Hace unos años cuando empecé a trastear con Android y animado por mi afición a la Ingeniería Inversa, decidí realizar una serie de crackmes. Los dos primeros pasaron algo desapercibidos, pero el Crackme nº3 tuvo una gran repercusión en el mundillo y, aunque no fue el primer crackme para Android ni mucho menos, si que fue uno de los más estudiados. Todos ellos fueron publicados a través de crackmes.de y el nº3 en cuestión el 6 de Noviembre de 2010. Os dejo una lista de unas cuantas webs donde aparece analizado para que veáis la repercusión que a mi parecer tuvo.
Toda esta aventura comienza con un archivo llamado pretty_raw, sin extensión. Porque sí. Porque las extensiones son una invención heredada de CP/M, precursor de MS-DOS, que Windows terminó de popularizar. Porque son innecesarias. Y porque echo de menos cuando los archivos se reconocían por sus permisos… y no por cómo se llamaban.
Como iba diciendo, todo esto comienza mediante el análisis de pretty_raw. Mirando debajo de la falda con un editor hexadecimal encontramos unos cuantos bytes aleatorios hasta dar con una cabecera PNG.
Si atendemos a la captura, justo antes de la cabecera PNG tenemos 116.254 bytes (0x1C61E). Tomad nota que este número será relevante más adelante.
Extraemos el PNG, lo visualizamos y lo pasamos por todas las herramientas habidas y por haber. Nada funciona. Volvemos a visualizarlo con atención y vemos que hace referencia a un archivo llamado flag.png con unas dimensiones que no coinciden con la extraída.
Toca centrarse y pensar en que camino tomar. Hemos gastado tiempo con el PNG extraído y quizá lo mejor sea centrarse en los bytes que inicialmente hemos descartado. En concreto se trata de un bloque de 116.254 bytes, pero espera, 1570×74=116.180 bytes. ¡Mierda!, no coincide exactamente con los bytes extraídos. Bueno, da igual. Si suponemos que el PNG que buscamos no tiene compresión y que cada pixel ocupa un byte (escala de grises y 8 bits), su tamaño depende únicamente de la geometría y de cómo se almacenan las filas en memoria. Vamos a procesarlo con Python para salir de dudas.
import numpy as np
from PIL import Image
INPUT_FILE = "pretty_raw"
OUTPUT_FILE = "pretty_raw_flag.png"
WIDTH = 1570 # ¿estás seguro?
HEIGHT = 74
DEPTH = 8 # bits
# Leer archivo como RAW
with open(INPUT_FILE, "rb") as f:
raw = f.read()
expected_size = WIDTH * HEIGHT
if len(raw) < expected_size:
raise ValueError("El archivo no tiene suficientes datos")
# Convertir a array numpy (grayscale 8 bits)
img = np.frombuffer(raw[:expected_size], dtype=np.uint8)
img = img.reshape((HEIGHT, WIDTH))
# Crear imagen
image = Image.fromarray(img, mode="L")
image.save(OUTPUT_FILE)
print(f"Imagen generada correctamente: {OUTPUT_FILE}")
El script nos devuelve un PNG válido pero con las letras torcidas. Tras darle vueltas me di cuenta de que si en el script usamos como WIDTH=1571 en lugar de 1570, la imagen resultante es correcta y tiene todo el sentido del mundo ya que 1571×74=116.254, que son exactamente los bytes que se encuentran antes del png señuelo.
Aunque el ancho visible de la imagen es de 1570 píxeles, cada fila ocupa realmente 1571 bytes. Ese byte adicional actúa como relleno (padding) y forma parte del stride o bytes por fila. Ignorar este detalle lleva a un desplazamiento erróneo acumulativo y por eso se ve la imagen torcida. En este caso concreto da igual ya que el texto se aprecia, pero si el reto hubiera sido más exigente no se vería nada.
We require your services once again. An employee from our company had recently been identified as a known criminal named Brett Thwaits. He is considered to have stolen missile launch codes from the US navy which unfortunately were handed to us for a brief period of time. As of now, we are accussed of the theft and unless we do something about it, we’re gonna end in some serious trouble. Before Brett left, he formatted the thumbdrive which used to store the launch codes. Fortunately, our system had made a backup image of the drive. See if you can recover the fourth launch code. Good luck!
Requerimos una vez más sus servicios. Un empleado de nuestra empresa había sido identificado recientemente como el conocido criminal Brett Thwaites. Se considera que ha robado los códigos de lanzamiento de misiles de la Armada de Estados Unidos, que por desgracia fueron entregados a nosotros por un breve período de tiempo. A partir de ahora, se nos acusa del robo y a menos que hagamos algo al respecto, vamos a tener serios problemas. Antes de que Brett se fuera formateó el dispositivo que se usa para almacenar los códigos de lanzamiento. Afortunadamente, nuestro sistema había hecho una copia de seguridad de la unidad. Mira a ver si puedes recuperar los cuatro códigos de lanzamiento. ¡Buena suerte!
Análisis del archivo
Fichero: forensics1
Extensión: img
Tamaño: 25 MB (26.214.400 bytes)
Hash MD5: 56e4cd5b8f076ba8b7c020c7339caa2b
Echamos un vistazo al archivo con un editor hexadecimal y vemos encabezados de tipos de archivos conocidos, por lo que la unidad no está encriptada. Al no estar encriptada la imagen, usaremos una herramienta de creación propia, Ancillary. En esta ocasión usaremos la versión 2 alpha, que actualmente está en desarrollo, pero podéis usar tranquilamente la versión 1.x.
Ancillary nos muestra lo que ha encontrado en el archivo por lo que pasamos a analizarlo.
Como siempre os digo en este tipo de retos, es difícil discriminar unos ficheros en favor de otros, ya que no sabemos si lo que buscamos va a estar en una imagen, documento u otro tipo de fichero codificado o no.
Tras analizar todos los ficheros, rápidamente suscitan nuestro interés los ficheros RAR, y más cuando el fichero que contienen es un fichero de audio y su nombre es tan sugerente como «conversation_dtmf.wav«. Como podéis apreciar en la imagen, el fichero RAR está protegido con clave por lo que necesitamos esquivar ese obstaculo.
Recuperando una clave de un archivo RAR
En este caso el software que voy a utilizar es cRARk, pero podéis utilizar cualquier otro. Como se muestra en la imagen de abajo, mi procesador es más bien modesto pero la clave no tiene más que tres dígitos por lo que no supone ninguna dificultad recuperarla.
DTMF (Dual-Tone Multi-Frequency)
Una vez recuperado el archivo WAV, al reproducirlo escuchamos 16 tonos telefónicos que inmediatamente me recuerdan las aventuras del mítico «Capitán Crunch«. Os animo a leer la historia de John Draper y su famosa «Blue Box» ya que no tiene desperdicio y forma parte de la historia del Phreaking.
Por si no conocías la historia, el propio nombre del fichero wav nos da la pista clave de qué buscar al contener las siglas «DTMF«.
Al ser pulsada en el teléfono la tecla correspondiente al dígito que quiere marcar, se envían dos tonos, de distinta frecuencia: uno por columna y otro por fila en la que esté la tecla, que la central decodifica a través de filtros especiales, detectando qué dígito se marcó.
No tenemos más que buscar un decodificador de tonos para obtener los preciados códigos de lanzamiento.
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.
Este es el típico reto de Javascript, no tiene mucha complicación pero he decidido dedicarle una entrada por que me llamó la atención lo que utiliza de usuario y clave.
El Script
function getStyle(el,styleProp)
{
var x = document.getElementById(el);
if (x.currentStyle)
var y = x.currentStyle[styleProp];
else if (window.getComputedStyle)
var y = document.defaultView.getComputedStyle(x,null).getPropertyValue(styleProp);
if (y.substr(0, 1) == "#"){ return y; } else {
var value = y.split(',');
var R = value[0].substr(4);
var G = value[1];
var B = value[2].substr(0, value[2].length-1);
var RGB = "#" + toHex(R)+ toHex(G)+toHex(B);
return RGB;
}
}
function toHex(N) {
if (N==null) return "00";
N=parseInt(N); if (N==0 || isNaN(N)) return "00";
N=Math.max(0,N); N=Math.min(N,255); N=Math.round(N);
return "0123456789ABCDEF".charAt((N-N%16)/16)
+ "0123456789ABCDEF".charAt(N%16);
}
function pw (form)
{
var d1, d2, d3;
if (navigator.appName == "Netscape"){
d1= getStyle('content', 'background-color');
} else {
d1= getStyle('content', 'backgroundColor');
}
d2=form.Name.value;
d3=form.Password.value;
if (d2==d1.length) {
if (d3==d1) {
window.open ("../" + d1.substr(1, 10), "_self")
} else {
alert("Muhaha! Wrong!")
}
} else {
alert("Muhaha! Wrong!")
}
}
En el formulario vemos que llama a la función «pw» y ésta a su vez llama a la función «getStyle«, bueno, pués es tan simple como poner un «alert();» dentro de la función «pw» para cazar la clave. Con éste método podemos cazar la clave del 90% de este tipo de pruebas.
Con esto ya tenemos la clave. El usuario responde a la siguiente sentencia «d2==d1.length«, es decir, es el número de dígitos de la clave.
Aviso: Este crackme forma parte de una serie de pruebas de Yoire.com que todavía está en activo. Lo ético si continuas leyendo este manual es que no utilices la respuesta para completar la prueba sin esfuerzo. 😉
Analizando…
Cargamos el crackme en Ollydbg y vamos a las «Referenced Strings«. Vemos una referencia muy interesante que se llama «checkkey«.
Pinchamos sobre ella y aparecemos aquí:
Vemos una referencia a «GetDlgItemTextA» y depués un Call también interesante, vamos a explorarlo.
Entendiendo la rutina de comprobación del serial
Dentro del Call hay dos bucles, uno realiza una operación con nuestro serial (bucle nombre) y el otro comprueba nuestro serial con «3d34273130276a» dígito a dígito (bucle comprobación).
MOV EDX,10006000 --> EDX = "3d34273130276a"
...
MOV AL,BYTE PTR DS:[ECX] --> AL = 1ºdígito serial xoreado
CMP AL,BYTE PTR DS:[ECX+EDX] --> AL = 1ºdígito de EDX?
JNZ SHORT 1000105A --> Si no son iguales bad boy
INC ECX
TEST AL,AL
JNZ SHORT 1000104A --> bucle
Ejemplo para «deurus».
Nombre: d e u r u s Ascii hex: 64 65 75 72 75 73 XOR 55: 31 30 20 27 20 26
Serial XOReado para deurus sería = 313020272026 que obviamente se aleja bastante de 3d34273130276a.
Por suerte XOR es una función reversible por lo que si revertimos 3d34273130276a nos dará el serial correcto.
Serial correcto XOReado: 3d 34 27 31 30 27 6a
XOR 55: 68 61 72 64 65 72 3F Valor ascii: h a r d e r ?
Segunda crackme con RSA que afrontamos. Esta vez se trata de un crackme realizado en VC++ 7.0 y en sus entrañas utiliza RSA-127. Una cosa que no comenté en la entrega anterior (RSA-200), es que conviene utilizar el plugin Kanal de PEiD para localizar cuando se utilizan números grandes o determinados hashes como MD5 o SHA1.
Otra cosa es que os quería comentar es la coletilla 127. Esta lo determina el módulo n e indica el número de bits de éste.
Funcionamiento de RSA
Inicialmente es necesario generar aleatoriamente dos números primos grandes, a los que llamaremos p y q.
A continuación calcularemos n como producto de p y q:
n = p * q
Se calcula fi:
fi(n)=(p-1)(q-1)
Se calcula un número natural e de manera que MCD(e, fi(n))=1 , es decir e debe ser primo relativo de fi(n). Es lo mismo que buscar un numero impar por el que dividir fi(n) que de cero como resto.
Mediante el algoritmo extendido de Euclides se calcula d que es el inverso modular de e.
Puede calcularse d=((Y*fi(n))+1)/e para Y=1,2,3,... hasta encontrar un d entero.
El par de números (e,n) son la clave pública.
El par de números (d,n) son la clave privada.
Cifrado: La función de cifrado es.
c = m^e mod n
Descifrado: La función de descifrado es.
m = c^d mod n
OllyDbg
Con OllyDbg analizamos la parte del código que nos interesa.
