comprueba el estado del checkbox (1 activado 0 desactivado)
004013EE . |75 20 JNZ SHORT Matrix_C.00401410 ; Salto a chico malo
004013F0 . |47 INC EDI ; Incrementa contador
004013F1 . |83C6 04 ADD ESI,4
004013F4 . |83FF 07 CMP EDI,7 ; ¿Hemos terminado de leer las columnas? ¿contador = 7?
004013F7 .^|7C D2 JL SHORT Matrix_C.004013CB ; si terminan las columnas deja pasar
004013F9 . |8B4424 10 MOV EAX,[DWORD SS:ESP+10]
004013FD . |83C0 1C ADD EAX,1C ; contador de filas
00401400 . |83F8 54 CMP EAX,54 ; 3 filas = 1C+1C+1C=54
00401403 . |894424 10 MOV [DWORD SS:ESP+10],EAX
00401407 .^\7C BC JL SHORT Matrix_C.004013C5 ; ¿Hemos terminado de leer la fila? ¿contador = 54?
00401409 . 68 D8304000 PUSH Matrix_C.004030D8 ; ASCII "Registration successful!"
0040140E . EB 05 JMP SHORT Matrix_C.00401415
00401410 > 68 C8304000 PUSH Matrix_C.004030C8 ; ASCII "Not registered!"
En la rutina de comprobación se ve fácil un CMP EDI,7 por lo que podemos deducir que si el creador no se ha molestado mucho la comprobación se realiza de izquierda a derecha y de arriba hacia abajo.
Orden de comprobación
Tal es así que si ponemos un breakpoint en 4013E8, podemos ir sacando el estado correcto de los checkboxes sin mucha molestia.
Antes que nada, es importante saber que un archivo ELF en Linux es equivalente a un archivo EXE en Windows. Dicho esto, es bastante común encontrarnos con ejecutables ELF en diversos CTFs (Capture The Flag), y a menudo representan un desafío para aquellos no familiarizados con el uso cotidiano de Linux. Sin embargo, tengo una buena noticia si no eres aficionado de Linux: existen herramientas que permiten realizar un análisis preliminar para determinar si es necesario abordar el problema desde Linux o si podemos resolverlo directamente desde Windows. Estas herramientas facilitan una transición más cómoda para los usuarios de Windows, permitiéndoles interactuar eficazmente con archivos ELF.
ELF
Un archivo ELF (Executable and Linkable Format) es un formato común de archivo para archivos ejecutables, código objeto, bibliotecas compartidas y volcados de memoria en sistemas basados en Unix, como Linux. Es el estándar de formato de archivo para programas compilados y enlazados en este tipo de sistemas operativos.
La cabecera de un archivo ELF es una estructura de datos al comienzo del archivo que proporciona información esencial sobre el contenido y la forma de procesar el archivo. Esta cabecera es fundamental para que el sistema operativo y otros programas puedan interpretar correctamente el archivo ELF. Aquí están los componentes clave de la cabecera de un archivo ELF:
Identificación (e_ident): Esta sección incluye la magia del archivo ELF, representada por los primeros cuatro bytes 0x7F 'E' 'L' 'F'. También incluye información como la clase del archivo (32 o 64 bits), la codificación de datos (endianness), y la versión del formato ELF.
Tipo (e_type): Indica el tipo de archivo ELF, como EXEC (ejecutable), DYN (biblioteca compartida), REL (relocalizable), entre otros.
Máquina (e_machine): Especifica la arquitectura de hardware para la cual se diseñó el archivo, por ejemplo, x86, ARM.
Versión (e_version): La versión del formato ELF, generalmente establecida en 1.
Punto de Entrada (e_entry): La dirección de memoria virtual donde comienza la ejecución del proceso.
Desplazamiento del Program Header (e_phoff): Indica dónde comienza el encabezado del programa en el archivo.
Desplazamiento del Section Header (e_shoff): Indica dónde comienza el encabezado de la sección en el archivo.
Flags (e_flags): Banderas específicas del procesador.
Tamaño de esta cabecera (e_ehsize): El tamaño de la cabecera ELF.
Tamaño del Program Header (e_phentsize): El tamaño de una entrada del encabezado del programa.
Número de entradas del Program Header (e_phnum): El número total de entradas en el encabezado del programa.
Tamaño del Section Header (e_shentsize): El tamaño de una entrada del encabezado de la sección.
Número de entradas del Section Header (e_shnum): El número total de entradas en el encabezado de la sección.
