Introducción

Este crackme pertenece a la página de Karpoff Spanish Tutor. Data del año 2000 y está realizado en «Borland Delphi 6.0 – 7.0», además, para resolverlo deberemos activar un botón y conseguir la clave de registro. La principal dificultad proviene a la hora de activar el botón ya que el serial es en realidad un serial hardcodeado muy sencillo.

Activar un botón en memoria

Existen numerosas herramientas para facilitarnos esta tarea, una de las más conocidas en el entorno del Cracking es «Veoveo» realizado por Crack el Destripador & Marmota hace ya unos añitos. Con el crackme ejecutado, ejecutamos VeoVeo y nos aparece el icono en la barra de tareas, hacemos click derecho y elegimos Activar Botones (manual) y ya tenemos el botón activado. Claro está que en cada ejecución del Crackme debemos de Re-activarlo.

17-02-2015 17-34-16

Activar el botón de forma permanente

Lo que siempre nos interesa es que el botón esté activado de forma permanente y eso nos exige un poco más de atención. En este caso nos enfrentamos a Delphi y no nos sirve ni Resource Hacker ni Dede. Cuando nos encontramos en un punto muerto el último recurso siempre es realizar un programa en Delphi con un botón activado y otro desactivado y compararlos con un editor hexadecimal para saber que cambia. Si hacemos esto llegaremos a la conclusión de que en Delphi el bit que equivale a desactivado es 8 y ha activado es 9. Con este simple cambio ya tenemos el crackme parcheado. Comentar que en este caso el crackme no tiene ningún timer ni ninguna rutina que desactive el botón de forma periódica, este es el caso más simple.

16-02-2015 05-22-40

16-02-2015 05-23-45

Serial Hardcodeado

Abrimos Ollydbg y en las «String references» encontramos los mensajes de versión registrada, pinchamos sobre ellos y vemos a simple vista la zona de comprobación del serial. Como podéis observar, el serial se vé a simple vista.

0045811A   |.  B8 10824500         MOV EAX,CrackMe3.00458210                 ;  ASCII "ESCRIBE ALGO JOER"
0045811F   |.  E8 D889FDFF         CALL CrackMe3.00430AFC
00458124   |.  EB 5C               JMP SHORT CrackMe3.00458182
00458126   |>  807D FF 4F          CMP BYTE PTR SS:[EBP-1],4F - O
0045812A   |.  75 56               JNZ SHORT CrackMe3.00458182
0045812C   |.  807D FE 41          CMP BYTE PTR SS:[EBP-2],41 - A
00458130   |.  75 50               JNZ SHORT CrackMe3.00458182
00458132   |.  807D FD 45          CMP BYTE PTR SS:[EBP-3],45 - E
00458136   |.  75 4A               JNZ SHORT CrackMe3.00458182
00458138   |.  807D FC 4B          CMP BYTE PTR SS:[EBP-4],4B - K
0045813C   |.  75 44               JNZ SHORT CrackMe3.00458182
0045813E   |.  807D FB 43          CMP BYTE PTR SS:[EBP-5],43 - C
00458142   |.  75 3E               JNZ SHORT CrackMe3.00458182
00458144   |.  807D FA 41          CMP BYTE PTR SS:[EBP-6],41 - A
00458148   |.  75 38               JNZ SHORT CrackMe3.00458182
0045814A   |.  807D F9 52          CMP BYTE PTR SS:[EBP-7],52 - R
0045814E   |.  75 32               JNZ SHORT CrackMe3.00458182
00458150   |.  807D F8 4B          CMP BYTE PTR SS:[EBP-8],4B - K
00458154   |.  75 2C               JNZ SHORT CrackMe3.00458182
00458156   |.  807D F7 20          CMP BYTE PTR SS:[EBP-9],20 - 
0045815A   |.  75 26               JNZ SHORT CrackMe3.00458182
0045815C   |.  807D F6 49          CMP BYTE PTR SS:[EBP-A],49 - I
00458160   |.  75 20               JNZ SHORT CrackMe3.00458182
00458162   |.  807D F5 4F          CMP BYTE PTR SS:[EBP-B],4F - O
00458166   |.  75 1A               JNZ SHORT CrackMe3.00458182
00458168   |.  807D F4 54          CMP BYTE PTR SS:[EBP-C],54 - T
0045816C   |.  75 14               JNZ SHORT CrackMe3.00458182
0045816E   |.  807D F3 20          CMP BYTE PTR SS:[EBP-D],20 - 
00458172   |.  75 0E               JNZ SHORT CrackMe3.00458182
00458174   |.  807D F2 41          CMP BYTE PTR SS:[EBP-E],41 - A
00458178   |.  75 08               JNZ SHORT CrackMe3.00458182
0045817A   |.  807D F1 59          CMP BYTE PTR SS:[EBP-F],59 - Y
0045817E   |.  75 02               JNZ SHORT CrackMe3.00458182
00458180   |.  B3 01               MOV BL,1
00458182   |>  80FB 01             CMP BL,1
00458185   |.  75 4C               JNZ SHORT CrackMe3.004581D3
00458187   |.  BA 2C824500         MOV EDX,CrackMe3.0045822C
0045818C   |.  8B86 F4020000       MOV EAX,DWORD PTR DS:[ESI+2F4]
00458192   |.  E8 B5EBFDFF         CALL CrackMe3.00436D4C
00458197   |.  BA 48824500         MOV EDX,CrackMe3.00458248                 ;  ASCII "VERSION REGISTRADA :)"