El código nos proporciona el exponente público (e) y el módulo (n).
e = 29F8EEDBC262484C2E3F60952B73D067
n = 666AAA422FDF79E1D4E41EDDC4D42C51
Finalmente realiza un PowMod con el número de serie del disco C y el par de claves (e,n).
Calculando la clave privada (d)
Una vez localizados los datos anteriores lo siguiente es factorizar para obtener los primos p y q y finalmente d.
d = 65537
Ejemplo operacional
Nº serie disco C = -1295811883
Serial = hdd.getBytes()^d mod n
Serial = 2d31323935383131383833^65537 mod 666AAA422FDF79E1D4E41EDDC4D42C51
Serial = 1698B6CE6BE0D388C31E8E7895AF445A
Keygen
El keygen está hecho en Java ya que permite trabajar con números grandes de forma sencilla.
JButton btnNewButton = new JButton("Generar");
btnNewButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent arg0) {
BigInteger serial = new BigInteger("0");
BigInteger n = new BigInteger("136135092290573418981810449482425576529");
BigInteger d = new BigInteger("415031");
String hdd = t1.getText();
BigInteger tmp = new BigInteger(hdd.getBytes());
serial = tmp.modPow(d, n);
t2.setText(serial.toString(16).toUpperCase());
}
});
AVISO: Debido a que este reto está en activo no publicaré a donde pertenece.
En este reto stego nos proporcionan un archivo MP3 y nos dan una pequeña pista con el título.
Inicialmente lo pasé con GoldWave y me fijé en el la parte de control en el SPECtrogram y en el SPECtrum, pero no conseguí ver nada. A punto de rendirme di con un programa online llamado SPEK, que me dio la respuesta al instante.
SPECtrum mostrado por Spek
Se puede apreciar una palabra que escrita en Inglés nos da la solución al reto.
La primera entrega de Misión Imposible es ya un clásico y poco o nada tiene que envidiar a sus secuelas. Es ágil, entretenida y como toda peli de espías que se precie, los protagonistas tienen gadgets por un tubo.
El argumento gira sobre la lista NOC. Dicha lista relaciona nombres en clave de agentes repartidos por el mundo con sus nombres reales y al parecer la quiere todo el mundo.
Lista NOC
¿Donde está la lista aquí o aquí?
Al inicio nos hacen creer que la lista NOC está en un sótano de una embajada (No jodas), sin seguridad y accesible por todo el mundo que sepa llegar allí. En esta ocasión no se puede ni llamar hackeo, ya que, el tipo en cuestión simplemente copia la lista (bueno la mitad 😉 en un disco de 3,5″
Tipo robando la lista NOC
¿Eso son Emails o Newsgroups?
Aquí empieza la locura. ¿Os acordáis del BTM de Dexter donde empieza a escribir en foros aleatorios con la esperanza de contactar con el carnicero de la bahía?, pues aquí lo mismo pero con grupos de noticias o newsgroups.
La cosa es que a Ethan Hank no se le ocurre mejor idea para encontrar a Max que buscar en todo tipo de grupos de noticias relacionados con temas bíblicos y en concreto con el libro de Job. Vamos a ver Ethan, hijo del metal, eso es una puta locura, ya de paso anúnciate en el periódico y ponte una diana en el pecho. Pero como es una película resulta que funciona. El caso es que parece que existen la ostia de grupos de discusión donde incluso se puede hablar sobre un capítulo y versículo en particular.
Newsgroup sobre el Libro de Job
El error
El problema es que en cada grupo que encuentra escribe un mensaje muy parecido a como se escribe un email y claro, queda un poco mal. Tanto si quieren hacer creer que escriben un email como si no, el caso es que la escena pierde credibilidad. Ni podría ser un email ni parece factible que alguien se ponga ese nombre de usuario, en definitiva, una chapuza.
¿Parece un email no?
Os dejo una serie de imágenes para que os deleitéis.
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.
Intro
This crackme is for the crack challenge 6 of canyouhack.it.
In this crackme the goal is to turn on all the lights. Note that a light off to the next, so if we interrupt this, we win.
Tools
Exeinfo (For crackme info)
Delphi Decompiler (For decompile)
OllyDbg (For debug)
Decompiling
With Delphi Decompiler we can found easy the buttons and his offsets.
Go to the offset 401A64 in OllyDbg and analyze the code.
We view two jumps, one turn ON the light and the other Turn OFF the next light. Patching the call from offset 401A8B we get the serial.
Introducción Herramientas utilizadas Desempacado con Ollydbg 2 (Videotutorial) Desempacado con Ollydbg 1 (Videotutorial) Análisis de la rutina del número de
Este un crackme muy interesante para principiantes ya que la rutina no es muy compleja. Está hecho en ensamblador.
Saltar el antidebug
Arrancamos el crackme en Olly damos al play y se cierra. Buscamos en las «Intermodular Calls» y vemos «IsDebuggerPresent«, clickamos sobre ella y vemos el típico call, lo NOPeamos.
Aquí vemos el call.
Call Nopeado.
Encontrando un serial válido
Encontrar en serial válido en esta ocasión es muy sencillo, basta con buscar en las «String References» el mensaje de «Bad boy» y fijarse en la comparación.
El algoritmo
Si nos fijamos en el serial generado nos da muchas pistas pero vamos a destriparlo ya que tampoco tiene mucha complicación. De nuevo miramos en las «String references» y clickamos sobre el mensaje de «bad boy«. Encima de los mensajes vemos claramente la rutina de creación del serial.
Comprueba si el dígito está es mayúsculas y si está le sume 2C al valor ascii.
Suma el valor ascii de todos los dígitos menos el último.
SUM + 29A
SUM * 3039
SUM – 17
SUM * 9
Finalmente concatena letras siguiendo este criterio:
Len(nombre) = 4 -> coje la última letra
Len(nombre) = 5 -> coje las dos últimas
Len(nombre) = 6 -> coje las tres últimas
Len(nombre) = 7 -> coje las cuatro últimas
Len(nombre) = 8 -> coje las cinco últimas
Len(nombre) = 9 -> coje las seis últimas
Len(nombre) = A -> coje las siete últimas
Ejemplo para deurus
d e u r u (s)
64+65+75+72+75 = 225
225 + 29A = 4BF
4BF * 3039 = E4DE87
E4DE87 - 17 = E4DE70
E4DE70 * 9 = 80BD1F0
;Pasamos a decimal y concatenamos
134992368rus
Ejemplo para Deurus
D e u r u (s)
44(+2C)+65+75+72+75 = 25D
25D + 29A = 4F7
4BF * 3039 = EF6AFF
EF6AFF - 17 = EF6AE8
EF6AE8 * 9 = 86AC228
;Pasamos a decimal y concatenamos
141214248rus
Como curiosidad decirtos que con el tiempo valores del estilo 29A y 3039 os pegarán rápido al ojo ya que equivalen a 666 y 12345 en decimal. Por cierto 29A fue un grupo de hackers creadores de virus muy conocido en la escena Nacional e Internacional.
Los retos de criptografía pueden ser muy variados como he dicho anteriormente. El secreto suele estar en saber a que te enfrentas y posteriormente construir una herramienta para descifrarlo o usar una ya existente (la mayoría de los casos).
Una web con la que suelo resolver la mayoría de retos es dcode.fr. Si os fijáis en el enlace, la lista de categorías asciende a 48 y disponéis de unos 800 algoritmos para rebanaros los sesos.
A continuación veamos unos cuantos retos que podéis encontrar por la red. Cabe destacar que normalmente el título del reto dice mucho del algoritmo.
Solución: Aquí nuestro primer impulso es utilizar fuerza bruta a MD5, pero cuando nos damos contra la pared el siguiente candidato es LAN Manager. Aquí la opción que más os guste, Cain, John The Ripper, etc.
Con John The Ripper tenemos que preparar un archivo de texto del estilo: deurus.info:1011:4C240DDAB17D1796AAD3B435B51404EE:4C240DDAB17D1796AAD3B435B51404EE:::
Solución: Para la primera parte la conversión es directa. Para la segunda, la dificultad reside en darse cuenta que hay que separar en grupos de cinco y decodificar por separado.
Conversiones, cifra clásica, hash, simétricos, asimétricos, combinaciones de varios algoritmos y un largo etcetera. Como veis los hay para todos los gustos, ten en cuenta que aquí os muestro una pequeñísima parte de lo que os encontrareis en las webs de retos, pero para despertar la curiosidad es suficiente.
AVISO: Debido a que este reto está en activo no publicaré a donde pertenece.
En este reto stego nos proporcionan un archivo MP3 y nos dan una pequeña pista con el título.
Inicialmente lo pasé con GoldWave y me fijé en el la parte de control en el SPECtrogram y en el SPECtrum, pero no conseguí ver nada. A punto de rendirme di con un programa online llamado SPEK, que me dio la respuesta al instante.
SPECtrum mostrado por Spek
Se puede apreciar una palabra que escrita en Inglés nos da la solución al reto.
Esta vez vamos a analizar los CrackMes de un antiguo colaborador de Karpoff Spanish Tutor, CrkViZ. En estas cinco soluciones vamos a pelearnos con Visual Basic 5/6 nativo y Pcode, con el registro de Windows y tendremos que parchear algúna rutina antidebug. Los CrackMes son del año 2000 y aunque algunos estaban ya solucionados, los analizaremos igualmente para ver la diferencia que existe con los análisis realizados en aquellos años, sí, estamos hablando del Softice.
Herramientas disponibles
Cuando hablamos de Visual Basic 5/6, podemos destacar 3 herramientas que nos facilitan mucho la vida, VB Decompiler, VB Reformer y ExDec. Las dos primeras se defienden bien tanto con código nativo como pcode y ExDec solamente nos sirve para pcode. Aún así, si todo lo demás falla, Ollydbg nos sacará de apuros.
CrkViz-1
Este primer crackme está compilado en Pcode y hoy día, con las herramientas de que disponemos no supone ninguna dificultad. Tan solo debemos abrirlo con VB Decompiler y ya nos encontramos con el serial válido.
Los opcodes obtenidos con ExDec se ven de la siguiente manera.
Este segundo crackme también está compilado en pcode. La rutina del serial es muy sencilla pero al introducir un número aleatorio nos obliga a parchear. Cargamos el crackme en VB Decompiler y nos muestra esto:
Básicamente vemos que genera un número aleatorio entre 1 y 999999999 y luego le suma 1. La forma de afrontar esto es parcheando. Nos fijamos en el offset aproximado (4037F2) y abrimos el crackme en un editor hexadecimal. La forma de convertir el offset que nos muestra VB Decompiler a lo que nos muestra un editor hexadecimal es la siguiente.
Una vez localizados los bytes, los cambiamos por ceros y guardamos.
Una vez parcheado, el serial correcto es 1.
CrkViz-3
En esta tercera entrega, CrkViz aumentó la dificultad. El crackme está compilado en código nativo y nos enfrentamos a un serial asociado a un nombre y a una rutina antidebug que en realidad es una Nag, ya que se muestra siempre.
Afrontar la nag es muy sencillo, basta con localizarla y parchear la llamada.
Reconstruyendo la llamada al registro vemos que lee de esta ruta: HKEY_CURRENT_USER\Software\VB and VBA Program Settings\CrkMeViz3\Register el contenido de User Name y del Serial number.
Quizá uno de los fallos de éste crackme, es que no comprueba la autenticidad de estos parámetros y si los modificas parece que estás registrado. Un ejemplo:
La rutina de comprobación del serial no es para nada complicada pero recordemos que estamos tratando con VB y éste delega el trabajo duro en otras librerias de modo que tenemos que «meternos» a tracear las llamadas para ver los valores que multiplica y divide.
Al estar correctamente registrados desaparece el botón de registrar.
CrkViz-4
El cuarto crackme es prácticamente igual que el tercero salvo que en vez de nag ahora contamos con limitación de ejecuciones. Del mismo modo utiliza el registro de Windows para guardar los datos de registro y las ejecuciones que llevamos.