Índice del Section Header Table (e_shstrndx): El índice del encabezado de la sección que contiene los nombres de las secciones.
El reto
Se nos proporciona un fichero de 20KB que rápidamente catalogamos como ELF.
Para realizar un análisis preliminar siempre uso DogBolt, que no es más que un decompilador online con la ventaja de que usa varios motores y de esta forma casi siempre te da una decompilación aceptable. La versión actual tiene disponibles 11 motores y además es open source, ¿Qué más se puede pedir?
Echamos un vistazo y enseguida encontramos algo interesante.
La flag parece codificada de modo que vamos a indagar acerca de la función FUN_0010285d
Dentro de la función FUN_0010285d vemos que nuestra flag codificada la procesa la función FUN_00102752
Aquí os diría que depende de vuestra experiencia en programación veríais que se está procesando byte a byte la cadena de entrada (param_1) y haciendo a cada byte un XOR (^) con el param_3 (que es 1 según vemos en la llamada de la función FUN_00102752), pero en estos tiempos que corren vamos a preguntar a ChatGPT que opina.
ChatGPT
Le pido a ChapGPT que me analice el código y me responde:
Este código en C define una función llamada FUN_00102752 que realiza una operación de XOR (exclusivo OR) byte a byte sobre un bloque de memoria. La función toma tres parámetros:
long param_1: Este parámetro es tratado como una dirección de memoria. Se utiliza como la base de un bloque de memoria sobre el que se realizará la operación.
ulong param_2: Este parámetro especifica el tamaño del bloque de memoria que será afectado por la operación.
byte param_3: Este es el valor de un solo byte que se utilizará en la operación XOR.
El cuerpo de la función consiste en un bucle for que itera sobre el bloque de memoria:
int local_c se declara como una variable local y se inicializa en 0. Esta variable actúa como un contador para el bucle.
La condición del bucle (ulong)(long)local_c < param_2 asegura que el bucle se ejecute sobre el rango completo del bloque de memoria especificado por param_2.
Dentro del bucle, *(byte *)(param_1 + local_c) = *(byte *)(param_1 + local_c) ^ param_3; realiza la operación XOR. Aquí, *(byte *)(param_1 + local_c) accede al byte actual en el bloque de memoria. Este byte se modifica aplicándole un XOR con param_3. La operación XOR se realiza entre el byte actual en la memoria y el valor de param_3, y el resultado se escribe de nuevo en la misma ubicación de memoria.
En resumen, la función FUN_00102752 modifica un bloque de memoria aplicando una operación XOR con un valor dado (param_3) a cada byte dentro del rango de memoria especificado desde param_1 hasta param_1 + param_2. Este tipo de operación es común en tareas como la manipulación de datos para cifrado/descifrado o para la generación de patrones específicos en un bloque de datos.
by ChatGPT
Ahora imaginad que no sois muy dados a programar o simplemente estáis vagos de modo que volvemos a recurrir a ChatGPT con el promt «Haz un XOR 1 con javascript a la cadena: gmfzuihr^vr^o^drx^nod^shfiu|» a lo que responde:
function xorString(str) { return Array.from(str).map(char => String.fromCharCode(char.charCodeAt(0) ^ 1)).join(»); }
Los retos criptográficos son muy variados y muchas veces la dificultad está en saber a que te enfrentas. En este caso pasa eso, te dan un código y si no has visto algo parecido en la vida, no sabes por donde empezar. El título del autor da una pequeña pista pero para los desconocedores no es suficiente. La pista es el título y dice «WTF?!?» y el código a descifrar es el siguiente:
Si eres una persona con recursos, realizaras varias búsquedas por la red y al final llegarás a la conclusión de que te enfrentas a BRAINFUCK, un lenguaje de programación esotérico como ya vimos en el reto de Root-Me.
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.
Realistic Challenge 1: Your friend tried to purchase some software off a company. But after he paid they decided to increase it’s price by a large amount. They are now refusing to send it him. Get them back by getting their most expensive software a lot cheaper than they intended you to.
Lo que nos dice el enunciado del reto a groso modo es que debemos cambiar el precio del software antes de comprarlo.
Firebug
Para resolver este reto basta con tener instalado el complemento para Firefox «Firebug«. Abrimos la web y echamos un vistazo con Firebug
Vemos un parámetro oculto que se llama «amount» y que tiene un valor de 100$. Basta con cambiarlo a 00,01$ y ya tenemos resuelto el reto.