Serial = YA TOI KRACKEAO

16-02-2015 05-25-23

16-02-2015 05-25-38

Links


En el BTM anterior nos remontábamos al año 2006 para ver un pequeño gazapo ocurrido en la serie Dexter. En
http://youtu.be/b9-GdmIQINQ Lista de reproducción
Estamos ante un ELF un poco más interesante que los vistos anteriormente. Básicamente porque es divertido y fácil encontrar la
Introducción Hoy tenemos aquí un bonito crackme matemático realizado por Spider. El crackme está realizado en ensamblador y precisamente por

En el BTM anterior nos remontábamos al año 2006 para ver un pequeño gazapo ocurrido en la serie Dexter. En esta ocasión vamos a hablar sobre un pequeño detalle de una serie actual, Absentia. No es un gazapo, pero es algo bastante poco creíble hoy día.

Hide me

La escena la protagoniza Emily Byrne (Stana Katic) y en ella se ve a Emily buscar algo sospechoso en un portátil.

Primer detalle

En la primera imagen y antes de que Emily haga clic en Documents, se puede apreciar un acceso directo que reza Browser con un icono de la bola del mundo y una lupa. Muy chulo pero para darle más credibilidad a la escena se podía mostrar un acceso directo de Chrome, Firefox o Internet Explorer que son los navegadores más usados.

Where is my Browser?

Where is my Browser?

Para rematar…

A lo que vamos. Emily decide mirar en la carpeta Documents > Videos y para su sorpresa está vacía. Pero como Emily es una mujer de recursos decide comprobar si hay archivos ocultos y para ello retoca las opciones de carpeta.

¡Tachán!, como por arte de magia aparecen todas las carpetas del supuesto asesino con todo tipo de vídeos incriminatorios. Como he comentado anteriormente, parece poco creíble pensar que algo que te puede llevar a la cárcel de por vida sea protegido de forma tan pobre.

Enlaces

Estamos ante un ELF un poco más interesante que los vistos anteriormente. Básicamente porque es divertido y fácil encontrar la solución en el decompilado y quizá por evocar recuerdos de tiempos pretéritos.

ELF Decompilado

/* This file was generated by the Hex-Rays decompiler version 8.4.0.240320.
   Copyright (c) 2007-2021 Hex-Rays <info@hex-rays.com>

   Detected compiler: GNU C++
*/

#include <defs.h>


//-------------------------------------------------------------------------
// Function declarations

__int64 (**init_proc())(void);
__int64 sub_400650(); // weak
// int printf(const char *format, ...);
// int puts(const char *s);
// void __noreturn exit(int status);
// size_t strlen(const char *s);
// __int64 __fastcall MD5(_QWORD, _QWORD, _QWORD); weak
// int sprintf(char *s, const char *format, ...);
// __int64 ptrace(enum __ptrace_request request, ...);
// __int64 strtol(const char *nptr, char **endptr, int base);
// __int64 __isoc99_scanf(const char *, ...); weak
// int memcmp(const void *s1, const void *s2, size_t n);
void __fastcall __noreturn start(__int64 a1, __int64 a2, void (*a3)(void));
void *sub_400730();
__int64 sub_400760();
void *sub_4007A0();
__int64 sub_4007D0();
void fini(void); // idb
void term_proc();
// int __fastcall _libc_start_main(int (__fastcall *main)(int, char **, char **), int argc, char **ubp_av, void (*init)(void), void (*fini)(void), void (*rtld_fini)(void), void *stack_end);
// __int64 _gmon_start__(void); weak

