CanYouHack.it Crack6 Challenge – Lights Out (English)

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Intro

This crackme is for the crack challenge 6 of canyouhack.it.

In this crackme the goal is to turn on all the lights. Note that a light off to the next, so if we interrupt this, we win.

Tools

Exeinfo (For crackme info)

Delphi Decompiler (For decompile)

 OllyDbg (For debug)

Decompiling

With Delphi Decompiler we can found easy the buttons and his offsets.
Go to the offset 401A64 in OllyDbg and analyze the code.
We view two jumps, one turn ON the light and the other Turn OFF the next light. Patching the call from offset 401A8B we get the serial.

Links


Introducción A quien va dirigido Comprobaciones previas Lo que necesitamos Presupuesto Ejemplo de instalación Preguntas frecuentes Glosario Notas finales Introducción
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
Aquí tenemos un crackme fuera de lo común, más que nada por que está programado en Brainfuck, un lenguaje de
Introducción Aquí tenemos un crackme hecho en Java, lo que como comprobareis a continuación no es muy buena idea ya

Guía rápida para tener una red Gigabit en casa

Introducción

Un día cualquiera se te ocurre comprarte un disco duro de red NAS para centralizar todo tu contenido multimedia. Lo conectas y todo va genial, pero de repente vas a copiar unos cuantos gigas de fotos y te encuentras con que la operación va a tardar días. En ese mismo instante te planteas sacar el máximo provecho a tu red doméstica y la solución se llama gigabit.

A quién va dirigido

Esta guía va dirigida a todo el mundo que esté pensando en hacer o mejorar la red LAN doméstica. Si eres un amante del WIFI, olvídate de esto, ya que para conseguir altas velocidades se necesita cablear la casa. Además, de lo que trata esta guía es de que se conecte un ordenador portátil o sobremesa de la forma más rápida posible al disco duro de red.

Comprobaciones previas

Probablemente dispongas de un Modem / Router proporcionado por tu compañia y que seguramente no sea gigabit (10/100/1000), esto es lo primero que debes comprobar. Busca tu modelo en internet y cerciorate.

También necesitas que la tarjeta de red del portátil o sobremesa sean gigabit, en este caso lo más probable es que lo sean pero asegúrate.

Lo que necesitamos

Tras hacer las comprobaciones previas ya podemos hacer una lista de los materiales que necesitamos.

  • Router gigabit (en caso del que tu compañia no lo sea).

Si el nuestro no es gigabit existen soluciones económicas como el TP-Link TL-WR1043ND que lo tenemos por 44€ en pccomponentes. Os recomiendo esta tienda por rapidez, seriedad y no abusan con los gastos de envío.

tp_link_tl_wr1043nd_ultimate_router_neutro_wifi_11n_usb_4

  • Switch gigabit (para ampliar puertos)

En caso de que los cuatro puertos que vienen con el router se nos queden cortos, la solución más economica y acertada es un Switch ethernet gigabit como el TP-LINK TL-SG1005D que lo tenemos por 16€. Este dispositivo es una maravilla ya que nos brinda 4 puertos más y no requiere configuración alguna.

tp_link_tl_sg1005d_switch_5_puertos_gigabit

  • Tarjeta de red gigabit (para pc sobremesa en caso de no ser o no disponer)

Son muy económicas, las puedes encontrar por 10€-15€ en cualquier tienda especializada. Ejemplo PCI. Ejemplo PCI-e. Video instalación de una tarjeta de red.

tarjeta-de-red-tp-link-tg-3269-gigabit-pci-internet-101000-1859-MLU4520989306_062013-F

  • Bobina de cable de red Categoría 6.

100m de cable UTP categoría 6 viene a costar sobre unos 42€.

bobina_100m_cable_red_rigido_utp_cat_6_10_100_1000

  • Cables Cat6 interconexionado router / switch / pc.

Para interconexionado de equipos recomiento estos de 50cm por 1,5€. Para conexión del pc tienes otras larguras más apropiadas. También podéis haceros vosotros los cables con lo sobrante de la bobina, para ello necesitaréis una crimpadora y terminales rj45.

digitus_cable_de_red_rj45_cat_6_10_100_1000_gris__50cm_

  • Tomas RJ45 categoría 6.

Esto depende de tu instalación y la gama que elijas. En mi caso utilizo tomas Niessen que solo el conector vale 16€, pero tienes tomas más económicas. De superficie por 2,75€ y empotrable por 8,25€.

roseta_de_superficie_cat6_conector_red_hembra_rj45 roseta_empotrable_cat5e_2_conectores_red_45__hembra_rj_45

  • Insertadora (punch down) para las tomas RJ45.

Indispensable para conectar internamente los cables de las tomas. La tenéis por 11€ en ebay. Video de la insertadora en acción.

PCS058007_large

  • Disco duro de red NAS

Esto es una recomendación personal ya que la elección puede variar en función de las necesidades de almacenamiento y conexiones. Una solución barata y con espacio suficiente para uso doméstico es el disco WD My Cloud 3TB que lo podeis adquirir por 159€.

wd_my_cloud_4tb

Presupuesto (Precios Octubre 2014)

  • Router = 44€
  • Switch = 16€
  • Tarjeta de red = 15€
  • Bobina de cable = 42€
  • Cables interconexionado 50cm x4 = 6€
  • Cable conexión pc / switch o router 1,8m = 2,95€
  • Tomas RJ45 x 2 = 16,5€
  • Disco duro de red NAS = 159€
  • TOTAL = 345,45€ + gastos de envío.

Esto puede variar en función de los componentes que elijas comprar pero el coste oscilará entre 250 y 350€, algo bastante asequible para centralizar contenido multimedia. Digo asequible por que la mitad del presupuesto se lo lleva el disco de red, los componentes son más bien baratos.

Ejemplo de instalación

Esquema inicial

En mi esquema disponemos del router proporcionado por el proveedor de internet que en mi caso sí es gigabit pero que solo lo utilizo para dar internet al router neutro.El router neutro junto con el switch me proporcionan 8 puertos gigabit. El router neutro además gestiona el wifi de la casa, pero en el mejor de los casos (Wifi n) estos dispositivos solo podrán mover datos a 300mbps. Utilizo como media center mis amadas Raspberry Pi que en este caso no se benefician de la velocidad ya que disponen de conexión 10/100.

esquema

Configurar router neutro

Lo primero a conectar es el router neutro y en este caso, TP-Link te lo pone fácil si no te defiendes muy bien con las redes, ya que proporciona un CD que se encarga de guiarte paso a paso. Lo más importante es la asignación de la IP privada, por defecto es 192.168.2.1 y a no ser que el router de la compañia tenga esa misma IP lo podéis dejar como está.

Disco duro de red NAS

Para configurar el disco de red normalmente viene un CD para ayudar al usuario novel. Lo único que tenéis que tener en cuenta es que la IP debe estar en consonancia con la del router neutro, si el router neutro es 192.168.2.1 al disco NAS podéis asignarle 192.168.2.150. Para más información aquí tenéis la guía de instalación.

Preguntas frecuentes. FAQ

  • ¿El cable normal o cruzado?

Podéis usar cable normal, también llamado conexión Pin a Pin ó 1:1, para toda la instalación ya que los dispositivos de hoy en día aceptan cualquier cable y resuelven internamente en función del cable conectado. Pero si nos ponemos quisquillosos, para conectar elementos pasivos entre sí (router a switch, etc) se utiliza cable normal 1:1. Para conectar elementos activos (PC a router/switch) cable cruzado.

  • ¿Qué norma de colores uso?