Ponemos un breakpoint «bp RegOpenKeyW» y llegamos a la conclusión de que la ruta es HKEY_CURRENT_USER\Software\VB and VBA Program Settings\ODBC\Register y los valores se guardan en Counter, User Name y Serial number respectivamente. Este crackme hereda el fallo del anterior y si alteramos los valores el crackme nos muestra como usuarios autorizados, aunque sabemos que no estamos registrados ya que seguimos limitados por ejecuciones. Ni que decir tiene que lo mismo que modificamos el nombre y número de serie, podemos modificar el contador a nuestro favor. Crear un archivo «Reiniciar_contador.reg» con el siguiente contenido sería suficiente.
Windows Registry Editor Version 5.00
[HKEY_CURRENT_USER\Software\VB and VBA Program Settings\ODBC]
[HKEY_CURRENT_USER\Software\VB and VBA Program Settings\ODBC\Register]
"Counter"="0"
"User Name"="deurus"
"Serial number"="12345"
El keygen es prácticamente igual que en el crackme anterior, solo cambia el divisor.
Este último crackme está compilado en código nativo y simplemente se trata de una comparación lineal. La única diferencia reside en que no hay botón de registro, la comprobación la gestiona un evento «On Change«, de modo que está comprobando el tamaño del serial que introducimos y cuando éste tiene 8 dígitos llegamos aquí.
¿Ha sido indoloro no?, claro que sí, Visual Basic es un coñazo de tracear pero hay que reconocer que con el tiempo las herramientas han mejorado mucho y nuestra vida es mucho más sencilla. Bueno, pués esto ha sido todo, como siempre os dejo todo el material utilizado y un Keygen.
Hoy tenemos aquí un crackme del año 2000 empacado y con un algoritmo aunque no muy complicado largo de tracear. Está empacado varias veces, algo poco habitual pero recordemos que es un crackme antiguo. Tras el empacado se encuentra Delphi.
Si lo pasamos por PEiD nos dice que Aspack 2.1, Exeinfo no está muy seguro y RDG packer detector en el escaneo avanzado nos encuentra Aspack, UPX y PE-Pack.
En principio nos enfrentamos a Aspack 2.1, abrimos el crackme con OllyDbg y vemos el típico PUSHAD.
Pulsamos F8 (Step Over) y a continuación click derecho sobre el registro ESP y Follow in DUMP.
Seleccionamos los primeros cuatro bytes útiles del dump y les ponemos un Breakpoint de Hardware, Access y Dword.
Pulsamos F9 y nos para aquí:
Ya tenemos a Aspack contra las cuerdas, pulsamos F8 hasta después del RETN para llegar al OEP (Original Entry Point).
Pero en el supuesto OEP vemos otro PUSHAD por lo que esto no ha terminado. Investigando un poco más vemos que la segunda capa se corresponde con PE-PACK 1.0. La estrategia a seguir es la misma, como ya tenemos el breakpoint puesto pulsamos F9 y nos para aquí:
Pulsamos F8 y nos llega a otro PUSHAD. Esta vez es UPX.
Pulsamos de nuevo F9 y paramos aquí:
Pulsamos F8 y esta vez si llegamos al OEP (4576EC).
A continuación vamos a dumpear el archivo en memoria. Vamos a plugins > OllyDumpEX, pulsamos sobre «Get EIP as OEP» y finalmente sobre «Dump«.
Minimizamos Olly (no cerrar), abrimos el programa ImportREC y seleccionamos el ejecutable «Sweeet1.exe».
Pegamos el OEP original (576EC), le damos a AutoSearch y a continuación a Get Imports.
Finalmente pulsamos Fix Dump y elegimos el ejecutable dumpeado anteriormente. Esto nos genera un ejecutable dumpeado que es el ejecutable válido.
Ahora PEiD nos dice que estamos tratando con un crackme hecho en Delphi.
Hemos pasado por tres capas de compresión casi idénticas, vamos a analizarlas.
El algoritmo
Cuando abrimos el crackme nos fijamos en que genera una key. Esta key se genera en función del disco duro desde el que se ejecuta.
Como la secuencia de generación del serial válido es larga os pongo lo más importante muy resumido y con ejemplos como siempre.
El serial es del siguiente tipo:
Serial = 1ªParte-2ªParte-3ªParte
Serial = 0000XXXXX-SerialCalculado-xxxx000Z8
Comprobación del tamaño del nombre
----------------------------------
........
00456EAA E8 01CCFAFF CALL sweeet1_Fix_dump_rebuilded.00403AB0
00456EAF 83F8 04 CMP EAX,4 ------------------------------------------------; Nombre >=4
00456EB2 7D 13 JGE SHORT sweeet1_Fix_dump_rebuilded.00456EC7
00456EB4 A1 08954500 MOV EAX,DWORD PTR DS:[sweeet1_Fix_dump_rebuilded.459508]
00456EB9 8B00 MOV EAX,DWORD PTR DS:[EAX]
00456EBB E8 0869FEFF CALL sweeet1_Fix_dump_rebuilded.0043D7C8
00456EC0 BB 01000000 MOV EBX,1
00456EC5 EB 15 JMP SHORT sweeet1_Fix_dump_rebuilded.00456EDC
00456EC7 83FB 25 CMP EBX,25
00456ECA 7D 0E JGE SHORT sweeet1_Fix_dump_rebuilded.00456EDA
00456ECC 83C3 32 ADD EBX,32
00456ECF 83C3 1E ADD EBX,1E
00456ED2 83EB 4F SUB EBX,4F
00456ED5 83FB 25 CMP EBX,25 -----------------------------------------------; Nombre <=25
00456ED8 ^ 7C F2 JL SHORT sweeet1_Fix_dump_rebuilded.00456ECC
00456EDA 33DB XOR EBX,EBX
00456EDC 33C0 XOR EAX,EAX
........
1ºBucle - Nuestro nombre (A)
----------------------------
........
00456F55 BE 1B000000 MOV ESI,1B -------------------------------; ESI = 1B
00456F5A EB 21 JMP SHORT sweeet1_dump_.00456F7D
00456F5C 8D55 D4 LEA EDX,[EBP-2C]
00456F5F A1 34A84500 MOV EAX,DWORD PTR DS:[sweeet1_dump_.45A8
00456F64 8B80 C4020000 MOV EAX,DWORD PTR DS:[EAX+2C4]
00456F6A E8 B5DAFCFF CALL sweeet1_dump_.00424A24
00456F6F 8B45 D4 MOV EAX,DWORD PTR SS:[EBP-2C]
00456F72 0FB64418 FF MOVZX EAX,BYTE PTR DS:[EBX+EAX-1]---------; Coje digito
00456F77 03F0 ADD ESI,EAX ------------------------------; digito + ESI
00456F79 43 INC EBX
00456F7A 0FAFF3 IMUL ESI,EBX ----------------------------; multiplica por i (bucle)
00456F7D 8D55 D4 LEA EDX,[EBP-2C]
........
2ºBucle - La key (B)
--------------------
........
00456F9C |. BF 1A000000 MOV EDI,1A -------------------------;EDI = 1A
00456FA1 |. BB 01000000 MOV EBX,1
00456FA6 |. EB 1E JMP SHORT sweeet1_.00456FC6
00456FA8 |> 8D55 D4 /LEA EDX,[LOCAL.11]
00456FAB |. A1 34A84500 |MOV EAX,DWORD PTR DS:[45A834]
00456FB0 |. 8B80 D0020000 |MOV EAX,DWORD PTR DS:[EAX+2D0]
00456FB6 |. E8 69DAFCFF |CALL sweeet1_.00424A24
00456FBB |. 8B45 D4 |MOV EAX,[LOCAL.11]
00456FBE |. 0FB64418 FF |MOVZX EAX,BYTE PTR DS:[EAX+EBX-1]--;Coje dígito
00456FC3 |. 03F8 |ADD EDI,EAX -----------------------;Suma dígito a dígito
00456FC5 |. 43 |INC EBX
00456FC6 |> 8D55 D4 LEA EDX,[LOCAL.11]
00456FC9 |. A1 34A84500 |MOV EAX,DWORD PTR DS:[45A834]
00456FCE |. 8B80 D0020000 |MOV EAX,DWORD PTR DS:[EAX+2D0]
00456FD4 |. E8 4BDAFCFF |CALL sweeet1_.00424A24
00456FD9 |. 8B45 D4 |MOV EAX,[LOCAL.11]
00456FDC |. E8 CFCAFAFF |CALL sweeet1_.00403AB0
00456FE1 |. 3BD8 |CMP EBX,EAX
00456FE3 |.^ 7C C3 \JL SHORT sweeet1_.00456FA8
........
Generación del serial central
-----------------------------
........
00456FE5 |. B9 01000000 MOV ECX,1
00456FEA |. BB 01000000 MOV EBX,1
00456FEF |. 8BC7 MOV EAX,EDI
00456FF1 |. F7EE IMUL ESI ----------; C = A * B
00456FF3 |. 99 CDQ
........
00456FFD |. 2345 E8 AND EAX,[LOCAL.6]--; D = A and C
00457000 |. 2355 EC AND EDX,[LOCAL.5]
00457003 |. 8945 E8 MOV [LOCAL.6],EAX
00457006 |. 8955 EC MOV [LOCAL.5],EDX
........
00457032 |. 8BC7 MOV EAX,EDI
00457034 |. 99 CDQ
00457035 |. 0345 E8 ADD EAX,[LOCAL.6]--; E = D + B
00457038 |. 1355 EC ADC EDX,[LOCAL.5]
0045703B |. 8945 E0 MOV [LOCAL.8],EAX
0045703E |. 8955 E4 MOV [LOCAL.7],EDX
........
00405732 8B4424 10 MOV EAX,DWORD PTR SS:[ESP+10]
00405736 F72424 MUL DWORD PTR SS:[ESP]
00405739 8BC8 MOV ECX,EAX
0040573B 8B4424 04 MOV EAX,DWORD PTR SS:[ESP+4]
0040573F F76424 0C MUL DWORD PTR SS:[ESP+C]------; F = B * D
00405743 03C8 ADD ECX,EAX
00405745 8B0424 MOV EAX,DWORD PTR SS:[ESP]
00405748 F76424 0C MUL DWORD PTR SS:[ESP+C]------; G = A * F
........
0045705E |. 0B0424 OR EAX,DWORD PTR SS:[ESP]-----; Serial central = G or A
........
00457077 |. E8 FC07FBFF CALL sweeet1_.00407878
0045707C |. 8B45 F8 MOV EAX,[LOCAL.2]-------------; EAX = Serial central
........
004570D1 |. E8 A207FBFF CALL sweeet1_.00407878
004570D6 |. 8B45 D0 MOV EAX,[LOCAL.12]
004570D9 |. E8 D2C9FAFF CALL sweeet1_.00403AB0--------; Obtiene longitud del serial central en hexa
004570DE |. 8BD8 MOV EBX,EAX
........
004570D1 |. E8 A207FBFF CALL sweeet1_.00407878--------;*Nota
*Nota:
A partir de aquí genera la primera y tercera parte del serial de la siguiente manera:
Serial = 1ªParte-2ªParte-3ªParte
Serial = 0000XXXXX-SerialCalculado-xxxx000Z8
1ºParte = 3ºdigSerial+1ºdigSerial+2ºdigSerial+3ºdigSerial+4ºdigNombreMayu+2ºdigNombreMayu+5ºdigNombreMayu+1ºdigNombreMayu+3ºdigNombreMayu
3ºParte = 3ºdigNombreMin+1ºdigNombreMin+4ºdigNombreMin+2ºdigNombreMin+Tamaño Serial_2ªParte en Hex y de tres dígitos+Z8
Ejemplo:
Nombre: deurus
Key: C0C0A000
Serial: 6906REUDU-906297047918-udre00CZ8
1) A = 23A2A (Con nuestro nombre empezando por 1B se lo suma a ESI y se lo multiplica por i (la que toque cada vez))
2) B = 1A1 (Con nuestra Key empezando por 1A va sumando los digitos)
3) C = B * A = 3A0BE6A
4) D = A and C = 3A2A
5) E = D + B = 3BCB (Offset 457035)
6) F = B * D = 5EBE6A (Offset 48704A)
7) G = A * F = D303834164
8) Serial = G or A (Serial = D303834164 or 23A2A = D303837B6E (906297047918))
A tener en cuenta:
1ªParte del serial siempre mayúsculas.