//-------------------------------------------------------------------------
// Data declarations

_UNKNOWN main;
_UNKNOWN init;
__int64 (__fastcall *funcs_400E29)() = &sub_4007D0; // weak
__int64 (__fastcall *off_601DF8)() = &sub_4007A0; // weak
__int64 (*qword_602010)(void) = NULL; // weak
char *off_602080 = "FLAG-%s\n"; // idb
char a7yq2hryrn5yJga[16] = "7Yq2hrYRn5Y`jga"; // weak
const char aO6uH[] = "(O6U,H\""; // idb
_UNKNOWN unk_6020B8; // weak
_UNKNOWN unk_6020C8; // weak
char byte_6020E0; // weak
char s1; // idb
char byte_602110[]; // weak
char byte_602120[33]; // weak
char byte_602141[7]; // idb
__int64 qword_602148; // weak
__int64 qword_602150; // weak
__int64 qword_602158; // weak
__int64 qword_602160; // weak
__int64 qword_602178; // weak


//----- (0000000000400630) ----------------------------------------------------
__int64 (**init_proc())(void)
{
  __int64 (**result)(void); // rax

  result = &_gmon_start__;
  if ( &_gmon_start__ )
    return (__int64 (**)(void))_gmon_start__();
  return result;
}
// 6021D8: using guessed type __int64 _gmon_start__(void);

//----- (0000000000400650) ----------------------------------------------------
__int64 sub_400650()
{
  return qword_602010();
}
// 400650: using guessed type __int64 sub_400650();
// 602010: using guessed type __int64 (*qword_602010)(void);

//----- (0000000000400700) ----------------------------------------------------
// positive sp value has been detected, the output may be wrong!
void __fastcall __noreturn start(__int64 a1, __int64 a2, void (*a3)(void))
{
  __int64 v3; // rax
  int v4; // esi
  __int64 v5; // [rsp-8h] [rbp-8h] BYREF
  char *retaddr; // [rsp+0h] [rbp+0h] BYREF

  v4 = v5;
  v5 = v3;
  _libc_start_main((int (__fastcall *)(int, char **, char **))main, v4, &retaddr, (void (*)(void))init, fini, a3, &v5);
  __halt();
}
// 400706: positive sp value 8 has been found
// 40070D: variable 'v3' is possibly undefined

//----- (0000000000400730) ----------------------------------------------------
void *sub_400730()
{
  return &unk_6020C8;
}

//----- (0000000000400760) ----------------------------------------------------
__int64 sub_400760()
{
  return 0LL;
}

//----- (00000000004007A0) ----------------------------------------------------
void *sub_4007A0()
{
  void *result; // rax

  if ( !byte_6020E0 )
  {
    result = sub_400730();
    byte_6020E0 = 1;
  }
  return result;
}
// 6020E0: using guessed type char byte_6020E0;

//----- (00000000004007D0) ----------------------------------------------------
__int64 sub_4007D0()
{
  return sub_400760();
}

//----- (00000000004007D7) ----------------------------------------------------
__int64 __fastcall main(int a1, char **a2, char **a3)
{
  size_t v3; // rax
  size_t v4; // rax
  int i; // [rsp+1Ch] [rbp-24h]
  int n; // [rsp+20h] [rbp-20h]
  int m; // [rsp+24h] [rbp-1Ch]
  int k; // [rsp+28h] [rbp-18h]
  int j; // [rsp+2Ch] [rbp-14h]