Mi consejo es que uses el standard EIA/TIA 568B tanto en la conexión de las cajas como en la creación de los cables.

image002

Cada roseta o toma en su interior tiene definido el orden que debes seguir para conectar los cables según el standard A o B, esto es una aproximación y puede no coincidir con tu toma.

con_roseta

  • Tengo todo instalado y es categoría 6 pero mi pc me marca que me conecta a 100mbps ¿qué pasa?

Si estás seguro de que las rosetas están bien conectadas, que has usado los cables correctos, que todos los dispositivos son gigabit y tu pc hace de las suyas, quizás debas de forzar a tu tarjeta de red a trabajar en modo gigabit ó 100 full duplex ó 100FD. Esto es debido a que el driver de la tarjeta de red por defecto viene con la opción de «autonegociación» activada y a veces necesita que le «obligues» a trabajar en gigabit.

En cada tarjeta de red puede venir diferente, yo os muestro mi caso desde windows 7:

Diríjete a Inicio > Panel de control > Ver el estado y las tareas de red > conexión de area local

En mi caso marca 1 Gbps pero si estais teniendo problemas os marcará 100 mbps. A continuación pulsa Propiedades.

31-10-2014 21-47-55

Pulsa Configurar.

31-10-2014 21-49-19

En la pestaña Opciones avanzadas busca la opción de la velocidad, en mi caso «Speed/duplex settings» y selecciona 100 mb Full Duplex. De este modo le forzais a la tarjeta de red a trabajar en modo gigabit. Si no lo consiguiera trabajará en el modo que pueda pero no os dejará sin conexión.

31-10-2014 21-50-31

Glosario

  1. NAS – del inglés Network Attached Storage, es el nombre dado a una tecnología de almacenamiento dedicada a compartir la capacidad de almacenamiento a través de una red. Estos discos vienen equipados como mínimo con una conexión RJ45 para integrarlo en una red de forma rápida y sencilla.
  2. Full Duplex – Que transmite y recibe en ambas direcciones al mismo tiempo por cables independientes.
  3. Switch – Un conmutador o switch es un dispositivo digital lógico de interconexión de equipos que opera en la capa de enlace de datos del modelo OSI. Su función es interconectar dos o más segmentos de red, de manera similar a los puentes de red, pasando datos de un segmento a otro de acuerdo con la dirección MAC de destino de las tramas en la red.
  4. Gigabit Ethernet – también conocida como GigaE, es una ampliación del estándar Ethernet (concretamente la versión 802.3ab y 802.3z del IEEE) que consigue una capacidad de transmisión de 1 gigabit por segundo, correspondientes a unos 1000 megabits por segundo de rendimiento contra unos 100 de Fast Ethernet (También llamado 100BASE-TX).

Notas finales

Soy consciente de que me he dejado muchas cosas en el tintero pero mi pretensión es que el lector de un vistazo rápido tenga una idea clara de lo que necesita para lograr una red decente en casa.

Wechall Training LSB Challenge (Esteganografía)

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Introducción

Resumidamente, esta técnica consiste en ocultar información en el bit menos significativo de cada uno de los píxeles de una imagen, consiguiendo así que el cambio realizado sea invisible al ojo humano. El problema de esta técnica, es que la información oculta puede obtenerse fácilmente si esta no se ha codificado previamente o si no se sigue un patrón concreto a la hora de ocultarla.

Desde la web del reto nos avisan de que esto es un simple truco pero espectacular. Nos animan a descargar una imágen y a encontrar la solución oculta.

Aprovecho este reto para presentaros una herramienta vital al enfrentaros a ciertos retos sobre esteganografía, steganabara.

Steganabara tiene dos apartados muy interesantes, uno es «color table» y otro «bit mask«, hoy veremos en acción a «bit mask».

No os preocupéis por la solución ya que cambia para cada usuario y sesión.

Buscando la solución oculta

Abrimos steganabara y empezamos a trastear con bit mask.

stegolsb02

Al poco tiempo ya vemos que vamos bien encaminados.

stegolsb03stegolsb04

Finalmente no nos cuesta dar con la solución.

stegolsb05stegolsb06

Links

Canyouhack.it – Crack Challenge 4 (Brain Fuck Me)

Aquí tenemos un crackme fuera de lo común, más que nada por que está programado en Brainfuck, un lenguaje de programación esotérico bastante complejo.

[-]>[-]<>++++++++[<++++++++++>-]<.+++++++++++++++++.>+++[<++++++>-]<..++++.-
-------.+++.--------------.>++++++[<------>-]<-.>+++++[<------>-]<-.,>,>,>,>
>>>+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++>>>>+++++++++++++++++++++++++++++++++++++++++
+++++++++++>>>>+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++>>>>++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<<<
<<<<<<<<<<<<<<<<[>>>>>>>-<<<<<<<-]>>>>>>><<+>>[[-]++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++.<]<[>]<<<<<[>>>>>>>>>>-<<<<<<<<
<<-]>>>>>>>>>><<+>>[[-]+++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++.<]<[>]<<<<<<<<[>>>>>>>>>>>>>-<<<<<<<<<<<<<-]>>>>>>>>>>>>><<+>>[
[-]+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
.<]<[>]<<<<<<<<<<<[>>>>>>>>>>>>>>>>-<<<<<<<<<<<<<<<<-]>>>>>>>>>>>>>>>><<+>>[
[-]+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++.<]<[>]>>>[-]>[-]<+++++++++++++.---.>+++++++[<++++++++++++>-]<.>+++++++[<
--------->-]<+.>+++++[<++++++++>-]<+.>++++[<+++++++>-]<+.>+++++++[<---------
->-]<.>++++++++[<+++++++++>-]<+.+++++++++++.>+++++++[<----------->-]<.>+++++
++[<+++++++++++>-]<-.>+++++++[<------------>-]<+.>++++++++[<+++++++++++>-]<-
.-----.---------.+++++++++++..---------------.+++++++++.>++++++[<-----------
-->-]<.+++++++.>+++++[<++++++>-]<+.-----.++++++++.+++.>++++++[<------>-]<-.-
------.>++++++++[<++++++++++>-]<-.+++.>+++++++++[<--------->-]<-.+++++++.>++
+++[<++++++>-]<+.-----.+++++++++++.>++++++[<------>-]<-.-------.>++++++++[<+
+++++++++>-]<-.+++.>+++++++++[<--------->-]<-.+++++++.>+++++[<+++++>-]<+.+++
+++++.+++.>++++++[<------>-]<-.+++++++...--------------.>++++++++[<+++++++++
++>-]<+.----------.++++++.>+++++++[<------------>-]<-.>++++++++[<+++++++++>-
]<.-------.>+++[<+++++++>-]<.-----------------.>+++++++[<---------->-]<+.>++
+++++[<++++++++++>-]<.-----.++++++++.+++.-------.-.>++++++[<--------->-]<.--
------------.>+++++[<++++++++>-]<+.>++++[<+++++++>-]<+.>+++++++[<---------->
-]<.>+++++++[<++++++++++++>-]<.------------.---.+++++++++++++.-------------.
>+++++++[<---------->-]<+.>++++++++[<+++++++++>-]<+.++++++++++.>+++++++[<---
--------->-]<+.>++++++[<+++++++++++++>-]<.+.+++++.------------.+.+++++.-----
--.>++++++[<---------->-]<+.------------.>++++++++[<+++++++++++>-]<+.-------
---.++++++.>+++++++[<------------>-]<-.>++++++++[<+++++++++>-]<.-------.>+++
[<+++++++>-]<.-----------------.>+++++++[<---------->-]<+.>++++++++[<+++++++
++++>-]<-.--------------.+++++.>++++++[<------------->-]<.+.