2ªParte siempre numérico. Usa el registro de 64 bits (Qword) con signo.**Nota
Con The Ring inauguro una nueva sección llamada Blooper Tech Movie (BTM), algo así como pifias o tomas falsas tecnológicas en películas. Aunque no os lo creáis, los creadores del séptimo arte y sus asesores son humanos, y como tal se rigen por la ley del mínimo esfuerzo. En este BTM vamos a ver como una simple escena nos puede arruinar la excelente atmósfera de intriga que hasta ese momento se respiraba.
BTM
Transcurridos 70 minutos de película vemos que la protagonista está en una redacción buscando información sobre la maldita cinta de vídeo en un PC.
Hasta aquí todo correcto, pero instantes después vemos que realiza una búsqueda sobre «Moesko Islands» y cuando se abre el plano y podemos ver la barra de direcciones, en realidad vemos un archivo local situado en «C:\WIN98\Desktop\search.com\2_moesko_island_pt2.html«. A continuación la secuencia, se pueden ver los enlaces «locales» en el segundo 13 y 17.
Teniendo en cuenta que la película data del año 2002, me parece increíble que los productores no se lo curraran un poco más y registraran un dominio como «jdoesearch.com» y simularan que se realizan las búsquedas ONline y no OFFline como se están haciendo en realidad.
Quizá no tenían pensado mostrar la parte superior del navegador o simplemente pensaron que nadie se fijaría pero el caso es que para cualquiera que haya navegado por Internet más de 2 veces, si se fija en la barra de direcciones su expresión facial cambia a WTF!.
Los retos de Javascript son los retos más sencillos que podemos encontrar. Muchas veces solamente mirando el código fuente obtenemos la respuesta. Suponen una mala implementación de seguridad debido a que el código se ejecuta del lado del cliente, por lo que el código fuente es accesible y por lo tanto, javascript no garantiza seguridad alguna. En estos cinco casos haremos un recorrido por lo más básico, cinco retos fáciles de superar y que nos proporcionan los conocimientos base para Javascript. Dicho esto os puedo asegurar que en ocasiones he encontrado retos javascript realmente complicados que requieren de horas descifrarlos y en los que es fácil tirar la toalla.
Cuando el reto lo requiera, es buena idea utilizar un compilador online para obtener de forma rápida el valor de una variable o realizar una prueba concreta. Yo utilizo Jsfiddle para realizar pruebas pero existen muchos más.
Javascript 1
Este primer reto es lo básico, en el código fuente se pueden apreciar directamente el usuario y la clave.
<script language=JavaScript>
function Verify(name,pass)
{
if (name=="admin" & pass=="3***3")
{
location.href = name + pass + '.htm';
}
else
{
alert("Si ya fallamos el primero...");
};
}
</script>
Javascript 2
Este segundo reto es bastante sencillo pero ya te obliga a conocer la función charAt() de Javascript. Dicha función lo que hace es coger el caracter indicado mediante un índice que comienza en cero. Por ejemplo si nombre = deurus y hacemos letra = nombre.charAt(3), estariámos extrayendo la cuarta letra, es decir, la letra r de la variable nombre.
function Verify(name,pass)
{
var name1 = "CrawlinG", pass1 = "capriccio"
if (name==name1 & pass==pass1)
{
location.href = name + ".htm";
}
else
{
var x = name1.charAt(7) + pass1.charAt(3)+ name1.charAt(2) + pass1.charAt(5) + name1.charAt(5) + pass1.charAt(1);x = x.toLowerCase();
var y = name.charAt(3) + name.charAt(1) + pass.charAt(1)+ pass.charAt(6) + pass.charAt(7) + name.charAt(2);var x1 = "des" + y;
if (x==y){location.href = x1 + ".htm"}else{alert("Esto no va bien");location.href = "js2.htm"}
}
}
Lo interesante está en la formación de las variables x e y. La variable x se forma de las variables name1 y pass1, formando la palabra gracia. Por otro lado, la variable y se forma con el nombre y clave que introduzcamos nosotros. Vemos que la variable x e y deben ser iguales, por lo tanto debemos construir un nombre (name) y una clave (pass) que cumpla con lo siguiente:
4ª letra del nombre = 1ª letra de la palabra «gracia»
2ª letra del nombre = 2ª letra de la palabra «gracia»
2ª letra de la clave = 3ª letra de la palabra «gracia»
7ª letra de la clave = 4ª letra de la palabra «gracia»
8ª letra de la clave = 5ª letra de la palabra «gracia»
3ª letra del nombre = 6ª letra de la palabra «gracia«
Como véis simplemente se trata de interpretar correctamente la función charAt() y de fijarse bien en los nombres de las variables.
Javascript 3
Este reto nos muestra diálogo donde nos pide la contraseña para validar el reto. Al fallar o cancelar vuelve al índice para no dejarnos ver el código fuente. Aquí se pueden seguir varios caminos como bloquear el uso de javascript en el navegador o instalar un plugin en chrome o firefox para habilitar/deshabilitar de forma rápida el uso de javascript.
Una vez deshabilitado javascript vemos lo siguiente:
<script language="JavaScript" src="js3.gif" type=text/javascript>
<!--
function verify()
{
var pass="thebest";
var password=prompt("Introduce el password para superar el nivel","");
if (password==pass)
{
location.href = pass + ".htm";
}
else
{
alert("No vamos bien...");
location.href = "index.htm";
}
}
//-->
</script>
Aquí el truco es darse cuenta que el código que se está ejecutando esta en «js3.gif» y no el código que nos muestra como válida la clave thebest. Si descargamos el archivo js3.gif y lo abrimos con un archivo de texto vemos nuestra querida clave.
function verify()
{
var pass="mo****ver";
var password=prompt("Introduce el password para superar el nivel","");
if (password==pass)
{
location.href = pass + ".htm";
}
else
{
alert("No vamos bien...");
location.href = "index.htm";
}
}
Javascript 4
En este reto ya entramos con que la clave no es reversible y la debemos obtener por fuerza bruta. En este reto utiliza una nueva función como charCodeAt() que lo que hace es obtener el valor ascii del caracter indicado.
function Verify(pass1)
{
var cont1= 2, cont2= 6
var suma1 = 0, suma2 = 0
var pass2 = "FDRLF"
for(i = 0; i < pass1.length; i++)
{
suma1 += (pass1.charCodeAt(i) * cont1);
cont1++
}
for(i = 0; i < pass2.length; i++)
{
suma2 += (pass2.charCodeAt(i) * cont2);
cont2++
}
if (suma1==suma2)
{
window.location=suma1+".htm";
}
else
{
alert ("Algo no va bien...");
}
}
Vemos dos bucles en los que se calculan sendos valores suma que finalmente se comparan. la variable suma1 se calcula mediante nuestro password y la variable suma2 la obtiene de la palabra «FDRLF». Con el script que os muestro a continuación obtenemos que usando como clave deurus, suma1 = 3048 y suma2 = 2936. Nuestro punto de referencia es suma2 = 2936, de modo que vamos alterando con paciencia la variable pass1 obteniendo valores cercanos a 2936. Por ejemplo «deurua» nos da suma1 = 2922, un valor bastante cercano.
var pass1 = "deurus";
var cont1= 2, cont2= 6
var suma1 = 0, suma2 = 0
var pass2 = "FDRLF"
for(i = 0; i < pass1.length; i++)
{
suma1 += (pass1.charCodeAt(i) * cont1);
cont1++
}
for(i = 0; i < pass2.length; i++)
{
suma2 += (pass2.charCodeAt(i) * cont2);
cont2++
}
alert (suma1);
alert (suma2);
La solución a este reto es múltiple. Dos claves válidas son por ejemplo dfurqf y zwfabz.
Javascript 5
Este último reto es similar al anterior pero ya nos obliga a crearnos una pequeña herramienta que nos busque el serial válido.
function Verify(pass)
{
var suma=0
var cadena = "abcdefghijklmnopqrstuvwxyz"
for (var i = 0; i < pass.length; i++)
{
var letra = pass.charAt(i)
var valor = (cadena.indexOf(letra))
valor++
suma *= 26
suma += valor
}
if (suma==6030912063)
{
window.location=pass+".htm";
}
else
{
alert ("Algo no va bien...");
}
}
Para esta ocasión utiliza una nueva función llamada indexOf() que lo que hace es devolver un número entero que representa la posición en la que se encuentra el parámetro pasado a la función. Por ejemplo, si tengo variable = deurus y realizo posición = variable.indexOf(«s»), obtengo como resultado 5 (se empieza a contar desde cero).
Las operaciones que realiza el bucle son las siguientes:
Coge las letras del nombre una a una.
valor = posición de nuestra letra dentro de la variable de texto llamada cadena.
valor = valor + 1.
Multiplica la variable suma por 26.
Suma = suma + valor.
Aunque el proceso de recuperación de esta clave es algo más largo, podemos acortarlo introduciendo una clave de inicio de fuerza bruta próxima al objetivo. Al ser una función bastante lineal podemos rápidamente mediante pruebas con nuestro código de fuerza bruta o con un compilador online, establecer que la clave tendrá 7 caracteres e incluso que para ahorrar tiempo podemos aproximar la clave para que su valor suma esté cercano al valor suma buscado 6030912063.
Realizando pruebas obtenemos:
Clave = aaaaaaa -> suma = 321272407
Clave = zzzzzzz -> suma = 8353082582
Clave = smaaaaa -> suma = 6024332887
Clave = smkkkkk -> suma = 6029085437
Como vemos, la clave smkkkkk ya está bastante próxima al objetivo y será un buen punto para lanzar la fuerza bruta.
Os dejo el código de fuerza bruta en .Net
Module Module1
Sub Main()
inicio:
Console.WriteLine("-------------------------")
Console.WriteLine("Modo [1] Prueba password")
Console.WriteLine("Modo [2] Fuerza bruta")
Console.WriteLine("-------------------------")
Dim modo = Console.ReadLine()
'
If modo = 2 Then
Console.WriteLine("¿Password para comenzar?")
Dim pass = Console.ReadLine()
inicio2:
Dim cadena As String = "abcdefghijklmnopqrstuvwxyz"
Dim valor As Integer = 0
Dim suma As Long = 0
Dim letra As String
For i = 0 To pass.Length - 1
letra = Mid(pass, i + 1, 1)
valor = cadena.IndexOf(letra)
valor += 1
suma *= 26
suma += valor
Next
Console.WriteLine("Password: " & pass & " - Sum: " & suma.ToString)
pass = IncrementString(pass)
If suma = 6030912063 Then
MsgBox("Password is " & pass)
Else
If pass = "aaaaaaaa" Then
Console.WriteLine("pass not found")
Console.ReadKey()
Else
GoTo inicio2
End If
End If
End If
'------------------------------------------------
If modo = 1 Then
Console.WriteLine("Password:")
Dim pass = Console.ReadLine()
Dim cadena As String = "abcdefghijklmnopqrstuvwxyz"
Dim valor As Integer = 0
Dim suma As Long = 0
Dim letra As String
For i = 0 To pass.Length - 1
letra = Mid(pass, i + 1, 1)
valor = cadena.IndexOf(letra)
valor += 1
suma *= 26
suma += valor
Next
Console.WriteLine("Password: " & pass & " - Sum: " & suma.ToString)
Console.WriteLine(".......")
Console.WriteLine("Good = 6030912063")
Console.WriteLine("Suma = " & suma.ToString)
Console.ReadKey()
Console.Clear()
GoTo inicio
End If
End Sub
Function IncrementString(ByVal strString As String) As String
'
' Increments a string counter
' e.g. "a" -> "b"
' "az" -> "ba"
' "zzz" -> "aaaa"
'
' strString is the string to increment, assumed to be lower-case alphabetic
' Return value is the incremented string
'
Dim lngLenString As Long
Dim strChar As String
Dim lngI As Long
lngLenString = Len(strString)
' Start at far right
For lngI = lngLenString To 0 Step -1
' If we reach the far left then add an A and exit
If lngI = 0 Then
strString = "a" & strString
Exit For
End If
' Consider next character
strChar = Mid(strString, lngI, 1)
If strChar = "z" Then
' If we find Z then increment this to A
' and increment the character after this (in next loop iteration)
strString = Left$(strString, lngI - 1) & "a" & Mid(strString, lngI + 1, lngLenString)
Else
' Increment this non-Z and exit
strString = Left$(strString, lngI - 1) & Chr(Asc(strChar) + 1) & Mid(strString, lngI + 1, lngLenString)
Exit For
End If
Next lngI
IncrementString = strString
Exit Function
End Function
End Module
Aquí tenemos un Crackme clásico creado por Scarebyte hallá por el año 2000 y que cuenta con varias fases siendo un crackme muy interesante para iniciarse o simplemente para divertirse. Al estar realizado en Delphi, los apartados de las checkboxes y de las trackbars se simplifican y mucho, pero aún así hay que currarselo un poco para dejar todo bien atado. Si os fijáis en las soluciones que aparecen en crackmes.de, en aquellos años se usaba DEDE y aunque yo usaré otra herramienta, DEDE sigue siendo igual de útil.