  if ( ptrace(PTRACE_TRACEME, 0LL, 0LL, 0LL) == -1 )
    goto LABEL_2;
  if ( a1 > 4 )
  {
    qword_602148 = strtol(a2[1], 0LL, 10);
    if ( qword_602148 )
    {
      qword_602150 = strtol(a2[2], 0LL, 10);
      if ( qword_602150 )
      {
        qword_602158 = strtol(a2[3], 0LL, 10);
        if ( qword_602158 )
        {
          qword_602160 = strtol(a2[4], 0LL, 10);
          if ( qword_602160 )
          {
            if ( -24 * qword_602148 - 18 * qword_602150 - 15 * qword_602158 - 12 * qword_602160 == -18393
              && 9 * qword_602158 + 18 * (qword_602150 + qword_602148) - 9 * qword_602160 == 4419
              && 4 * qword_602158 + 16 * qword_602148 + 12 * qword_602150 + 2 * qword_602160 == 7300
              && -6 * (qword_602150 + qword_602148) - 3 * qword_602158 - 11 * qword_602160 == -8613 )
            {
              qword_602178 = qword_602158 + qword_602150 * qword_602148 - qword_602160;
              sprintf(byte_602141, "%06x", qword_602178);
              v4 = strlen(byte_602141);
              MD5(byte_602141, v4, byte_602110);
              for ( i = 0; i <= 15; ++i )
                sprintf(&byte_602120[2 * i], "%02x", (unsigned __int8)byte_602110[i]);
              printf(off_602080, byte_602120);
              exit(0);
            }
          }
        }
      }
    }
LABEL_2:
    printf("password : ");
    __isoc99_scanf("%s", &s1);
    if ( strlen(&s1) > 0x10 )
    {
      puts("the password must be less than 16 character");
      exit(1);
    }
    for ( j = 0; j < strlen(&s1); ++j )
      *(&s1 + j) ^= 6u;
    if ( !strcmp(&s1, a7yq2hryrn5yJga) )
    {
      v3 = strlen(&s1);
      MD5(&s1, v3, byte_602110);
      for ( k = 0; k <= 15; ++k )
        sprintf(&byte_602120[2 * k], "%02x", (unsigned __int8)byte_602110[k]);
      printf(off_602080, byte_602120);
      exit(0);
    }
    puts("bad password!");
    exit(0);
  }
  printf("password : ");
  __isoc99_scanf("%s", &s1);
  if ( strlen(&s1) > 0x10 )
  {
    puts("the password must be less than 16 character");
    exit(1);
  }
  for ( m = 0; m < strlen(&s1); ++m )
  {
    *(&s1 + m) ^= 2u;
    ++*(&s1 + m);
    *(&s1 + m) = ~*(&s1 + m);
  }
  if ( !memcmp(&s1, &unk_6020B8, 9uLL) )
  {
    for ( n = 0; n < strlen(aO6uH); n += 2 )
    {
      aO6uH[n] ^= 0x45u;
      aO6uH[n + 1] ^= 0x26u;
    }
    puts(aO6uH);
  }
  else
  {
    puts("bad password!");
  }
  return 0LL;
}
// 4006A0: using guessed type __int64 __fastcall MD5(_QWORD, _QWORD, _QWORD);
// 4006E0: using guessed type __int64 __isoc99_scanf(const char *, ...);
// 602148: using guessed type __int64 qword_602148;
// 602150: using guessed type __int64 qword_602150;
// 602158: using guessed type __int64 qword_602158;
// 602160: using guessed type __int64 qword_602160;
// 602178: using guessed type __int64 qword_602178;

//----- (0000000000400DE0) ----------------------------------------------------
void __fastcall init(unsigned int a1, __int64 a2, __int64 a3)
{
  signed __int64 v3; // rbp
  __int64 i; // rbx

  v3 = &off_601DF8 - &funcs_400E29;
  init_proc();
  if ( v3 )
  {
    for ( i = 0LL; i != v3; ++i )
      (*(&funcs_400E29 + i))();
  }
}
// 601DF0: using guessed type __int64 (__fastcall *funcs_400E29)();
// 601DF8: using guessed type __int64 (__fastcall *off_601DF8)();

//----- (0000000000400E54) ----------------------------------------------------
void term_proc()
{
  ;
}

// nfuncs=33 queued=10 decompiled=10 lumina nreq=0 worse=0 better=0
// ALL OK, 10 function(s) have been successfully decompiled

Análisis estático

Anti-debug

Si la función ptrace retorna -1, significa que el programa está siendo depurado y redirige a LABEL_2.