La solución que he encontrado yo, es convertir el código brainfuck a algo más amigable y depurarlo hasta encontrar la solución. La conversión la he realizado con VBBrainFNET y luego la depuración con Visual Studio. El crackme te pide una clave de cuatro cifras para darte la solución, pero si no quieres volverte loco puedes amañar los bucles para encontrar la solución.

¡SUERTE!

Enlaces

 

Dark_Prince’s crackme in Java Keygen

Introducción

Aquí tenemos un crackme hecho en Java, lo que como comprobareis a continuación no es muy buena idea ya que conseguir el código fuente e incluso modificarlo no es muy dificil.

Decompilado

Abrimos la víctima con nuestro decompilador favorito y nos fijamos en su contenido.

Lo interesante está en la clase Main > doneActionPerformed(ActionEvent), ya que contiene el código al ejecutar el botón que chequea el serial.
Llegados a este punto podríamos hacer cualquier cosa, parchear, que el serial válido nos lo mostrara una MessageBox etc. Pero vamos a hacer algo mejor, vamos a modificar la victima para crear nuestro keygen personalizado.

Creando un Keygen a partir de la víctima

Solamente tendremos que modificar un poco la apariencia y modificar la rutina de comprobación del serial para que lo muestre en la caja de texto del serial. Finalmente abrá que recompilar.
Aquí resalto el texto a modificar para el aspecto.
Así queda la modificación para mostrar el serial correcto en la caja de texto.
El aspecto del keygen finalmente es así.
Y como podeis apreciar funciona correctamente.

Links


Introducción La película "Contact", estrenada en 1997 y dirigida por Robert Zemeckis, es una adaptación de la novela homónima de
Intro Hoy nos enfrentamos a un crackme realizado en Delphi con un algoritmo bastante sencillo. Está empacado con UPX pero
Libros Hacker Épico La apacible existencia de Ángel Ríos da un vuelco cuando una antigua compañera de clase, de la
Intro Antes que nada, es importante saber que un archivo ELF en Linux es equivalente a un archivo EXE en

Tras las Pantallas de ‘Contact’: Un Viaje a Través del Hardware y del Software

Introducción

La película «Contact«, estrenada en 1997 y dirigida por Robert Zemeckis, es una adaptación de la novela homónima de Carl Sagan. Más allá de su profunda exploración sobre la existencia de vida extraterrestre y el debate entre ciencia y fe, la película ofrece un interesante vistazo a la tecnología de la época. En este análisis, nos enfocaremos en los aspectos tecnológicos presentes en la película, detallando los sistemas operativos, software y hardware utilizados por los protagonistas.

Sinopsis

La Dra. Eleanor «Ellie» Arroway, interpretada por Jodie Foster, es una científica dedicada al proyecto SETI (Búsqueda de Inteligencia Extraterrestre). Tras años de búsqueda, capta una señal proveniente del espacio profundo que contiene instrucciones para construir una máquina enigmática. A medida que se desarrolla la trama, Ellie enfrenta desafíos políticos, religiosos y personales mientras lucha por interpretar el mensaje y lo que podría significar para la humanidad.

Análisis Tecnológico

Sistemas Operativos y Software

Uno de los aspectos más destacados en Contact es la presencia del sistema operativo UNIX. A lo largo de la película, se observan pistas que indican su uso, como pegatinas en las pantallas con mensajes del estilo: «Join the UNIX PARTY (The open system platform)». UNIX, desarrollado en la década de 1970, es conocido por su estabilidad y eficiencia, características esenciales en entornos científicos y de investigación.

La utilización de Netscape Navigator es recurrente. El logo de Netscape aparece en varias ocasiones, especialmente durante las videoconferencias que se muestran sin retrasos apreciables. Netscape fue uno de los primeros navegadores web ampliamente utilizados y jugó un papel crucial en la expansión de Internet durante los años 90.

Es importante destacar que, aunque la película promueve la idea de sistemas abiertos a través del uso de UNIX, Netscape Navigator no era software libre en el momento en que se rodó la película. Durante esa época, antes de 1997, Netscape era un navegador propietario. Sin embargo, en sistemas UNIX, Netscape tenía poca competencia y era el navegador predominante, soportando estándares abiertos como HTTP y HTML. Curiosamente, en 1998, poco después del estreno de la película, Netscape liberó el código fuente de su navegador, iniciando el proyecto Mozilla y contribuyendo significativamente al movimiento del software libre.

El software o plataforma denominada MADDEN HADDEN es utilizado por los protagonistas en diversas localizaciones, sugiriendo que es un estándar en su campo. Aunque en la realidad no existe un software conocido con ese nombre en el ámbito científico, en la película parece ser una herramienta integral para el análisis de datos y comunicación.

Videoconferencias y Comunicaciones

Las videoconferencias sin «lags» (retrasos) que se muestran en la película son notables, especialmente considerando las limitaciones tecnológicas de la época. La presencia del logo de Netscape durante estas comunicaciones resalta el optimismo sobre las capacidades de Internet en 1997. En ese entonces, las conexiones de alta velocidad no eran comunes, y las videollamadas de calidad eran más una aspiración que una realidad.

Estándares y Sistemas Abiertos

La promoción de sistemas abiertos es evidente en la película. El uso de UNIX, basado en estándares abiertos, refleja una filosofía de colaboración y accesibilidad en el ámbito científico. Aunque Netscape Navigator no era software libre durante la producción de la película, su soporte para estándares abiertos de Internet lo convirtió en una herramienta esencial para la comunicación y el intercambio de información entre científicos y profesionales.

Hardware

En términos de hardware, la película presenta una variedad de equipos representativos de la tecnología de los años 90:

Monitor NEC MultiSync XE21: Un monitor CRT de 21 pulgadas conocido por su alta resolución y calidad de imagen, ideal para aplicaciones que requieren detalles precisos.

Monitores con marcas ocultas: Es interesante notar que en varios monitores se utilizan post-its o adhesivos para cubrir la marca y el modelo. Esto podría deberse a decisiones de producción para evitar publicidad no deseada o cuestiones legales relacionadas con derechos de marca.

Monitor CTX: Aunque no se especifica el modelo, los monitores CTX eran populares por su fiabilidad y rendimiento a un costo razonable.

Monitor Hansol Mazellan 17px: Los monitores Hansol eran reconocidos por su calidad en la reproducción de gráficos, siendo utilizados en diseño y aplicaciones multimedia.

Monitor IBM: IBM fue pionera en tecnología informática, y sus monitores eran sinónimo de calidad y durabilidad. Aunque no se especifica el modelo exacto, es probable que se trate de uno de sus populares monitores CRT utilizados en entornos profesionales.

Evolución de UNIX y Windows

Para entender el contexto tecnológico de la época, es útil comparar la evolución de UNIX y Windows, así como de los navegadores Netscape Navigator e Internet Explorer.

Detalles Adicionales

Cobertura de marcas: La práctica de cubrir las marcas y modelos en los monitores podría indicar un intento de la producción por crear un entorno más universal y atemporal, evitando asociar la tecnología presentada con productos específicos que podrían quedar obsoletos rápidamente. En bastantes fotogramas se nota que esto es completamente intencionado.

Representación de la tecnología: La película equilibra la precisión técnica con las necesidades narrativas. Si bien algunas representaciones, como las videoconferencias fluidas, eran tecnológicamente avanzadas para la época, sirven para enfatizar la conectividad y colaboración global entre los científicos.