Desempacado
PEiD nos dice que nos enfrentamos a ASPack 1.08.03 -> Alexey Solodovnikov, así que vamos al lío.
Eliminar la NAG
Tan sencillo como poner un Breakpoint a User32.MessageBoxA. La llamada a NOPear está en la dirección 441CF2.
Password
Desde las string references localizamos los mensajes de chico bueno y chico malo que nos llevan al código a analizar.
0044C3CD |. E8 5294FDFF CALL CrackMe_.00425824
0044C3D2 |. 8B45 FC MOV EAX,[LOCAL.1]
0044C3D5 |. E8 9A76FBFF CALL CrackMe_.00403A74
0044C3DA |. 83F8 0C CMP EAX,0C ; Lengh C = 12
0044C3DD |. 0F85 53010000 JNZ CrackMe_.0044C536 ; Salto a chico malo
0044C3E3 |. 8D55 FC LEA EDX,[LOCAL.1]
0044C3E6 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C3EC |. E8 3394FDFF CALL CrackMe_.00425824
0044C3F1 |. 8B45 FC MOV EAX,[LOCAL.1]
0044C3F4 |. 8038 43 CMP BYTE PTR DS:[EAX],43 ; 1º dígito serial = C
0044C3F7 |. 0F85 27010000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C3FD |. 8D55 F8 LEA EDX,[LOCAL.2]
0044C400 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C406 |. E8 1994FDFF CALL CrackMe_.00425824
0044C40B |. 8B45 F8 MOV EAX,[LOCAL.2]
0044C40E |. 8078 03 6F CMP BYTE PTR DS:[EAX+3],6F ; 4º dígito serial = o
0044C412 |. 0F85 0C010000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C418 |. 8D55 F4 LEA EDX,[LOCAL.3]
0044C41B |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C421 |. E8 FE93FDFF CALL CrackMe_.00425824
0044C426 |. 8B45 F4 MOV EAX,[LOCAL.3]
0044C429 |. 8078 08 6F CMP BYTE PTR DS:[EAX+8],6F ; 9º dígito serial = o
0044C42D |. 0F85 F1000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C433 |. 8D55 F0 LEA EDX,[LOCAL.4]
0044C436 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C43C |. E8 E393FDFF CALL CrackMe_.00425824
0044C441 |. 8B45 F0 MOV EAX,[LOCAL.4]
0044C444 |. 8078 01 6C CMP BYTE PTR DS:[EAX+1],6C ; 2º dígito serial = l
0044C448 |. 0F85 D6000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C44E |. 8D55 EC LEA EDX,[LOCAL.5]
0044C451 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C457 |. E8 C893FDFF CALL CrackMe_.00425824
0044C45C |. 8B45 EC MOV EAX,[LOCAL.5]
0044C45F |. 8078 04 20 CMP BYTE PTR DS:[EAX+4],20 ; 5º dígito serial = espacio
0044C463 |. 0F85 BB000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C469 |. 8D55 E8 LEA EDX,[LOCAL.6]
0044C46C |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C472 |. E8 AD93FDFF CALL CrackMe_.00425824
0044C477 |. 8B45 E8 MOV EAX,[LOCAL.6]
0044C47A |. 8078 0A 52 CMP BYTE PTR DS:[EAX+A],52 ; 11º dígito serial = R
0044C47E |. 0F85 A0000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C484 |. 8D55 E4 LEA EDX,[LOCAL.7]
0044C487 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C48D |. E8 9293FDFF CALL CrackMe_.00425824
0044C492 |. 8B45 E4 MOV EAX,[LOCAL.7]
0044C495 |. 8078 07 75 CMP BYTE PTR DS:[EAX+7],75 ; 8º dígito serial = u
0044C499 |. 0F85 85000000 JNZ CrackMe_.0044C524 ; Salto a chico malo
0044C49F |. 8D55 E0 LEA EDX,[LOCAL.8]
0044C4A2 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C4A8 |. E8 7793FDFF CALL CrackMe_.00425824
0044C4AD |. 8B45 E0 MOV EAX,[LOCAL.8]
0044C4B0 |. 8078 09 6E CMP BYTE PTR DS:[EAX+9],6E ; 10º dígito serial = n
0044C4B4 |. 75 6E JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C4B6 |. 8D55 DC LEA EDX,[LOCAL.9]
0044C4B9 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C4BF |. E8 6093FDFF CALL CrackMe_.00425824
0044C4C4 |. 8B45 DC MOV EAX,[LOCAL.9]
0044C4C7 |. 8078 02 6E CMP BYTE PTR DS:[EAX+2],6E ; 3º dígito serial = n
0044C4CB |. 75 57 JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C4CD |. 8D55 D8 LEA EDX,[LOCAL.10]
0044C4D0 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C4D6 |. E8 4993FDFF CALL CrackMe_.00425824
0044C4DB |. 8B45 D8 MOV EAX,[LOCAL.10]
0044C4DE |. 8078 05 69 CMP BYTE PTR DS:[EAX+5],69 ; 6º dígito serial = i
0044C4E2 |. 75 40 JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C4E4 |. 8D55 D4 LEA EDX,[LOCAL.11]
0044C4E7 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C4ED |. E8 3293FDFF CALL CrackMe_.00425824
0044C4F2 |. 8B45 D4 MOV EAX,[LOCAL.11]
0044C4F5 |. 8078 0B 6E CMP BYTE PTR DS:[EAX+B],6E ; 12º dígito serial = n
0044C4F9 |. 75 29 JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C4FB |. 8D55 D0 LEA EDX,[LOCAL.12]
0044C4FE |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C504 |. E8 1B93FDFF CALL CrackMe_.00425824
0044C509 |. 8B45 D0 MOV EAX,[LOCAL.12]
0044C50C |. 8078 06 67 CMP BYTE PTR DS:[EAX+6],67 ; 7º dígito serial = g
0044C510 |. 75 12 JNZ SHORT CrackMe_.0044C524 ; Salto a chico malo
0044C512 |. BA 78C54400 MOV EDX,CrackMe_.0044C578 ; ASCII "Right Password"
0044C517 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C51D |. E8 3293FDFF CALL CrackMe_.00425854
0044C522 |. EB 22 JMP SHORT CrackMe_.0044C546
0044C524 |> BA 90C54400 MOV EDX,CrackMe_.0044C590 ; ASCII "Wrong Password"
0044C529 |. 8B83 E8020000 MOV EAX,DWORD PTR DS:[EBX+2E8]
0044C52F |. E8 2093FDFF CALL CrackMe_.00425854
0044C534 |. EB 10 JMP SHORT CrackMe_.0044C546
0044C536 |> BA 90C54400 MOV EDX,CrackMe_.0044C590 ; ASCII "Wrong Password"
Chequeo rápido
ABCD EFGHIJK
Clno iguonRn
; 1º dígito serial = C
; 4º dígito serial = o
; 9º dígito serial = o
; 2º dígito serial = l
; 5º dígito serial = espacio
; 11º dígito serial = R
; 8º dígito serial = u
; 10º dígito serial = n
; 3º dígito serial = n
; 6º dígito serial = i
; 12º dígito serial = n
; 7º dígito serial = g
Básicamente chequea la frase «Cool Running» de forma desordenada como se ve justo encima, siendo el password correcto «Clno iguonRn«. Os dejo el código para que lo analicéis.
Nº serie asociado a un nombre
De nuevo con las string references localizamos el código.
0044C648 /. 55 PUSH EBP
0044C649 |. 8BEC MOV EBP,ESP
0044C64B |. 83C4 F8 ADD ESP,-8
0044C64E |. 53 PUSH EBX
0044C64F |. 56 PUSH ESI
0044C650 |. 33C9 XOR ECX,ECX
0044C652 |. 894D F8 MOV [LOCAL.2],ECX
0044C655 |. 8BF0 MOV ESI,EAX
0044C657 |. 33C0 XOR EAX,EAX
0044C659 |. 55 PUSH EBP
0044C65A |. 68 83C74400 PUSH CrackMe_.0044C783
0044C65F |. 64:FF30 PUSH DWORD PTR FS:[EAX]
0044C662 |. 64:8920 MOV DWORD PTR FS:[EAX],ESP
0044C665 |. 33C0 XOR EAX,EAX
0044C667 |. 8945 FC MOV [LOCAL.1],EAX
0044C66A |. A1 80F84400 MOV EAX,DWORD PTR DS:[44F880] ; Eax = Nombre
0044C66F |. E8 0074FBFF CALL CrackMe_.00403A74
0044C674 |. 83F8 06 CMP EAX,6 ; Cmp lengh nombre con 6
0044C677 |. 0F8E F0000000 JLE CrackMe_.0044C76D ; Salta si <= 6
0044C67D |. A1 80F84400 MOV EAX,DWORD PTR DS:[44F880] ; Eax = Nombre
0044C682 |. E8 ED73FBFF CALL CrackMe_.00403A74
0044C687 |. 83F8 14 CMP EAX,14 ; Cmp lengh nombre con 20 (14h)
0044C68A |. 0F8D DD000000 JGE CrackMe_.0044C76D ; salta si >= 20
0044C690 |. A1 80F84400 MOV EAX,DWORD PTR DS:[44F880]
0044C695 |. E8 DA73FBFF CALL CrackMe_.00403A74
0044C69A |. 85C0 TEST EAX,EAX
0044C69C |. 7E 17 JLE SHORT CrackMe_.0044C6B5
0044C69E |. BA 01000000 MOV EDX,1
0044C6A3 |> 8B0D 80F84400 /MOV ECX,DWORD PTR DS:[44F880] ; Bucle in
0044C6A9 |. 0FB64C11 FF |MOVZX ECX,BYTE PTR DS:[ECX+EDX-1]
0044C6AE |. 014D FC |ADD [LOCAL.1],ECX ; Suma dig nombre y guarda en 12FBC4
0044C6B1 |. 42 |INC EDX
0044C6B2 |. 48 |DEC EAX
0044C6B3 |.^ 75 EE \JNZ SHORT CrackMe_.0044C6A3 ; Bucle out
0044C6B5 |> A1 84F84400 MOV EAX,DWORD PTR DS:[44F884] ; Eax = Compañia
0044C6BA |. E8 B573FBFF CALL CrackMe_.00403A74
0044C6BF |. 83F8 02 CMP EAX,2 ; Cmp lengh compañia con 2
0044C6C2 |. 7E 18 JLE SHORT CrackMe_.0044C6DC ; Salta si <= 2
0044C6C4 |. A1 84F84400 MOV EAX,DWORD PTR DS:[44F884] ; Eax = Compañia
0044C6C9 |. E8 A673FBFF CALL CrackMe_.00403A74
0044C6CE |. 83F8 08 CMP EAX,8 ; Cmp lengh compañia con 8
0044C6D1 |. 7D 09 JGE SHORT CrackMe_.0044C6DC ; Salta si >= 8
0044C6D3 |. 8B45 FC MOV EAX,[LOCAL.1] ; Eax = sum nombre
0044C6D6 |. 6BC0 02 IMUL EAX,EAX,2 ; Sum nombre * 2
0044C6D9 |. 8945 FC MOV [LOCAL.1],EAX
0044C6DC |> 68 98C74400 PUSH CrackMe_.0044C798 ; ASCII "I Love Cracking and "
0044C6E1 |. 8D55 F8 LEA EDX,[LOCAL.2]
0044C6E4 |. 8B45 FC MOV EAX,[LOCAL.1]
0044C6E7 |. E8 68B0FBFF CALL CrackMe_.00407754
0044C6EC |. FF75 F8 PUSH [LOCAL.2] ; sum del nombre
0044C6EF |. 68 B8C74400 PUSH CrackMe_.0044C7B8 ; ASCII " Girls ;)"
0044C6F4 |. B8 8CF84400 MOV EAX,CrackMe_.0044F88C
0044C6F9 |. BA 03000000 MOV EDX,3
0044C6FE |. E8 3174FBFF CALL CrackMe_.00403B34 ; Concatena 1º frase + sum nombre + 2ºfrase
0044C703 |. 33C0 XOR EAX,EAX
0044C705 |. 8945 FC MOV [LOCAL.1],EAX
0044C708 |. A1 88F84400 MOV EAX,DWORD PTR DS:[44F888] ; Eax = Serial
0044C70D |. E8 6273FBFF CALL CrackMe_.00403A74
0044C712 |. 8BD8 MOV EBX,EAX
0044C714 |. A1 8CF84400 MOV EAX,DWORD PTR DS:[44F88C]
0044C719 |. E8 5673FBFF CALL CrackMe_.00403A74
0044C71E |. 3BD8 CMP EBX,EAX ; Compara tamaño frase con tamaño serial
0044C720 |. 75 4B JNZ SHORT CrackMe_.0044C76D
0044C722 |. A1 88F84400 MOV EAX,DWORD PTR DS:[44F888]
0044C727 |. E8 4873FBFF CALL CrackMe_.00403A74
0044C72C |. 85C0 TEST EAX,EAX
0044C72E |. 7E 27 JLE SHORT CrackMe_.0044C757
0044C730 |. BA 01000000 MOV EDX,1
0044C735 |> 8B0D 88F84400 /MOV ECX,DWORD PTR DS:[44F888] ; Bucle in -->
0044C73B |. 0FB64C11 FF |MOVZX ECX,BYTE PTR DS:[ECX+EDX-1]
0044C740 |. 034D FC |ADD ECX,[LOCAL.1]
0044C743 |. 8B1D 8CF84400 |MOV EBX,DWORD PTR DS:[44F88C]
0044C749 |. 0FB65C13 FF |MOVZX EBX,BYTE PTR DS:[EBX+EDX-1] ; Compara dígito a dígito nuestro serial
0044C74E |. 2BCB |SUB ECX,EBX ; con la concatenación anterior
0044C750 |. 894D FC |MOV [LOCAL.1],ECX
0044C753 |. 42 |INC EDX
0044C754 |. 48 |DEC EAX
0044C755 |.^ 75 DE \JNZ SHORT CrackMe_.0044C735 ; <-- Bucle out
0044C757 |> 837D FC 00 CMP [LOCAL.1],0
0044C75B |. 75 10 JNZ SHORT CrackMe_.0044C76D ; Salta si algo ha ido mal
0044C75D |. 8B86 14030000 MOV EAX,DWORD PTR DS:[ESI+314]
0044C763 |. BA CCC74400 MOV EDX,CrackMe_.0044C7CC ; "You have found the correct Serial :)"
En resumen
Tamaño del nombre entre 7 y 19.