if (ptrace(PTRACE_TRACEME, 0LL, 0LL, 0LL) == -1) {
    goto LABEL_2;
}

Cálculos y validaciones

El programa espera al menos 5 argumentos (nombre del programa y cuatro números enteros). Si se proporcionan los cuatro números enteros, se realizan los siguientes cálculos:

if (-24 * qword_602148 - 18 * qword_602150 - 15 * qword_602158 - 12 * qword_602160 == -18393
    && 9 * qword_602158 + 18 * (qword_602150 + qword_602148) - 9 * qword_602160 == 4419
    && 4 * qword_602158 + 16 * qword_602148 + 12 * qword_602150 + 2 * qword_602160 == 7300
    && -6 * (qword_602150 + qword_602148) - 3 * qword_602158 - 11 * qword_602160 == -8613)

Esto es un sistema de ecuaciones lineales mondo y lirondo que debe ser resuelto para encontrar los valores correctos de qword_602148, qword_602150, qword_602158 y qword_602160. Una vez resuelto el sistema de ecuaciones se realiza la operación:

 qword_602178 = qword_602158 + qword_602150 * qword_602148 - qword_602160;

A continuación se pasa el resultado de la variable qword_602178 a hexadecimal y se genera su hash MD5.

Solución en Python

Lo más rápido en esta ocasión es usar Python, pero esto se puede resolver hasta con lápiz y papel 😉

from sympy import symbols, Eq, solve
import hashlib

# Definir las variables
A, B, C, D = symbols('A B C D')

# Definir las ecuaciones
eq1 = Eq(-24*A - 18*B - 15*C - 12*D, -18393)
eq2 = Eq(9*C + 18*(A + B) - 9*D, 4419)
eq3 = Eq(4*C + 16*A + 12*B + 2*D, 7300)
eq4 = Eq(-6*(A + B) - 3*C - 11*D, -8613)

# Resolver el sistema de ecuaciones
solution = solve((eq1, eq2, eq3, eq4), (A, B, C, D))

# Verificar si se encontró una solución
if solution:
    print("Solución encontrada:")
    print(solution)

    # Obtener los valores de A, B, C y D
    A_val = solution[A]
    B_val = solution[B]
    C_val = solution[C]
    D_val = solution[D]

    # Mostrar los valores encontrados
    print(f"A = {A_val}")
    print(f"B = {B_val}")
    print(f"C = {C_val}")
    print(f"D = {D_val}")

    # Calcular qword_602178
    qword_602178 = C_val + B_val * A_val - D_val
    qword_602178 = int(qword_602178)  # Convertir a entero de Python
    print(f"qword_602178 = {qword_602178}")

    # Convertir qword_602178 a una cadena en formato hexadecimal
    byte_602141 = f"{qword_602178:06x}"
    print(f"byte_602141 (hex) = {byte_602141}")

    # Calcular el MD5 de la cadena
    md5_hash = hashlib.md5(byte_602141.encode()).hexdigest()
    print(f"MD5 hash = {md5_hash}")

    # Generar la flag
    flag = f"FLAG-{md5_hash}"
    print(f"Flag = {flag}")

else:
    print("No se encontró una solución.")

Al ejecutar el script veremos algo como esto:

Solución encontrada:
{A: 227, B: 115, C: 317, D: 510}
A = 227
B = 115
C = 317
D = 510
qword_602178 = 25912
byte_602141 (hex) = 006538
MD5 hash = 21a84f2c7c7fd432edf1686215db....
Flag = FLAG-21a84f2c7c7fd432edf1686215db....

Introducción

Hoy tenemos aquí un bonito crackme matemático realizado por Spider. El crackme está realizado en ensamblador y precisamente por eso, vamos a tener que lidiar con ciertas peculiaridades al realizar el keygen con un lenguaje de bajo nivel.

Al inicio comprueba la longitud del nombre y de el número de serie. El nombre debe tener al menos 6 caracteres y el número de serie debe tener 10. Os adelanto ya que la asignación de memoria del nombre es de 9 caracteres, es decir, da igual la longitud del nombre que solo va a usar 9.