SETI y la Búsqueda de Vida Extraterrestre: En Contact, la Dra. Ellie Arroway dedica su vida al proyecto SETI (Search for Extraterrestrial Intelligence), reflejando el esfuerzo real de la comunidad científica por encontrar señales de inteligencia extraterrestre. SETI es una iniciativa internacional que utiliza radiotelescopios para detectar posibles comunicaciones de civilizaciones fuera de la Tierra. La película captura la pasión y los desafíos asociados con este tipo de investigación, destacando la dedicación de los científicos que trabajan en el límite de lo conocido.

El Mensaje de Arecibo: El radiotelescopio de Arecibo en Puerto Rico juega un papel significativo tanto en la realidad como en la película. En 1974, desde este observatorio, se envió el famoso Mensaje de Arecibo, una transmisión de radio dirigida al cúmulo estelar M13, diseñada para demostrar los avances tecnológicos humanos y nuestra existencia a posibles civilizaciones extraterrestres. El mensaje contenía información codificada sobre la composición humana, nuestro sistema numérico, la estructura del ADN y nuestra posición en el sistema solar. En «Contact», aunque la señal recibida por Ellie proviene de Vega y no está directamente relacionada con el Mensaje de Arecibo, la película establece paralelismos con este acontecimiento histórico. La utilización de Arecibo como escenario subraya la conexión entre los esfuerzos reales y ficticios en la búsqueda de inteligencia extraterrestre. La película explora la posibilidad de que, así como enviamos mensajes al espacio, podríamos recibir respuestas o comunicaciones de otras civilizaciones.

Matthew McConaughey: Es interesante notar cómo este actor ha participado en dos de las películas más destacadas de la ciencia ficción: Contact e Interstellar. En Contact, McConaughey interpreta un papel secundario como Palmer Joss, un escritor y asesor espiritual que cuestiona las implicaciones éticas y filosóficas del descubrimiento científico. Diecisiete años después, en Interstellar, asume el rol protagonista de Cooper, un ex piloto de la NASA que emprende una misión interestelar para salvar a la humanidad.

Números primos: El inicio de la investigación seria de la señal extraterrestre en la película se desencadena cuando, al analizar la señal recibida, los científicos descubren que esta codifica una secuencia de números primos. Este hallazgo resulta crucial, ya que los números primos, al ser divisibles únicamente por 1 y por sí mismos, no surgen de forma aleatoria en procesos naturales conocidos. Su presencia en la señal sugiere intencionalidad e inteligencia detrás de su emisión, lo que confirma que no se trata de ruido cósmico sino de una posible comunicación deliberada desde una civilización avanzada. Este descubrimiento impulsa a los científicos a profundizar en la decodificación, marcando el verdadero inicio de la búsqueda de vida extraterrestre.

Conclusión

Contact no solo es una obra que invita a reflexionar sobre nuestro lugar en el universo y la posibilidad de vida más allá de la Tierra, sino que también es un retrato de la tecnología de su tiempo. La inclusión de sistemas operativos como UNIX, navegadores como Netscape y hardware específico refleja una atención al detalle que enriquece la narrativa. A pesar de que Netscape Navigator no era software libre durante la producción de la película, su presencia destaca la importancia de los estándares abiertos y la colaboración en el avance científico.

También destaca por su compromiso con la precisión científica, en gran parte debido a la influencia de Carl Sagan, autor de la novela original y asesor en la producción. La representación de los procedimientos del SETI, el análisis de señales y las discusiones éticas y filosóficas reflejan debates reales en la comunidad científica. La inclusión de elementos como el Mensaje de Arecibo y las operaciones del radiotelescopio añaden autenticidad a la narrativa y acercan al público a la realidad de la exploración espacial.

Bibliografía y Enlaces

Galería

Keygen para el CrackMe #1 de ECloZion

Intro

Hoy nos enfrentamos a un crackme realizado en Delphi con un algoritmo bastante sencillo. Está empacado con UPX pero aquí no vamos a explicar como desempacarlo ya que UPX es un reductor de tamaño más que un empacador, incluso con el propio empacador podemos desempacarlo.

Nota: Si queréis ver el proceso completo de desempacado ver el siguiente video (http://youtu.be/c4CNY902SAE).

El algoritmo

Abrimos Olly y vamos a las string references, localizamos los mensajes de error y éxito y pulsamos sobre cualquiera.

stringref

Encima de los mensajes tenemos la rutina de comprobación del serial. En la primera imagen vemos que comprueba que no dejemos ningún campo vacío y a continuación se mete de lleno con el serial.

checkcamposenblanco

checkserial

Analicemos la rutina del serial.

00454882       |> /8B15 4C6C4500          /MOV EDX,DWORD PTR DS:[456C4C]      ; Concatena name + ECloZion + pronom   <---
00454888       |. |8B0D 506C4500          |MOV ECX,DWORD PTR DS:[456C50]
0045488E       |. |0FB6540A FF            |MOVZX EDX,BYTE PTR DS:[EDX+ECX-1]  ; Coje el dígito que toque
00454893       |. |8916                   |MOV DWORD PTR DS:[ESI],EDX         ; Mueve EDX a TEMP (inicialmente vale FFFFFFFF)
00454895       |. |833E 5F                |CMP DWORD PTR DS:[ESI],5F
00454898       |. |75 06                  |JNZ SHORT ECloZion.004548A0
0045489A       |. |C706 20000000          |MOV DWORD PTR DS:[ESI],20
004548A0       |> |8B17                   |MOV EDX,DWORD PTR DS:[EDI]
004548A2       |. |3116                   |XOR DWORD PTR DS:[ESI],EDX         ;  TEMP = TEMP xor digito
004548A4       |. |8136 CE9A5614          |XOR DWORD PTR DS:[ESI],14569ACE    ;  TEMP = TEMP xor 14569ACE
004548AA       |. |8B16                   |MOV EDX,DWORD PTR DS:[ESI]
004548AC       |. |8917                   |MOV DWORD PTR DS:[EDI],EDX
004548AE       |. |FF05 506C4500          |INC DWORD PTR DS:[456C50]
004548B4       |. |48                     |DEC EAX                            ; EAX = longitud del concatenado = contador del bucle.
004548B5       |.^\75 CB                  \JNZ SHORT ECloZion.00454882        ; Bucle --->
004548B7       |>  8137 F0BD6434          XOR DWORD PTR DS:[EDI],3464BDF0     ; TEMP 0 TEMP xor 3464BDF0

 

Ejemplo:

Nom: deurus
Prenom: any

d  e  u  r  u  s  E  C  l  o  Z  i  o  n  a  n  y
64 65 75 72 75 73 45 43 6C 6F 5A 69 6F 6E 61 6E 79

FFFFFFFF xor 64 = FFFFFF9B xor 14569ACE = EBA96555
EBA96555 xor 65 = EBA96530 xor 14569ACE = FFFFFFFE
FFFFFFFE xor 75 = FFFFFF8B xor 14569ACE = EBA96545
EBA96545 xor 72 = EBA96537 xor 14569ACE = FFFFFFF9
FFFFFFF9 xor 75 = FFFFFF8C xor 14569ACE = EBA96542
EBA96542 xor 73 = EBA96531 xor 14569ACE = FFFFFFFF
FFFFFFFF xor 45 = FFFFFFBA xor 14569ACE = EBA96574
EBA96574 xor 43 = EBA96537 xor 14569ACE = FFFFFFF9
FFFFFFF9 xor 6C = FFFFFF95 xor 14569ACE = EBA9655B
EBA9655B xor 6F = EBA96534 xor 14569ACE = FFFFFFFA
FFFFFFFA xor 5A = FFFFFFA0 xor 14569ACE = EBA9656E
EBA9656E xor 69 = EBA96507 xor 14569ACE = FFFFFFC9
FFFFFFC9 xor 6F = FFFFFFA6 xor 14569ACE = EBA96568
EBA96568 xor 6E = EBA96506 xor 14569ACE = FFFFFFC8
FFFFFFC8 xor 61 = FFFFFFA9 xor 14569ACE = EBA96567
EBA96567 xor 6E = EBA96509 xor 14569ACE = FFFFFFC7
FFFFFFC7 xor 79 = FFFFFFBE xor 14569ACE = EBA96570
--------------------------------------------------
Resultado = EBA96570
EBA96570 xor 3464BDF0 = DFCDD880 = 3754809472 --> nuestra serial