Tamaño de la compañía entre 3 y 7 aunque no interviene en el serial.
Suma los valores ascii de los dígitos del nombre y lo multiplica por 2.
Concatena «I Love Cracking and » + «sum del nombre» + » Girls ;)».
Checkbox
Para afrontar esta parte del reto vamos a usar una herramienta llamada Interactive Delphi Reconstructoro IDR. En su día la mejor herramienta era DEDE, pero IDR a mi parecer es algo más potente.
Básicamente IDR nos permite sin quebraderos de cabeza localizar el código del botón que comprueba la secuencia de checkboxes correcta. Cargamos el crackme en IDR y dentro de la pestaña «Units (F2)«, abajo del todo hacemos doble click sobre «F Crack» y vemos que nos muestra todos los controles del formulario. El botón que nos interesa se llama «SpeedButton3«.
Si hacemos doble click sobre el nos muestra el código que se muestra a continuación.
Como podéis apreciar, las checkboxes involucradas son la 3, 5, 6, 9, 11, 12, 13, 15, 19 y 20. Solo nos falta saber cuales se corresponden con esa numeración y aquí ya depende de cada uno, yo en su día saqué los números a mano mediante el orden de tabulación, pero ya que tenemos IDR, el nos va a dar la solución de una forma sencilla y rápida.
Vamos a la pestaña «Forms (F5)«, seleccionamos la opción Form y hacemos doble click sobre el formulario.
Veréis que aparece el formulario con todos los recursos, incluso los puedes modificar. Localizar los checkboxes ahora es un juego de niños.
Os dejo un vídeo.
Trackbar
De nuevo, con la ayuda de IDR, localizamos la parte del código y analizamos su funcionamiento. Esta parte es la más divertida ya que requiere de un keygen pero en vez de coger el número de serie de una caja de texto lo obtiene de 5 trackbars como muestra la siguiente imagen.
1) Siendo nuestro serial : 1 2 3 4 5
a b c d e
2) Realiza las operaciones matemáticas:
Round(((Cos(sqrt(b^3+5)) + (-sqrt(a+1)) + Ln(c*3+1) + (-sqrt(d+2)) + ((e*3)/2))+0.37)*1000))
3) Obtenemos un hash resultante de 5415
4) XORea los dígitos de la siguiente manera:
(5)35 xor 86 = B6
(4)34 xor 83 = BD
(1)31 xor 86 = B7
(5)35 xor 8D = B8
De modo que tenemos B6BDB7B8
5) Compara B6BDB7B8 con B5BAB2BA
6) Revertimos el XOR para obtener el hash bueno
B5 xor 86 = 36(6)
BA xor 83 = 33(3)
B2 xor 86 = 34(4)
BA xor 8D = 37(7)
Luego el hash bueno es 6347
7) Debemos hacer fuerza bruta buscando:
Round(((Cos(sqrt(b^3+5)) + (-sqrt(a+1)) + Ln(c*3+1) + (-sqrt(d+2)) + ((e*3)/2))+0.37)*1000)) = 6347
Para obtener los seriales válidos podemos hacer bucles recursivos hasta recorrer las 10^5 opciones posibles. Una forma de hacerlo en VBNet es la siguiente.
Dim tmp As Double
Dim an, bn, cn, dn, en As Integer
For an = 0 To 9
For bn = 0 To 9
For cn = 0 To 9
For dn = 0 To 9
For en = 0 To 9
tmp = Round(((Cos(Sqrt((Pow(bn, 3)) + 5)) + (-Sqrt(an + 1)) + Log(cn * 3 + 1) + (-Sqrt(dn + 2)) + ((en * 3) / 2) + 0.37) * 1000))
txtdebug.Text = "a-b-c-d-e = Hash || " & an & "-" & bn & "-" & cn & "-" & dn & "-" & en & " = " & tmp
If tmp = 6347 Then
ListBox1.Items.Add("Serial: " & an & bn & cn & dn & en)
End If
Application.DoEvents()
Next
Next
Next
Next
Next
Os dejo como siempre el crackme y el keygen en los enlaces.
Aquí tenemos un CrackMe diferente a lo que estamos acostumbrados, ya que en vez del típico número de serie asociado a un nombre la comprobación se realiza mediante checkboxes con una matriz de 7×3. El CrackMe está realizado en Visual C++ lo que facilita en parte encontrar rápidamente la rutina de comprobación.
Comprobación
004013C5 > /8B7424 10 MOV ESI,[DWORD SS:ESP+10] ;
004013C9 . |33FF XOR EDI,EDI
004013CB > |8B86 74304000 MOV EAX,[DWORD DS:ESI+403074] ;
004013D1 . |8BCB MOV ECX,EBX
004013D3 . |50 PUSH EAX
004013D4 . |E8 6F020000 CALL <JMP.&MFC42.#3092_CWnd::GetDlgItem> ; Lee el estado del checkbox
004013D9 . |8B48 20 MOV ECX,[DWORD DS:EAX+20]
004013DC . |6A 00 PUSH 0
004013DE . |6A 00 PUSH 0
004013E0 . |68 F0000000 PUSH 0F0
004013E5 . |51 PUSH ECX ;
004013E6 . |FFD5 CALL NEAR EBP
004013E8 . |3B86 20304000 CMP EAX,[DWORD DS:ESI+403020] ; Comprueba el estado del checkbox (1 activado 0 desactivado)
004013EE . |75 20 JNZ SHORT Matrix_C.00401410 ; Salto a chico malo
004013F0 . |47 INC EDI ; Incrementa contador
004013F1 . |83C6 04 ADD ESI,4
004013F4 . |83FF 07 CMP EDI,7 ; ¿Hemos terminado de leer las columnas? ¿contador = 7?
004013F7 .^|7C D2 JL SHORT Matrix_C.004013CB ; si terminan las columnas deja pasar
004013F9 . |8B4424 10 MOV EAX,[DWORD SS:ESP+10]
004013FD . |83C0 1C ADD EAX,1C ; contador de filas
00401400 . |83F8 54 CMP EAX,54 ; 3 filas = 1C+1C+1C=54
00401403 . |894424 10 MOV [DWORD SS:ESP+10],EAX
00401407 .^\7C BC JL SHORT Matrix_C.004013C5 ; ¿Hemos terminado de leer la fila? ¿contador = 54?
00401409 . 68 D8304000 PUSH Matrix_C.004030D8 ; ASCII "Registration successful!"
0040140E . EB 05 JMP SHORT Matrix_C.00401415
00401410 > 68 C8304000 PUSH Matrix_C.004030C8 ; ASCII "Not registered!"
En la rutina de comprobación se ve fácil un CMP EDI,7 por lo que podemos deducir que si el creador no se ha molestado mucho la comprobación se realiza de izquierda a derecha y de arriba hacia abajo.
Orden de comprobación
Tal es así que si ponemos un breakpoint en 4013E8, podemos ir sacando el estado correcto de los checkboxes sin mucha molestia.
Lo que más me ha gustado del capítulo es el guiño que han hecho a la RaspBerry PI. La escena transcurre al inicio del capítulo cuando uno de los protagonistas se conecta a un vehículo para hackearlo con una Raspi 3 Model B con varios pines del GPIO doblados. Os dejo unas capturas a continuación donde se aprecia el logo.
Captura del episodio
Captura del episodio
Captura del episodio
Captura del episodio
La conexión
Ya puestos, la conexión parece micro usb tipo B. Al fondo se ve lo que parece un puerto HDMI.
Captura del episodio
Captura del episodio
Captura del episodio
Cable comercial
La pifia
Lo que no me ha gustado es que al fijarme en el software que corre en el vehículo aparece un flamante OMNIBOOT.EXE con un aspecto parecido al símbolo de sistema, es decir, nos intentan vender que en un futuro el software que gestiona el vehículo es alguna variación de Windows, algo poco probable a día de hoy al menos. Con este tipo de predicciones no se puede escupir hacia arriba pero actualmente es más probable un nucleo tipo Linux u otro propietario al estilo Tesla.
Software del vehículo
Os dejo todas las capturas relevantes a continuación.
Hoy tenemos aquí un crackme de los que te hacen temblar las conexiones neuronales. Estamos acostumbrados al típico serial asociado a un nombre y a veces nos sorprenden.
El crackme data del año 2000, está realizado por aLoNg3x y lo tenéis colgado en crackmes.de. En crackmes.de también disponéis de una solución muy elegante realizada por cronos, pero que no acaba de saciar nuestro afán de descubrir todas las soluciones posibles.
El algoritmo
Abrimos el crackme con Olly y enseguida encontramos la rutina de comprobación junto con los mensajes de éxito y error. Os dejo la rutina comentada como siempre.
004012D7 |. 83C4 08 ADD ESP,8 ;
004012DA |. 09C0 OR EAX,EAX ;
004012DC |. /74 16 JE SHORT Zebrone.004012F4 ; Salta a Bad boy
004012DE |. |6A 00 PUSH 0 ; /Style = MB_OK|MB_APPLMODAL
004012E0 |. |68 26324000 PUSH Zebrone.00403226 ; |Title = "Great !!!"