004014AD | E8 1A 02 00 00           | call <pythagoras.GetWindowTextA>        | ;Lee el nombre
004014B2 | 83 F8 06                 | cmp eax,6                               | ;Nombre >=6 caracteres
004014B5 | 0F 82 03 01 00 00        | jb pythagoras.4015BE                    |
004014BB | 6A 14                    | push 14                                 |
004014BD | 68 D9 31 40 00           | push pythagoras.4031D9                  | ;004031D9:"1234567890"
004014C2 | FF 35 10 32 40 00        | push dword ptr ds:[403210]              |
004014C8 | E8 FF 01 00 00           | call <pythagoras.GetWindowTextA>        | ;Lee el serial
004014CD | 83 F8 0A                 | cmp eax,A                               | ;Serial debe tener 10 (A) caracteres
004014D0 | 0F 85 E8 00 00 00        | jne pythagoras.4015BE                   |

Sabiendo esto introducimos Nombre: deurus y Serial: 1234567890

A continuación chequea que nuestro serial tenga caracteres hexadecimales.

004014DA | 8A 81 D9 31 40 00        | mov al,byte ptr ds:[ecx+4031D9]         | ; ecx+004031D9:"1234567890"
004014E0 | 3C 00                    | cmp al,0                                | ; contador del bucle
004014E2 | 74 1F                    | je pythagoras.401503                    | ; fin del bucle
004014E4 | 3C 30                    | cmp al,30                               | ; 0x30 = número 1
004014E6 | 0F 82 D2 00 00 00        | jb pythagoras.4015BE                    | ; < 30 bad boy
004014EC | 3C 46                    | cmp al,46                               | ; 0x46 = letra F
004014EE | 0F 87 CA 00 00 00        | ja pythagoras.4015BE                    | ; > 46 bad boy
004014F4 | 3C 39                    | cmp al,39                               | ; 0x39 = número 9
004014F6 | 76 08                    | jbe pythagoras.401500                   | ; <=39 ok continua el bucle
004014F8 | 3C 41                    | cmp al,41                               | ; 0x41 = letra A
004014FA | 0F 82 BE 00 00 00        | jb pythagoras.4015BE                    | ; <41 bad boy
00401500 | 41                       | inc ecx                                 | ; contador += 1
00401501 | EB D7                    | jmp pythagoras.4014DA                   | ; bucle

Continua realizando un sumatorio con nuestro nombre, pero tenemos que tener especial cuidado al tratamiento de los datos, ya que el crackme al estar hecho en ensamblador puede jugar con los registros como quiere y eso nos puede inducir a error.

0040150B | 3C 00                    | cmp al,0                                | ; ¿Fin bucle?
0040150D | 74 05                    | je pythagoras.401514                    | ; Salta fuera del bucle si procede
0040150F | 02 D8                    | add bl,al                               | ; bl = bl + al
00401511 | 41                       | inc ecx                                 | ; contador +=1
00401512 | EB F1                    | jmp pythagoras.401505                   | ; bucle

Si os fijáis utiliza registros de 8 bits como son AL y BL. Debajo os dejo una explicación de EAX pero para EBX es lo mismo.

               EAX
-----------------------------------
                         AX
                  -----------------
                     AH       AL
                  -------- --------
00000000 00000000 00000000 00000000
 (8bit)   (8bit)   (8bit)   (8bit)
 

  EAX     (32 bit)
--------
     AX   (16 bit)
    ----
    AHAL  (AH y AL 8 bit)
--------
00000000

El uso de registros de 8 bits nos implica tomar precauciones al realizar el Keygen debido a que por ejemplo, en .Net no tenemos la capacidad de decirle que haga una suma y que nos devuelva solamente 8 bits del resultado. Veamos como ejemplo para el nombre «deurus». La suma de los caracteres hexadecimales quedaría:

64+65+75+72+75+73 = 298, es decir, EAX = 00000298

Pero recordad que el crackme solo cogerá el 98 que es lo correspondiente al registro AL. De momento nos quedamos con nuestro SUMNOMBRE = 98.

Primera condición

A continuación coge los dos primeros caracteres del serial y les resta nuestro SUMNOMBRE y comprueba que el resultado esté entre 4 (0x4) y -4 (0xFC).

0040154B | 0F B6 05 F3 31 40 00     | movzx eax,byte ptr ds:[4031F3]          |
00401552 | 8A C8                    | mov cl,al                               |
00401554 | 2A CB                    | sub cl,bl                               | ; CL = CL - BL | CL = 12 - 98 = 7A
00401556 | 80 F9 04                 | cmp cl,4                                | ; Compara CL con 4
00401559 | 7F 63                    | jg pythagoras.4015BE                    | ; Salta si es mayor
0040155B | 80 F9 FC                 | cmp cl,FC                               | ; Compara CL con FC (-4)
0040155E | 7C 5E                    | jl pythagoras.4015BE                    | ; Salta si es menor

Como veis, el resultado de la resta da 7A (122) que al ser mayor que 4 nos echa vilmente. Aquí de nuevo utiliza registros de 8 bits por lo que debemos tener cuidado con las operaciones matemáticas para no cometer errores, veamos un ejemplo para clarificar de aquí en adelante.