 KeyGen en C++

            char Nombre[20];
            GetWindowText(hwndEdit1, Nombre, 20);
            char prenom[20];
            GetWindowText(hwndEdit2, prenom, 20);
            char Serial[20];
            char concatenado[48];
            wsprintf(concatenado,"%sECloZion%s",Nombre,prenom);
            int len = strlen(concatenado);
            unsigned int suma = 0xFFFFFFFF;
                for(int i = 0; i < len; i = i + 1)
                {
                        suma = suma ^ concatenado[i];
                        suma = suma ^ 0x14569ACE;
                }
            suma = suma ^ 0x3464BDF0;
            wsprintf(Serial,"%u",suma);
            SetWindowText(hwndEdit3, TEXT(Serial));

 Links


Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
En esta ocasión vamos a hablar de una película de culto de los años 90, Hackers - Piratas Informáticos. La
Estamos ante un ELF un poco más interesante que los vistos anteriormente. Básicamente porque es divertido y fácil encontrar la
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en

Keygen para el KeygenMe#01 de eBuC – Comparación lineal

Primeras impresiones

Analizamos el programa con PEiD y nos muestra que está hecho en ensamblador.


Unas pruebas introduciendo datos nos muestran que el nombre debe tener entre 3 y 10 dígitos.


Determinando la rutina de creación del serial con Ollydbg

Llegados a este punto tenemos dos opciones que funcionan en el 90% de los casos. La primera es mediante las referenced strings o mediante los names.
 
Para el primer caso, con el keygenme cargado en olly, click derecho y Search > All referenced text strings. Haciendo doble click en “You got it” o en “Bad boy” vamos directamente a la rutina de comprobación del serial o muy cerca de ella en la mayoría de los casos.


Para el segundo caso, haremos click derecho y Search > Name (label) in current módule, o Ctrl+N. Vemos dos llamadas interesantes como son user32.GetDlgItemInt y user32.GetDlgItemTextA. Lo más seguro es que user32.GetDlgItemInt coja del textbox nuestro serial y user32.GetDlgItemTextA coja nuestro nombre. Para este caso colocaríamos breakpoints en las dos llamadas.


En mi caso elijo la primera opción. Nada más pulsar en “You got it” nos fijamos un poco más arriba y vemos las funciones donde coge el nombre y el serial y a simple vista se ven las operaciones que hace con ellos.

Generando un serial válido

Como se muestra en la imagen siguiente, la creación del serial es muy sencilla y al final la comparación es lineal ya que se compara nuestro serial con el serial válido. Veamos el serial válido para el usuario “abc” cuyos dígitos en hexadecimal son 0x61, 0x62 y 0x63.

Letra a
Letra b
Letra c
Suma + 0x61
Suma * 0x20
Suma xor 0xBEFF
Suma / 4
Suma = 0x2CB7
Suma + 0x62
Suma * 0x20
Suma xor 0xBEFF
Suma / 4
Suma = 0x14777
Suma + 0x63
Suma * 0x20
Suma xor 0xBEFF
Suma / 4
Suma = 0xA116F
Suma xor 0xBEA4 = 0xAAFCB
Serial válido = 700363

Generando un keygen con WinASM studio desde cero

Abrimos WinASM studio y pulsamos en File > New Project y en la pestaña dialog elegimos base.

  

Vemos que se nos generan tres archivos, uno con extensión asm, otro con extensión inc y otro con extensión rc. El archivo asm es el que contendrá nuestro código. El archivo inc no lo vamos a usar para simplificar las cosas y el archivo rc es nuestro formulario al que pondremos a nuestro gusto.
Empecemos con el aspecto del formulario. Por defecto viene como se muestra en la siguiente imagen. Que por cierto, es todo lo que necesitamos para un keygen básico.

Y el aspecto final:

Ahora veamos cómo viene nuestro archivo asm inicialmente y que haremos con él. En la siguiente imagen lo indico.

    Encima de la sección .code hemos creado dos secciones como son .data y .data? y hemos declarado las variables necesarias. 
  • szFormat está declarada en formato integer (%i). Más tarde la utilizaremos junto a la función wsprintf para dar formato a un número.
  • szSizeMin: habla por sí misma.
  • szSizeMax: habla por sí misma.
  •  szCap: habla por sí misma.
  • szName: contendrá el nombre introducido.
  • szCode: contendrá el serial válido.
Nuestro código queda de la siguiente manera:

A partir de aquí ya simplemente es escribir el código necesario para generar el serial válido. Una de las ventajas que tiene el ensamblador para hacer keygens sin muchas complicaciones, es que prácticamente es copiar el código que nos muestra Ollydbg. Si os fijáis a continuación, en el botón llamado “IDC_OK” (no le he cambiado el nombre) he puesto todo el código necesario para generar la simple rutina del serial.
Como veis el bucle del nombre es una copia de lo que nos mostró Ollydbg. Una vez que tenemos en EAX nuestro serial válido, mediante la función wsprintf guardamos en la variable szCode el serial válido con formato integer. Finalmente mediante la función SetDlgItemText, mostramos el serial válido en la caja de texto 1002, que es la del serial.

Enlaces


AperiSolve es un conjunto de herramientas de análisis esteganográfico que nos ayuda a echar un primer vistazo cuando sospechamos que
Se nos entrega un html con un juego que consiste en hacer clic en un botón tantas veces como podamos
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
El reto Se nos proporciona la imagen anterior y se nos invita a resolver la ecuación para el menor entero

AperiSolve (Zsteg)

AperiSolve es un conjunto de herramientas de análisis esteganográfico que nos ayuda a echar un primer vistazo cuando sospechamos que una imagen esconde algo.

Zsteg es una herramienta especializada en la detección y extracción de información oculta en imágenes, especialmente en formatos PNG y BMP. Está orientada a la esteganografía basada en bit-planes y es muy popular en entornos CTF y análisis forense, gracias a su capacidad para automatizar búsquedas exhaustivas de datos escondidos en los bits menos significativos (LSB) y en configuraciones de color poco habituales. Su principal fortaleza es que no se limita a examinar un único plano: prueba sistemáticamente combinaciones de canales (R, G, B, A), número de bits, orden de lectura y posicionamiento, detectando patrones que podrían pasar inadvertidos en una revisión manual.

Entre sus características más destacadas se encuentran la identificación automática de firmas de archivos (ZIP, PNG, texto ASCII, GZIP, etc.), la extracción directa de bitstreams reconstruidos y el soporte para diferentes rutas de exploración, como b1,rgb,lsb,xy, que describen exactamente cómo se han recuperado los datos. Esta capacidad de correlacionar parámetros técnicos con resultados concretos convierte a zsteg en una herramienta muy eficiente tanto para localizar contenido oculto como para entender la técnica esteganográfica aplicada.