004012E5 |. |68 30324000 PUSH Zebrone.00403230 ; |Text = "Congratulations, you have cracked the Zebra Crackme ver 1.1"
004012EA |. |FF75 08 PUSH [ARG.1] ; |hOwner = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
004012ED |. |E8 C6010000 CALL <JMP.&USER32.MessageBoxA> ; \MessageBoxA
004012F2 |. |EB 14 JMP SHORT Zebrone.00401308
004012F4 |> \6A 00 PUSH 0 ; /Style = MB_OK|MB_APPLMODAL
004012F6 |. 68 F8314000 PUSH Zebrone.004031F8 ; |Title = "Hmmmm :P"
004012FB |. 68 01324000 PUSH Zebrone.00403201 ; |Text = "Sorry... The Serial isn't correct :Þ"
00401300 |. FF75 08 PUSH [ARG.1] ; |hOwner = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
00401303 |. E8 B0010000 CALL <JMP.&USER32.MessageBoxA> ; \MessageBoxA
00401308 |> 31C0 XOR EAX,EAX
0040130A |. 40 INC EAX
0040130B |. EB 39 JMP SHORT Zebrone.00401346
0040130D |> 6A 00 PUSH 0 ; /Result = 0
0040130F |. FF75 08 PUSH [ARG.1] ; |hWnd = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
00401312 |. E8 89010000 CALL <JMP.&USER32.EndDialog> ; \EndDialog
00401317 |. 31C0 XOR EAX,EAX
00401319 |. 40 INC EAX
0040131A |. EB 2A JMP SHORT Zebrone.00401346
0040131C |> 6A 00 PUSH 0 ; /Style = MB_OK|MB_APPLMODAL
0040131E |. 68 40304000 PUSH Zebrone.00403040 ; |Title = "Zebra ver. 1.1"
00401323 |. 68 4F304000 PUSH Zebrone.0040304F ; |Text = "This is the 1.1 Zebra Crackme, Thanks to Quequero and Koma, to have said me a bug of the previous version. (It was due to an orrible cpu appoximation). As usually you cannot patch this .EXE, you've to find one of the many correct solut"...
00401328 |. FF75 08 PUSH [ARG.1] ; |hOwner = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
0040132B |. E8 88010000 CALL <JMP.&USER32.MessageBoxA> ; \MessageBoxA
00401330 |. 31C0 XOR EAX,EAX
00401332 |. 40 INC EAX
00401333 |. EB 11 JMP SHORT Zebrone.00401346
00401335 |> 6A 00 PUSH 0 ; /Result = 0
00401337 |. FF75 08 PUSH [ARG.1] ; |hWnd = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
0040133A |. E8 61010000 CALL <JMP.&USER32.EndDialog> ; \EndDialog
0040133F |. 31C0 XOR EAX,EAX
00401341 |. 40 INC EAX
00401342 |. EB 02 JMP SHORT Zebrone.00401346
00401344 |> 31C0 XOR EAX,EAX
00401346 |> C9 LEAVE
00401347 \. C2 1000 RETN 10
================================================================
0040134A /$ 55 PUSH EBP
0040134B |. 89E5 MOV EBP,ESP
0040134D |. 83EC 68 SUB ESP,68
00401350 |. FF75 08 PUSH [ARG.1] ; /x1
00401353 |. E8 78010000 CALL <JMP.&CRTDLL.atof> ; \atof
00401358 |. DD55 E8 FST QWORD PTR SS:[EBP-18]
0040135B |. 83EC 08 SUB ESP,8
0040135E |. DD1C24 FSTP QWORD PTR SS:[ESP]
00401361 |. E8 82010000 CALL <JMP.&CRTDLL.floor>
00401366 |. DD5D F8 FSTP QWORD PTR SS:[EBP-8]
00401369 |. FF75 0C PUSH [ARG.2] ; /x2
0040136C |. E8 5F010000 CALL <JMP.&CRTDLL.atof> ; \atof
00401371 |. DD55 D8 FST QWORD PTR SS:[EBP-28]
00401374 |. 83EC 08 SUB ESP,8
00401377 |. DD1C24 FSTP QWORD PTR SS:[ESP]
0040137A |. E8 69010000 CALL <JMP.&CRTDLL.floor>
0040137F |. 83C4 18 ADD ESP,18
00401382 |. DD55 F0 FST QWORD PTR SS:[EBP-10]
00401385 |. DC4D F8 FMUL QWORD PTR SS:[EBP-8]
00401388 |. D9EE FLDZ
0040138A |. DED9 FCOMPP ; floor(x1)*floor(x2)=0 ???
0040138C |. DFE0 FSTSW AX ; <<Store status word
0040138E |. 9E SAHF ; <<Store AH into FLAGS
0040138F |. 75 07 JNZ SHORT Zebrone.00401398 ; Si salta todo OK
00401391 |. 31C0 XOR EAX,EAX
00401393 |. E9 96000000 JMP Zebrone.0040142E ; Bad boy
00401398 |> DD45 F8 FLD QWORD PTR SS:[EBP-8] ; <<Floating point load
0040139B |. DC5D F0 FCOMP QWORD PTR SS:[EBP-10] ; x1 = x2 ???
0040139E |. DFE0 FSTSW AX ; <<Store status word
004013A0 |. 9E SAHF ; <<Store AH into FLAGS
004013A1 |. 75 07 JNZ SHORT Zebrone.004013AA ; Si salta todo OK
004013A3 |. 31C0 XOR EAX,EAX
004013A5 |. E9 84000000 JMP Zebrone.0040142E ; Bad boy
004013AA |> DD45 F8 FLD QWORD PTR SS:[EBP-8] ; <<Floating point load
004013AD |. DD5D C8 FSTP QWORD PTR SS:[EBP-38]
004013B0 |. D9E8 FLD1 ; Carga 1 en el stack
004013B2 |. DD55 C0 FST QWORD PTR SS:[EBP-40] ; <<Floating point store
004013B5 |. DC5D C8 FCOMP QWORD PTR SS:[EBP-38] ; x1 > 1 ???
004013B8 |. DFE0 FSTSW AX ; <<Store status word
004013BA |. 9E SAHF ; <<Store AH into FLAGS
004013BB |. 77 2D JA SHORT Zebrone.004013EA ; Si salta bad boy
004013BD |. DF2D 38304000 FILD QWORD PTR DS:[403038] ; <<Load integer>> 2540BE400 = 10^10
004013C3 |. DD55 B8 FST QWORD PTR SS:[EBP-48] ; <<Floating point store
004013C6 |. DC5D C8 FCOMP QWORD PTR SS:[EBP-38] ; x1 < 10^10 ???
004013C9 |. DFE0 FSTSW AX ; <<Store status word
004013CB |. 9E SAHF ; <<Store AH into FLAGS
004013CC |. 72 1C JB SHORT Zebrone.004013EA ; Si salta bad boy
004013CE |. DD45 F0 FLD QWORD PTR SS:[EBP-10] ; <<Floating point load
004013D1 |. DD5D B0 FSTP QWORD PTR SS:[EBP-50] ; <<Store and pop
004013D4 |. DD45 C0 FLD QWORD PTR SS:[EBP-40] ; <<Floating point load
004013D7 |. DC5D B0 FCOMP QWORD PTR SS:[EBP-50] ; x2 > 1 ???
004013DA |. DFE0 FSTSW AX ; <<Store status word
004013DC |. 9E SAHF ; <<Store AH into FLAGS
004013DD |. 77 0B JA SHORT Zebrone.004013EA ; Si salta bad boy
004013DF |. DD45 B8 FLD QWORD PTR SS:[EBP-48] ; <<Floating point load>> carga 10^10
004013E2 |. DC5D B0 FCOMP QWORD PTR SS:[EBP-50] ; x2 < 10^10 ???
004013E5 |. DFE0 FSTSW AX ; <<Store status word
004013E7 |. 9E SAHF ; <<Store AH into FLAGS
004013E8 |. 73 04 JNB SHORT Zebrone.004013EE ; Salta si menor
004013EA |> 31C0 XOR EAX,EAX
004013EC |. EB 40 JMP SHORT Zebrone.0040142E ; Bad boy
004013EE |> DD45 F8 FLD QWORD PTR SS:[EBP-8] ; <<Floating point load>> carga x1
004013F1 |. D9FE FSIN ; Sin(x1)
004013F3 |. DD5D A8 FSTP QWORD PTR SS:[EBP-58] ; <<Store and pop
004013F6 |. DD45 F0 FLD QWORD PTR SS:[EBP-10] ; <<Floating point load>> carga x2
004013F9 |. D9FE FSIN ; Sin(x2)
004013FB |. DD5D A0 FSTP QWORD PTR SS:[EBP-60] ; <<Store and pop
004013FE |. DD45 A8 FLD QWORD PTR SS:[EBP-58] ; <<Floating point load
00401401 |. DC4D A0 FMUL QWORD PTR SS:[EBP-60] ; Sin(x1) * Sin(x2)
00401404 |. DF2D 30304000 FILD QWORD PTR DS:[403030] ; <<Load integer>> 2386F26FC10000 = 10^16
0040140A |. DEC9 FMULP ST(1),ST ; 10^16 * (Sin(x1) * Sin(x2))
0040140C |. 83EC 08 SUB ESP,8
0040140F |. DD1C24 FSTP QWORD PTR SS:[ESP] ; <<Store and pop
00401412 |. E8 D1000000 CALL <JMP.&CRTDLL.floor>
00401417 |. 83C4 08 ADD ESP,8
0040141A |. DD5D 98 FSTP QWORD PTR SS:[EBP-68]
0040141D |. D9EE FLDZ ; <<Load 0.0 onto stack
0040141F |. DC5D 98 FCOMP QWORD PTR SS:[EBP-68] ; 10^16 * (Sin(x1) * Sin(x2)) = 0 ???
00401422 |. DFE0 FSTSW AX
00401424 |. 9E SAHF ; <<Store AH into FLAGS
00401425 |. 75 05 JNZ SHORT Zebrone.0040142C ; Si NO salta todo OK
00401427 |. 31C0 XOR EAX,EAX
00401429 |. 40 INC EAX
0040142A |. EB 02 JMP SHORT Zebrone.0040142E
0040142C |> 31C0 XOR EAX,EAX
0040142E |> C9 LEAVE
0040142F \. C3 RETN
La primera dificultad que podemos encontrar es que utiliza instrucciones FPU y coma flotante, ya que si no tenemos la vista entrenada nos puede resultar un engorro. Superado esto, la rutina de comprobación se puede resumir así:
x1 * x2 != 0
x1 != x2
x1 > 1 y < 10^10
x2 > 1 y < 10^10
Floor[10^16 * sin(x1) * sin(x2)] = 0
A priori no parece que tenga mucha dificultad, pero vamos a analizarlo más concienzudamente. Necesitamos que la parte entera del resultado de la multiplicación sea 0, algo que parece sencillo, pero fíjate que la constante 10^16 nos obliga a su vez, a que el resultado delseno sea muy pequeño, cosa que como comprobaréis limita mucho los resultados satisfactorios.
Repasando trigonometría
Cuando nos enseñó nuestro profesor la función del seno nos hizo el siguiente dibujo:
Partiendo de la circunferencia unitaria, podemos concluir que el seno de alpha es igual a la altura x. Como lo que nos interesa a nosotros es que el seno sea muy pequeño, en realidad estamos buscando que la x sea lo más pequeña posible. Llegamos entonces a la conclusión de que las soluciones para enteros entre 1 y 10^10 van a ser muy reducidas. Además nos percatamos que el ángulo alpha va a tener que estar muy proximo a 0º – 360 (0 – 2π) y a 180º (π). En el siguiente gráfico queda claro el estrecho margen en el que nos movemos.
Si habéis leído la solución de cronos ahora le encontraréis algo más de sentido a por que él utilizó fracciones continuas de π y cogió como resultado los numeradores más cercanos a 10^10, en su caso 245850922 y 411557987.
Como veis, el exponente negativo (^-17) debe ser mayor que el positivo (^16) para tener éxito.
Fuerza bruta
Lo que vamos a hacer a continuación es buscar todos los senos con exponente negativo ^-8 ó ^-9 de enteros entre 1 y 10^10, y vamos a cruzar los resultados para determinar todos los resultados válidos.
Preparamos el programa y le dejamos trabajar. En principio vamos a filtrar todos los resultados que tengan exponente negativo y luego ya aislaremos los que nos interesan. Esto lo hago por curiosidad.
La fuerza bruta nos arroja 63663resultados con exponente negativo entre ^-5 y ^-9, de los cuales solamente nos quedamos con 65, que son los comprendidos a exponentes de entre ^-8 y ^-9. Los números mágicos son los siguientes:
Los rojos son exponentes ^-9, el resto ^-8.