Utilizando 8 bits
-----------------
12 - 98 = 7A que en decimal es 122

Utilizando 16 bits
------------------
0012 - 0098 = FF7A que en decimal es -134

Ahora ya veis la diferencia entre FC (252) y FFFC (-4). Estrictamente, el crackme comprueba el rango entre 4 (4) y FC (122) al trabajar con registros de 8 bits pero nosotros, como veremos más adelante tomaremos el rango entre 4 y -4. De momento, para poder continuar depurando cambiamos los dos primeros caracteres del serial de 12 a 98, ya que 98 – 98 = 0 y cumple la condición anterior.

Introducimos Nombre: deurus y Serial: 9834567890

Segunda condición

Analicemos el siguiente código.

00401560 | F7 E0                    | mul eax                                 | ; EAX = EAX * EAX
00401562 | 8B D8                    | mov ebx,eax                             | ; EBX = EAX
00401564 | 0F B7 05 F4 31 40 00     | movzx eax,word ptr ds:[4031F4]          | ; EAX = 3456 (4 dígitos siguientes del serial)
0040156B | F7 E0                    | mul eax                                 | ; EAX = EAX * EAX
0040156D | 03 D8                    | add ebx,eax                             | ; EBX = EBX + EAX
0040156F | 0F B7 05 F6 31 40 00     | movzx eax,word ptr ds:[4031F6]          | ; EAX = 7890 (4 últimos dígitos del serial)
00401576 | F7 E0                    | mul eax                                 | ; EAX = EAX * EAX
00401578 | 33 C3                    | xor eax,ebx                             | ; EAX
0040157A | 75 42                    | jne pythagoras.4015BE                   | ; Salta si el flag ZF no se activa

En resumen:

  • 98 * 98 = 5A40 (98²)
  • 3456 * 3456 = 0AB30CE4 (3456²)
  • 0AB36724 + 5A40 = 0AB36724
  • 7890 * 7890 = 38C75100 (7890²)
  • 38C75100 XOR 0AB36724 = 32743624
  • Si el resultado del XOR no es cero nuestro serial no pasa la comprobación.

Es decir, Pitágoras entra en escena -> 7890² = 98² + 3456²

Serial = aabbbbcccc

Tercera condición

Finalmente comprueba lo siguiente:

0040157C | 66 A1 F6 31 40 00        | mov ax,word ptr ds:[4031F6]             | ; AX = 7890
00401582 | 66 2B 05 F4 31 40 00     | sub ax,word ptr ds:[4031F4]             | ; AX = 7890 - 3456 = 443A
00401589 | 2C 08                    | sub al,8                                | ; AL = 3A - 8 = 32
0040158B | 75 31                    | jne pythagoras.4015BE                   | ; Si el resultado de la resta no ha sido cero, serial no válido
0040158D | 6A 30                    | push 30                                 |
0040158F | 68 B0 31 40 00           | push pythagoras.4031B0                  | ;004031B0:":-) Well done!!!"
00401594 | 68 7F 31 40 00           | push pythagoras.40317F                  | ;0040317F:"Bravo, hai trovato il seriale di questo CrackMe!"
00401599 | FF 75 08                 | push dword ptr ds:[ebp+8]               |

En resumen:

  • 7890 – 3456 – 8 = 0

Creación del Keygen

Nuestro serial tiene que cumplir tres condiciones para ser válido.

  • a – SUMNOMBRE debe estar entre 4 y -4
  • c² = a² + b²
  • c – b – 8 = 0

Como hemos dicho anteriormente, tomaremos el SUMNOMBRE y le sumaremos y restaremos valores siempre y cuando el resultado esté entre 4 y -4. Para deurus hemos dicho que el SUMNOMBRE es 98 por lo que los posibles valores de «a» se pueden ver debajo. Además debemos tener en cuenta que el crackme solo lee los 9 primeros dígitos del nombre.