En AperiSolve se utiliza únicamente la parte de Zsteg encargada de ejecutar el análisis automático y devolver todas las detecciones posibles de esteganografía LSB en imágenes PNG y BMP. Concretamente, AperiSolve llama al comando zsteg <imagen> tal como está implementado en el módulo analyze_zsteg , y captura la salida completa línea por línea. Esta salida incluye todas las combinaciones probadas de bit-planes (b1, b2…), canales (r, g, b, a), orden de bits (lsb/msb) y métodos de recorrido (xy), junto con cualquier coincidencia que zsteg reconozca como firma de archivo o texto. Es decir, AperiSolve no aplica filtros ni interpretación adicional: muestra exactamente lo que zsteg detecta y lo organiza para que el usuario pueda identificar rápidamente si existe un archivo embebido, contenido ASCII, o algún patrón de interés.

En AperiSolve veremos algo como esto:

... 
b1,a,lsb,xy         .. 
b1,a,msb,xy         .. 
b1,rgb,lsb,xy       .. file: Zip archive data, at least v1.0 to extract, compression method=store
b1,rgb,msb,xy       .. 
b1,bgr,lsb,xy       .. 
b1,bgr,msb,xy       .. 
b1,rgba,lsb,xy      .. 
b1,rgba,msb,xy      .. file: OpenPGP Public Key
b1,abgr,lsb,xy      .. 
b1,abgr,msb,xy      .. file: OpenPGP Secret Key
b2,r,lsb,xy         .. 
b2,r,msb,xy         .. text: "P@UPUUPAAUU@"
b2,g,lsb,xy         .. text: "(ahOFyIS!"
...

Para entender mejor a que se refiere todo esto vamos a repasar lo básico.

¿Qué es LSB y qué es MSB?

Cuando hablamos de esteganografía en imágenes PNG/BMP, nos referimos a manipular bits dentro de los canales de color (R, G, B, A). Cada canal tiene un valor de 0–255, es decir, 8 bits:

R = 11001010
G = 00110101
B = 11100001

LSB Least Significant Bit (bit menos significativo). Es el bit más débil, el de la derecha:

1100101[0]   ← LSB

Modificarlo cambia muy poco el color, por eso se usa en esteganografía.
Ejemplo: cambiar 11001010 ↦ 11001011 no cambia el color perceptible.

MSB Most Significant Bit (bit más significativo). Es el bit más importante, el de la izquierda:

[1]1001010   ← MSB

Modificarlo sí altera mucho el color. A veces se usa pero suele ser detectable.

Cuando Zsteg muestra una línea del estilo b1,rgb,lsb,xy .. file: Zip archive data, está indicando que ha analizado la imagen extrayendo bits según la ruta especificada —en este caso, 1 bit por píxel (b1), combinando los canales rojo, verde y azul (rgb), utilizando el bit menos significativo (lsb) y recorriendo los píxeles en orden normal de lectura (xy)— y que, tras recomponer esos bits, el resultado coincide con la cabecera reconocible de un tipo de archivo real. Por eso aparece “file: Zip archive data”: significa que los bits ocultos forman un flujo válido cuya firma corresponde a un archivo ZIP. En otras ocasiones puede detectar texto ASCII, PNG, JPEG u otros formatos. En resumen, cuando Zsteg muestra esta línea no solo indica dónde se ocultan los datos, sino que confirma que lo recuperado es un archivo auténtico y probablemente extraíble, ya que la estructura binaria coincide con un formato conocido.

Si vemos que Zsteg nos ofrece algo interesante, podemos extraerlo mediante el comando:

zsteg -E b1,rgb,lsb,xy imagen.png > dump.bin

También es habitual usar herramientas como StegSolve. En este caso debemos dirigirnos a Analyse > Data extract para comprobar lo encontrado por zsteg y extraerlo mediante Save Bin.

Zsteg> Significado <StegSolve
b1Extrae 1 bit por canal (bit plano 0, el menos significativo).En Bit Planes, marca Red 0, Green 0, Blue 0. Solo esos.
rgbUsa R + G + B en ese orden para reconstruir los bytes.En Bit Plane Order, selecciona RGB.
lsbLee los bits empezando por el LSB (bit 0) antes que el MSB.En Bit Order, selecciona LSB First.
xyRecorre la imagen por filas (izquierda → derecha, arriba → abajo).En Extract By, elige Row.

Más allá de este caso concreto, conviene recordar que la esteganografía no se limita a los LSB: existen métodos basados en paletas, metadatos, manipulación de PNG chunks, secuencias alfa, audio incrustado o capas completas en formatos no comprimidos. Por ello, un análisis completo debería combinar la búsqueda clásica de LSB con herramientas complementarias como binwalk, foremost, exiftool, strings, o incluso análisis manual de cabeceras hexadecimales.

JS Deobfuscator

Se nos entrega un html con un juego que consiste en hacer clic en un botón tantas veces como podamos para ganar al juego. Acompañando al html tenemos un código javascript ofuscado aparentemente con Obfuscator.io

El código javascript ofuscado tiene el siguiente aspecto.

(function(_0x144932, _0xfc69c5) { var _0x187428 = _0x588c,
        _0x3064c6 = _0x144932(); while (!![]) { try { var _0xb96d19 = -parseInt(_0x187428(0x1bd)) / 0x1 + parseInt(_0x187428(0x137)) / 0x2 + -parseInt(_0x187428(0x140)) / 0x3 * (-parseInt(_0x187428(0x13b)) / 0x4) + parseInt(_0x187428(0x15e)) / 0x5 * (parseInt(_0x187428(0x18c)) / 0x6) + -parseInt(_0x187428(0x159)) / 0x7 * (parseInt(_0x187428(0x1c3)) / 0x8) + parseInt(_0x187428(0x129)) / 0x9 * (-parseInt(_0x187428(0x149)) / 0xa) + parseInt(_0x187428(0x16d)) / 0xb; if (_0xb96d19 === _0xfc69c5) break;
            else _0x3064c6['push'](_0x3064c6['shift']()); } catch (_0x377a04) { _0x3064c6['push'](_0x3064c6['shift']()); } } }(_0x5be3, 0x6fe59));;