La mayoría de estos números solo valen con ciertas combinaciones, de hecho, ninguno vale para todos. Esto se debe, a parte del propio exponente, a que hay senos positivos y negativos y para hacer válido a un seno negativo hay que combinarlo con otro negativo. Esto último se debe únicamente a la interpretación que hace el crackme.
Finalmente cruzamos los resultados y obtenemos 44 combinaciones de seriales válidos que si obviamos repeticiones se reducen a la mitad.
Combinaciones válidas:
Conclusiones
Podemos concluir que para cada 10^10 enteros hay 22 soluciones posibles. Finalmente comentar que si aLoNg3x no hubiera puesto el límite en 10^10, habría soluciones infinitas.
Hoy analizamos Copycat, un thriller psicológico de 1995 que, como muchas películas de la época, no pudo resistirse a incorporar elementos tecnológicos que, vistos desde una perspectiva actual, nos sacan una sonrisa. Vamos a desmontar algunos gazapos tecnológicos y curiosidades relacionadas con los sistemas informáticos que aparecen en la película.
El escritorio de tres pantallas: ¿el futuro en 1995?
La protagonista, la Dra. Helen Hudson (Sigourney Weaver), trabaja en un escritorio con tres pantallas, algo futurista para la época. En 1995, esto no era tan común como hoy en día. Para lograrlo, probablemente necesitaría tres ordenadores conectados de forma independiente, ya que los sistemas operativos y hardware de la época no solían soportar múltiples monitores en una sola máquina. Esto plantea preguntas interesantes sobre la logística de su set-up: ¿Cómo sincronizaba su trabajo entre tres PCs?
Un detalle curioso es que, en algunas tomas, se distingue la marca Compaq en los equipos. Compaq era una de las compañías líderes en la fabricación de ordenadores personales durante los 90 y conocida por sus soluciones de alta calidad. Este dato refuerza la idea de que el set-up de Helen estaba diseñado para representar lo último en tecnología de la época, aunque hoy resulte un tanto rudimentario. La elección de Compaq no es casual: en ese momento, era sinónimo de equipos potentes, usados tanto en oficinas como en entornos domésticos avanzados.
Internet y la magia de los módems
En una escena, Helen navega por internet con lo que suponemos es un módem de 28.8 kbps (o como mucho, un flamante 33.6 kbps, tecnología de vanguardia allá por 1995). Hasta ahí, vale. Sin embargo, la fluidez de su conexión sorprende: carga archivos, recibe correos y no se queda esperando con una pantalla de “Conectando…”. Pero lo mejor llega cuando, estando conectada, ¡suena el teléfono! En la realidad, esto cortaría la conexión o comunicaría, a menos que tuviera dos líneas telefónicas (algo raro en domicilios particulares de la época) o algún dispositivo milagroso que no conocemos.
¿Qué sistema operativo usa?
Aunque no se distingue claramente el sistema operativo, vemos una interfaz gráfica con ventanas y una consola de comandos. Esto podría ser un guiño a Windows 3.1 o Windows 3.11, ya maduro en esa época aunque la interfaz no termina de encajar. Sin embargo, también podría ser una mezcla ficticia para hacer que el entorno luciera “tecnológico” sin comprometerse demasiado con la realidad. Detalle curioso: en los 90, las películas solían personalizar las interfaces para no tener problemas legales.
El email como el epicentro de la tecnología
En los 90, el email era el rey. En las películas, los escritorios siempre tenían un gran icono de correo (a menudo animado, porque lo cool siempre parpadeaba). En Copycat, Helen recibe un correo con un archivo AVI de unos 30 segundos, lo cual plantea otra duda técnica: ¿Cuánto espacio ocupaba ese archivo en 1995?
Un AVI de 30 segundos probablemente tendría una resolución baja (320×240 píxeles o menos) y una tasa de compresión eficiente para la época, pero aun así podría pesar entre 2 y 5 MB, dependiendo de la calidad del audio y vídeo. Eso hubiera supuesto una odisea por email, ya que los servidores de la época limitaban los adjuntos a unos pocos cientos de KB. ¿Quizás el villano usó un protocolo privado para saltarse las restricciones?
Tomorrow.AVI
Tras recibir un inquietante archivo AVI, la protagonista llama a la policía, lo que desencadena una conversación cargada de decisiones tecnológicas cuestionables:
«¿Cómo le han enviado esto?» / «Consiguiendo su dirección de internet»: El archivo es descrito como enviado a través de «su dirección de internet», un término extraño para la época en la que lo habitual habría sido referirse al correo electrónico. Esto refleja un intento de sonar sofisticado sin usar los términos correctos.
«¿No podríamos localizarlo?»: La respuesta de los policías es que no pueden rastrear el origen del archivo «a no ser que esté conectado». Sin embargo, incluso en 1995, las cabeceras de los emails contenían suficiente información para rastrear el servidor de origen, aunque la práctica era más rudimentaria que en la actualidad. Ignorar esto parece una licencia creativa del guion o un concepto equivocado de localizar asociándolo quizá a las llamadas telefónicas.
«Es demasiado grande para pasarlo a disco»: Aquí surge el principal obstáculo: el archivo AVI es considerado «demasiado grande» para transferirlo a un disquete de 3,5 pulgadas (con una capacidad máxima de 1,44 MB). Aunque esto tiene sentido desde una perspectiva técnica, resulta extraño que fuera posible enviarlo por email en primer lugar, dado que los servidores de correo de la época tenían limitaciones más estrictas que un disquete. Esto sugiere una inconsistencia en la lógica tecnológica de la escena.
«Lo pasaremos a vídeo»: Ante la imposibilidad de transferirlo a un disquete, la solución propuesta es convertir el archivo a un formato reproducible en un dispositivo analógico (probablemente una cinta VHS) para transportarlo físicamente. Aunque esta decisión es plausible dentro de las limitaciones tecnológicas de la época, omite soluciones más digitales, como volver a enviarlo por email (¿acaso la policía no tenía correo electrónico?). Además, surge la pregunta de por qué no se recurre a los forenses técnicos de la policía (o del FBI) para analizar el disco duro, quienes, curiosamente, no aparecen en ningún momento de la película.
«Oh, Dios. ¿Cómo sabes todas estas cosas?» / «Malgasté mi juventud en los salones de videojuegos»: Esta frase añade un toque humorístico, pero no tiene relación alguna con las habilidades necesarias para resolver el problema en cuestión. Más bien, refuerza la desconexión entre los diálogos y las acciones tecnológicas presentadas.
Conclusión
Copycat (1995) es un buen ejemplo de cómo el cine de los 90 abordaba la tecnología con una mezcla de admiración y confusión. Desde la exageración de tener tres monitores en el escritorio de Helen hasta la torpe gestión del archivo Tomorrow.AVI, la película refleja tanto las limitaciones tecnológicas de la época como las libertades creativas de los guionistas.
En el caso del archivo AVI, los personajes deciden que no se puede gestionar digitalmente y optan por convertirlo a vídeo analógico, ignorando soluciones más simples como volver a enviarlo por correo electrónico (suponiendo que fuera posible). Este detalle, combinado con la ausencia aparente de personal técnico en la policía, subraya una desconexión entre la narrativa y las capacidades reales de la tecnología, incluso para 1995.
Aunque estos detalles pueden parecer cómicos 30 años después, forman parte del encanto de un cine que imaginaba el futuro sin comprender del todo su presente. Más que errores, son un recordatorio de cómo la tecnología ha evolucionado y de cómo nuestra percepción de ella también lo ha hecho.
Hoy vamos a hacer algo diferente, vamos a hacer un keygen con la propia víctima. El término anglosajón para esto es «selfkeygening» y no es que esté muy bien visto por los reversers pero a veces nos puede sacar de apuros.
La víctima elegida es el Crackme 2 de LaFarge. Está hecho en ensamblador.
Injerto Light
Primeramente vamos a realizar un injerto light, con esto quiero decir que vamos a mostrar el serial bueno en la MessageBox de error.
Abrimos Olly y localizamos el código de comprobación del serial, tenemos suerte ya que el serial se muestra completamente y no se comprueba byte a byte ni cosas raras. En la imagen inferior os muestro el serial bueno para el nombre deurus y el mensaje de error. Como podeis observar el serial bueno se saca de memoria con la instrucción PUSH 406749 y el mensaje de error con PUSH 406306.
Si cambiamos el PUSH del serial por el de el mensaje de error ya lo tendriámos. Nos situamos encima del PUSH 406306 y pulsamos espacio, nos saldrá un diálogo con el push, lo modificamos y le damos a Assemble.
Ahora el crackme cada vez que le demos a Check it! nos mostrará:
Keygen a partir de la víctima
Pero no nos vamos a quedar ahí. Lo interesante sería que el serial bueno lo mostrara en la caja de texto del serial. Esto lo vamos a hacer con la función user32.SetDlgItemTextA.
Según dice la función necesitamos el handle de la ventana, el ID de la caja de texto y el string a mostrar. La primera y segunda la obtenemos fijándonos en la función GetDlgItemTextA que recoje el serial introducido por nosotros. La string es el PUSH 406749.
Con esto ya tenemos todo lo que necesitamos excepto el espacio dentro del código, en este caso lo lógico es parchear las MessageBox de error y acierto. Las seleccionamos, click derecho y Edit > Fill with NOPs.
Ahora escribimos el injerto.
Finalmente con Resource Hack cambiamos el aspecto del programa para que quede más profesional y listo. Tenemos pendiente hacer el keygen puro y duro, venga agur.
Estamos ante un ELF un poco más interesante que los vistos anteriormente. Básicamente porque es divertido y fácil encontrar la solución en el decompilado y quizá por evocar recuerdos de tiempos pretéritos.
El programa espera al menos 5 argumentos (nombre del programa y cuatro números enteros). Si se proporcionan los cuatro números enteros, se realizan los siguientes cálculos:
Esto es un sistema de ecuaciones lineales mondo y lirondo que debe ser resuelto para encontrar los valores correctos de qword_602148, qword_602150, qword_602158 y qword_602160. Una vez resuelto el sistema de ecuaciones se realiza la operación:
Un error que habitualmente cometo cuando me enfrento a todo tipo de retos (especialmente en CTFs) es empezar a procesar el fichero proporcionado con todo tipo de herramientas como pollo sin cabeza. En el caso que nos ocupa se proporcionaba un fichero de audio WAV que procesé hasta con 4 herramientas diferentes antes de tomar aire y decidir simplemente escuchar el audio. Al escucharlo me di cuenta de que se trataba de una marcación por tonos comúnmente conocido como DTMF (Dual-Tone Multi-Frequency).
Decodificar DTMF
Con una rápida búsqueda por la web encontré una sencilla herramienta realizada en python llamada dtmf-decoder con la que enseguida obtenemos resultados. La herramienta es bastante sencilla, simplemente parte la señal en trozos, calcula la FFT (Fast Fourier Transform) para obtener las amplitudes y las compara con las de los tonos DTMF. Hay que tener en cuenta que el audio entregado es muy limpio y eso facilita mucho las cosas.
El siguiente comando nos devuelve los números marcados.
Como era de esperar, los números obtenidos no son la solución final aunque en este caso enseguida damos con que el tipo de codificación es simple y llanamente ASCII.
AVISO: Debido a que este reto está en activo no publicaré a donde pertenece.
En este reto stego nos proporcionan un archivo MP3 y nos dan una pequeña pista con el título.
Inicialmente lo pasé con GoldWave y me fijé en el la parte de control en el SPECtrogram y en el SPECtrum, pero no conseguí ver nada. A punto de rendirme di con un programa online llamado SPEK, que me dio la respuesta al instante.
SPECtrum mostrado por Spek
Se puede apreciar una palabra que escrita en Inglés nos da la solución al reto.
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.
Few years ago, I made the tool ART (Android Reverse Engineering) for automate the process of reverse android program, but I have to admit that APK Studio is a great tool or just a great alternative. This crackme is for the challenge Mobile 1 of canyouhack.it.
Decompiling
The crackme is given at Google Play, so the first step is to install and recover the APK for decompiling. The latter, I leave to you. Open the victim with APK Studio and view the content of Mobile1.java
Analyzing the code, we view that the correct password is “The*********r”.