98-4 = 94		
98-3 = 95		
98-2 = 96		
98-1 = 97		
98-0 = 98		
98+1 = 99		
98+2 = 9A		
98+3 = 9B		
98+4 = 9C

Es evidente que para encontrar el valor de «c» vamos a tener que utilizar fuerza bruta chequeando todos los valores  de «b» comprendidos entre 0 y FFFF (65535). Además, como trabajaremos en un lenguaje de alto nivel, debemos descartar los resultados decimales. Esto nos limitará los seriales válidos asociados a un determinado nombre. Si realizáramos el keygen en ensamblador obtendríamos bastantes más seriales válidos.

Una vez encontrados los valores enteros de la operación «c² = a² + b²», se debe cumplir que «c – b – 8 = 0», lo que nos limitará bastante los resultados.

    Private Sub btn_generar_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btn_generar.Click
        Try
            If txt_nombre.TextLength > 5 Then
                lst_serials.Items.Clear()
                Dim tmp, c, cx As String
                Dim sumanombre, tmp2 As Integer
                If txt_nombre.TextLength > 9 Then tmp2 = 8 Else tmp2 = txt_nombre.TextLength - 1
                'Calculo el SUMNOMBRE
                For i = 0 To tmp2
                    sumanombre += Asc(Mid(txt_nombre.Text, i + 1, 1)) 'Acumulo suma
                    tmp = Strings.Right(Hex(sumanombre).ToString, 2)  'Solo 8 bits (Registro AL)
                    sumanombre = Val("&H" & tmp) 'Paso a decimal
                Next
                tmp = Strings.Right(Hex(sumanombre).ToString, 2)
                sumanombre = CInt("&H" & tmp)
                txtdebug.Text = "- SumNombre = " & Hex(sumanombre) & vbCrLf
                txtdebug.Text &= "----------------------------------------------" & vbCrLf
                Dim a(8) As Integer
                '
                'a - sumanombre >=4 y <=4
                '
                a(0) = sumanombre - 4
                a(1) = sumanombre - 3
                a(2) = sumanombre - 2
                a(3) = sumanombre - 1
                a(4) = sumanombre
                a(5) = sumanombre + 1
                a(6) = sumanombre + 2
                a(7) = sumanombre + 3
                a(8) = sumanombre + 4
                txtdebug.Text &= "- Posibles valores de 'a'" & vbCrLf
                For i = 0 To a.Length - 1
                    txtdebug.Text &= Hex(a(i)) & " "
                Next
                txtdebug.Text &= "----------------------------------------------" & vbCrLf
                txtdebug.Text &= "- Buscando valores de b y c" & vbCrLf
                txtdebug.Text &= "Serial = aabbbbcccc" & vbCrLf
                '
                'c = sqr(a^2 + b^2)
                '
                txtdebug.Text &= "(1) c = raiz(a^2 + b^2)" & vbCrLf
                txtdebug.Text &= "(2) c - b - 8 = 0" & vbCrLf
                For i = 0 To a.Length - 1 ' todas las posibilidades de a
                    For b = 0 To 65535 'b -> 0000 - FFFF
                        c = Math.Sqrt(a(i) ^ 2 + b ^ 2)
                        If c.Contains(".") Then 'busco enteros
                        Else
                            cx = c - b - 8
                            cx = Hex(cx).PadLeft(4, "0"c)
                            lbl_info.Text = cx
                            If cx = "0000" Then
                                txtdebug.Text &= " (1) " & Hex(c).PadLeft(4, "0"c) & " = raiz(" & Hex(a(i)).PadLeft(2, "0"c) & "^2 + " & Hex(b).PadLeft(4, "0"c) & "^2)" & vbCrLf
                                lst_serials.Items.Add(Hex(a(i)).PadLeft(2, "0"c) & Hex(b).PadLeft(4, "0"c) & Hex(c).PadLeft(4, "0"c))
                                txtdebug.Text &= " (2) " & Hex(c).PadLeft(4, "0"c) & " - " & Hex(b).PadLeft(4, "0"c) & " - 8 = 0" & vbCrLf
                            End If
                        End If
                        Application.DoEvents()
                    Next
                Next
                lbl_info.Text = "Búsqueda finalizada"
            End If
        Catch ex As Exception
            MsgBox(ex.ToString)
        End Try

Enlaces