function _0x5be3() { var _0x5a2048 = ['Utf8', 'push', 'createDecryptor', 'Malformed\x20UTF-8\x20data', '_ENC_XFORM_MODE', 'string', '_prevBlock', 'extend', '_doReset', 'AnsiX923', 'error', 'fromCharCode', 'object', '130340XnpiqM', '#res', 'HmacSHA256', 'DES', '4FuuDzS', 'finalize', 'byteLength', 'salt', '_keyPriorReset', '372669TnxSTf', '_xformMode', 'HMAC', 'stringify', 'Latin1', 'cfg', 'start', 'padding', 'show', '47650FNyFfQ', 'parse', 'TripleDES', 'MD5', 'ZeroPadding', 'length', 'Rabbit', 'console', 'Base', 'HmacSHA3', 'kdf', '_doFinalize', 'drop', 'BufferedBlockAlgorithm', 'Cipher', 'HmacSHA1', '7PKTjbP', 'CTR', '_reverseMap', 'clone', 'Encryptor', '43750GcrrDy', 'SHA384', 'byteOffset', 'indexOf', 'Word', '#loader', 'algo', 'apply', 'bind', 'HmacMD5', 'Base64', '_key', 'createEncryptor', 'min', '_counter', '4232173VijiOj', '_lBlock', 'You\x20Lose', 'ECB', 'BlockCipherMode', 'ciphertext', 'floor', 'constructor', 'log', 'search', 'flush', 'Iso10126', 'update', 'NoPadding', 'max', 'HmacSHA384', 'SHA512', 'decrypt', '_des2', '(((.+)+)+)+$', 'high', 'U2FsdGVkX189ylLOlgNSxq/TLeSxBr7cYDcRBgMXXS9VmwusKZx1XFDNdpkwg24v98iYGnUATwQVyWwFnlyoCg==', 'charAt', 'return\x20(function()\x20', 'pow', 'prototype', 'compute', 'reset', 'warn', '_rBlock', 'HmacSHA512', '498WcTnbi', 'join', 'HmacSHA224', 'display', '#trim', 'StreamCipher', 'enc', 'click', '#statistic', 'random', 'keySize', 'SHA1', '_process', 'sigBytes', '$super', '#mybut', 'clamp', 'RC4', '_invSubKeys', 'loader', '_cipher', '#backstart', 'BlockCipher', 'formatter', 'WordArray', 'slice', 'decryptBlock', '_minBufferSize', 'execute', '_iv', '_hash', 'mixIn', '__proto__', 'text', 'concat', 'RabbitLegacy', 'ceil', 'splice', 'Utf16LE', 'array[0]', 'function', 'SHA3', 'charCodeAt', 'EvpKDF', 'toString', 'css', '_state', 'Decryptor', 'Hex', '82275HVLogQ', 'ivSize', 'encrypt', '_des1', '_mode', 'words', '5353976ERfqhe', 'init', '_hasher', '_createHmacHelper', '_oKey', 'lib', 'CipherParams', 'x64', '_keySchedule', 'RC4Drop', 'PBKDF2', '__creator', '_subKeys', '_nDataBytes', '_DEC_XFORM_MODE', 'format', 'substr', '_createHelper', '_data', '_parse', '#cssfilter', '_map', 'create', 'OpenSSL', 'hasher', 'table', 'key', 'hide', 'iterations', '#timecount', 'undefined', 'pad', '_iKey', 'CBC', 'OFB', '#apply', 'SHA224', '_keystream', 'mode', 'exception', 'call', 'hasOwnProperty', 'Utf16', 'encryptBlock', '_invKeySchedule', '#buttons', '_doCryptBlock', 'RIPEMD160', 'blockSize', 'low', '_des3', '{}.constructor(\x22return\x20this\x22)(\x20)', '_nRounds', 'Hasher', 'addClass', 'AES', 'CFB', 'sqrt', '171bibExj'];
    _0x5be3 = function() { return _0x5a2048; }; return _0x5be3(); }
...

Deofuscado el código con la web Obfuscator.io llegamos a interpretar la estructura aunque sigue siendo un galimatías en gran parte. Aún así, si nos fijamos al final encontramos una parte interesante con una clave encriptada cuya desencriptación depende de una comparación (línea 13 resaltada). Invirtiendo esa comparación engañamos al código y obtenemos la flag.

    $("#mybut").click(function () {
      _0x4171cc++;
      $("#cssfilter").text(_0x4171cc);
    });
    $("#statistic").addClass("hide");
    _0x35a8b9 = setInterval(function () {
      _0x97292c--;
      $("#timecount").text(_0x97292c);
      if (_0x97292c == 0x0) {
        clearInterval(_0x35a8b9);
        $("#mybut").hide();
        $("#buttons").show(0x64);
        if (_0x4171cc > _0x43eef3) {
          $('#trim').text(CryptoJS.AES.decrypt("U2FsdGVkX189ylLOlgNSxq/TLeSxBr7cYDcRBgMXXS9VmwusKZx1XFDNdpkwg24v98iYGnUATwQVyWwFnlyoCg==", "array[0]").toString(CryptoJS.enc.Utf8));
        } else {
          $("#trim").text("You Lose");
        }
      }
    }, 0x3e8);
    intervalcomp = setInterval(function () {
      _0x43eef3++;
      $('#apply').text(_0x43eef3);
      if (_0x97292c == 0x0) {
        clearInterval(intervalcomp);
      }
    }, 0x32);
  }
});

Wechall Training LSB Challenge (Esteganografía)

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Introducción

Resumidamente, esta técnica consiste en ocultar información en el bit menos significativo de cada uno de los píxeles de una imagen, consiguiendo así que el cambio realizado sea invisible al ojo humano. El problema de esta técnica, es que la información oculta puede obtenerse fácilmente si esta no se ha codificado previamente o si no se sigue un patrón concreto a la hora de ocultarla.

Desde la web del reto nos avisan de que esto es un simple truco pero espectacular. Nos animan a descargar una imágen y a encontrar la solución oculta.

Aprovecho este reto para presentaros una herramienta vital al enfrentaros a ciertos retos sobre esteganografía, steganabara.

Steganabara tiene dos apartados muy interesantes, uno es «color table» y otro «bit mask«, hoy veremos en acción a «bit mask».

No os preocupéis por la solución ya que cambia para cada usuario y sesión.

Buscando la solución oculta

Abrimos steganabara y empezamos a trastear con bit mask.

stegolsb02

Al poco tiempo ya vemos que vamos bien encaminados.

stegolsb03stegolsb04

Finalmente no nos cuesta dar con la solución.

stegolsb05stegolsb06

Links

ChatGPT vs CTF matemático

El reto

Se nos proporciona la imagen anterior y se nos invita a resolver la ecuación para el menor entero positivo que representa cada fruta. La solución del reto es concatenar «Flag-» a la suma de los valores de las tres frutas.

Análisis inicial

El enunciado es breve pero ya nos adelanta que existen varias soluciones y que además sólo quieren los números más pequeños que podamos encontrar.

Las frutas están muy bien y son muy sanas pero a nosotros se nos hace más sencillo plantear la ecuación con letras.

\begin{align}
&  \frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=4\\
\end{align}

Para arrojar algo de luz veamos la representación gráfica en 2D y 3D con la ayuda de Desmos.

3D

Las gráficas más que luz nos traen oscuridad de modo que preguntemos a ChatGPT.

ChatGPT

resuelve: (x/y+z)+(y/x+z)+(z/x+y)=4 para enteros positivos

Dado que las variables x, y, z son enteros positivos, podemos intentar encontrar una solución para la ecuación bajo estas condiciones. Sin embargo, encontrar una solución exacta puede ser complejo debido a la naturaleza no lineal de la ecuación. Aun así, podemos intentar algunos enfoques:

  • Prueba y error: Podemos probar diferentes combinaciones de valores enteros positivos para x, y, z y ver si satisfacen la ecuación.
  • Análisis de casos específicos: Podemos comenzar analizando casos más simples, como cuando dos de las variables son iguales, y luego ampliar nuestra búsqueda desde allí.
  • Análisis gráfico o numérico: Utilizando herramientas gráficas o numéricas, podríamos identificar posibles soluciones y luego verificar si son enteros positivos.

Voy a realizar un análisis numérico con un rango limitado de valores para ver si encontramos alguna solución que cumpla con las condiciones. Vamos a probar con valores de 1 a 10 para cada variable.

El análisis numérico para valores de en el rango de 1 a 10 no ha encontrado ninguna solución que satisfaga la ecuación. Esto sugiere que, dentro de este rango, no existen combinaciones de enteros positivos que cumplan con la ecuación.

Dado que la ecuación es bastante compleja y no lineal, es posible que las soluciones, si existen, se encuentren fuera del rango considerado o que requieran un enfoque diferente para ser identificadas. Si tienes un rango específico de valores en mente o si hay alguna otra restricción o contexto relevante, por favor házmelo saber para poder ajustar el análisis en consecuencia.

Básicamente nos está invitando a utilizar prueba y error para encontrar una solución, y el prueba y error de las matemáticas no es más que la fuerza bruta en programación.

El código

Partiendo del problema anterior dame un código en python que realice una comprobación recursiva de todas las variables con un rango de 1 a 999.

soluciones = []
rango_valores_x = range(1, 999)
rango_valores_y = range(1, 999)
rango_valores_z = range(1, 999)

for x in rango_valores_x:
    for y in rango_valores_y:
        for z in rango_valores_z:
            # Calculamos el valor de la expresión para cada combinación de x, y, z
            valor = x / (y + z) + y / (x + z) + z / (x + y)
            # Comprobamos si el valor es igual a 4 y agregamos la solución a la lista
            if abs(valor - 4) < 1e-6:  # Usamos una pequeña tolerancia para evitar errores de precisión
                soluciones.append((x, y, z))

print(soluciones)

Dejo resaltada la línea 12 del código ya que en ella reside el problema. Está comprobando con un margen de tolerancia de 10-6 ya que el resultado de las diferentes fracciones no da como resultado exacto 4. Esto es un problema ya que nosotros necesitamos que de exactamente 4 para validar los valores enteros de x, y y z. Pongo un ejemplo para el que se haya perdido con una solución válida para la tolerancia 10-6 siendo x=2, y=264 y z=993.

\begin{align}
&  \frac{2}{264+993}+\frac{264}{2+993}+\frac{993}{2+264}=4.000000429\\
\end{align}

En otras palabras, ChatGPT nos ha brindado una solución aproximada que no sirve para nuestro propósito. Seguimos probando con el código anterior quitando la tolerancia y con rangos mayores hasta que en 106 paro. Me acaba de quedar claro que con la fuerza bruta no vamos a ninguna parte, o más bien, no tenemos capacidad de computación para resolverlo de ésta manera.

¿Qué está pasando?

Lo que pasa es que estamos ante una ecuación algebraica de 3 incógnitas que deben ser enteros positivos cuya solución se alcanza mediante la teoría de curvas elípticas.

Curvas elípticas

Las curvas elípticas son fundamentales en matemáticas avanzadas, representadas por la ecuación y2=x3+Ax+B, donde A y B son constantes. Estas curvas son un punto de encuentro entre la geometría, la teoría de números y el álgebra, ofreciendo un campo rico para la exploración y el análisis. En este CTF, nos enfocaremos en los puntos racionales de las curvas elípticas. Utilizando el método tangente-secante, un procedimiento geométrico iterativo, buscaremos ampliar un conjunto finito de soluciones conocidas a la ecuación de la curva. Este método nos permite indagar en la estructura de las soluciones racionales, que potencialmente pueden ser infinitas. Además, estableceremos una conexión entre las soluciones enteras de las ecuaciones diofánticas y los puntos racionales en las curvas elípticas partiendo de la ecuación (1) especificada en el análisis inicial. A pesar de su aparente simplicidad, esta ecuación es conocida por presentar soluciones mínimas de gran tamaño.

Adecuación

Antes de nada, necesitamos saber el grado de la ecuación, de modo que planteamos la ecuación en forma polinómica estándar deshaciéndonos de los denominadores.

\begin{align}
\begin{split}
n(a+b)(b+c)(c+a)=a(a+b)(c+a)+b(b+c)(a+b)+c(c+a)(b+c)
\end{split}
\end{align}

Ahora necesitamos expandir y simplificar para llegar a la conclusión de que estamos ante una ecuación diofántica de grado 3. Este proceso es engorroso por la cantidad de términos a manejar así que vamos a utilizar Mathematica como software de respaldo para finalmente obtener el polinomio en la forma de Weierstrass según la ecuación 4.

\begin{align}
&  y^2=x^3+109x^2+224x\\
\end{align}

donde:

\begin{align}
x = \frac{−28(a+b+2c)}{(6a+6b−c)}\\
y = \frac{364(a−b)}{(6a+6b−c)}
\end{align}

Las relación entre la ecuación 3 y los puntos de la curva elíptica se establecen mediante la ecuación 4. Las transformaciones entre las soluciones (a, b, c) y los puntos (x, y) en la curva elíptica vienen dados por las ecuaciones 5 y 6. Con estas transformaciones, cada solución de la ecuación diofántica se puede representar como un punto en la curva elíptica, y las operaciones de suma de puntos en la curva elíptica pueden usarse para encontrar nuevas soluciones de la ecuación diofántica.

Mathematica

El código que tenéis a continuación pertenece al gran trabajo de Aditi Kulkarni [7], que además nos da el resultado para cualquier valor de n. Ojo porque para n=4 el resultado tiene 81 dígitos, para n=6 tiene 134, para n=10 tiene 190 y para n=12 asciende a 2707 dígitos.

(* Asignar un valor numérico a n *)
n = 4;
(* Definir la ecuación de una curva elíptica en términos de n *)
curve4 = y^2 == x^3 + (4*n^2 + 12*n - 3)*x^2 + 32*(n + 3)*x;
(* Encontrar un punto racional en la curva que no sea (4,0) *)
P4 = {x, y} /. First[FindInstance[curve4 && x != 4 && y != 0, {x, y}, Integers]];
(* Función para calcular la pendiente entre dos puntos en la curva, 
   o la derivada en el punto si son iguales *)
Slope4[{x1_, y1_}, {x2_, y2_}] := 
  If[x1 == x2 && y1 == y2, 
     ImplicitD[curve4, y, x] /. {x -> x1, y -> y1}, 
     (y2 - y1)/(x2 - x1)];
(* Función para calcular la intersección en y de la línea entre dos puntos 
   o la tangente en el punto si son iguales *)
Intercept4[{x1_, y1_}, {x2_, y2_}] := y1 - Slope4[{x1, y1}, {x2, y2}]*x1; 
(* Función para encontrar el siguiente punto racional en la curva *)
nextRational4[{x1_, y1_}, {x2_, y2_}] := 
  {Slope4[{x1, y1}, {x2, y2}]^2 - CoefficientList[curve4[[2]], x][[3]] - x1 - x2, 
   -Slope4[{x1, y1}, {x2, y2}]^3 + Slope4[{x1, y1}, {x2, y2}]*(CoefficientList[curve4[[2]], x][[3]] + x1 + x2) - Intercept4[{x1, y1}, {x2, y2}]};
(* Función para convertir un punto en la curva elíptica a una solución diofántica *)
ellipticToDiophantine[n_, {x_, y_}] := 
  {(8*(n + 3) - x + y)/(2*(4 - x)*(n + 3)), 
   (8*(n + 3) - x - y)/(2*(4 - x)*(n + 3)), 
   (-4*(n + 3) - (n + 2)*x)/((4 - x)*(n + 3))};
(* Usar nextRational4 para iterar desde P4 hasta encontrar una solución 
   válida y positiva para la ecuación diofántica *)
sol4 = ellipticToDiophantine[n, 
   NestWhile[nextRational4[#, P4] &, P4, 
     ! AllTrue[ellipticToDiophantine[n, #], Function[item, item > 0]] &]];
(* Escalar la solución para obtener enteros mínimos *)
MinSol4 = sol4*(LCM @@ Denominator[sol4])
(* Suma de las tres variables*)
Total[MinSol4]

Solución

Concatenando Flag- con el resultado de Mathematica tenemos la ansiada flag.

Flag-195725546580804863527010379187516702463973843196699016314931210363268850137105614

Conclusiones

ChatGPT ha demostrado ser eficaz en el análisis y la resolución de problemas, siempre que se le proporcione el contexto adecuado. Sin embargo, es importante ser conscientes de que la respuesta proporcionada puede ser aproximada, especialmente si la solución requiere una gran cantidad de recursos computacionales. Por ejemplo, al trabajar con una ecuación diofántica y valores específicos para (x) e (y), ChatGPT puede ayudar a calcular puntos como (P), (2P), (3P), etc., pero hay que tener en cuenta que los resultados para estos puntos pueden ser estimaciones.

Finalmente, os invito a leer la solución de Mingliang Z. [4], en la que se resuelve el problema por completo y de forma muy detallada.

Enlaces