While Crackmes.de returns, I leave a couple of files for practice.

Mientras vuelve Crackmes.de, os dejo un par de archivos para practicar.

In the folder crackmes.de_mirror you have two files:

En la carpeta crackmes.de_mirror tienes dos archivos:


 password of files = deurus.info


Introducción Hoy vamos a enfrentarnos a cuatro retos de esteganografía relativamente sencillos, y digo relativamente, debido a que hay tantas
El reto Se nos proporciona la imagen anterior y se nos invita a resolver la ecuación para el menor entero
Si te interesa el mundo del hacking, ya sea como aficionado o como profesional, seguramente querrás estar al día de
Habitualmente suelo descargar shareware por diversión para evaluar de que manera protegen los programadores su software. Cada vez es más

Introducción

Hoy vamos a enfrentarnos a cuatro retos de esteganografía relativamente sencillos, y digo relativamente, debido a que hay tantas formas de esconder información en un archivo, ya sea imagen, vídeo o sonido, que afrontarlos suele ser desesperante. Las cuatro imágenes son aparentemente las mismas que la que se ve en portada.

Una buena práctica cuando te enfrentas a retos stego de tipo imagen es realizar una búsqueda inversa. Una búsqueda inversa consiste en buscar la imagen original mediante buscadores especializados como TinEye o Google. Si conseguimos la imagen original podemos resolver el reto simplemente comparando o nos puede dar una idea del tipo de modificación por su diferencia de tamaño, colores, degradados, etc.

Stego 1

Descargamos la imagen del reto. Se trata de una imagen JPEG de 526×263 y 76.6 KB (78445 bytes). Su hash SHA1 es «89aed5bbc3542bf5c60c4c318fe99cb1489f267a«

Realizamos una búsqueda inversa de la imagen y encontramos sin dificultad la imagen original mediante TinEye.

18-06-2016 07-27-02

Características de la imagen original:

  • Resolución: 526×263
  • Tamaño: 78447 bytes (76.6 KB)
  • Hash SHA1: 8924676317077fc07c252ddeec04bd2a0ecfdda4

Por lo que vemos ha cambiado el tamaño de 78447 bytes a 78445 bytes y su hash SHA1 tampoco coincide obviamente, lo que nos confirma que ha sufrido alguna modificación. Echando un vistazo con un editor hexadecimal te puedes volver loco por lo que vamos a realizar una comparación mediante la herramienta online DiffNow.

18-06-2016 07-40-51

Al realizar la comparación sale a relucir lo que buscamos. La clave es una simple cadena de texto.

Stego 2

Lo primero es realizar de nuevo la comparación.

ImagenTamañoSHA1
Original78447 bytes8924676317077fc07c252ddeec04bd2a0ecfdda4
imagen2.jpeg116386 bytes7641e3906f795c137269cefef29f30fcb9cb1b07

Como vemos, la imagen ha aumentado significativamente, de 76,6 KB a 113 KB. Cuando el aumento de tamaño llama la atención normalmente tenemos otro archivo insertado. Lo primero que suelo hacer yo es fijarme si ha sido modificado el final del archivo con un editor hexadecimal. Los bytes de cola de un archivo jpg/jpeg son FFD9 y en este caso no vemos modificación alguna al final del archivo. Si el archivo no está al final requiere realizar una búsqueda más exhaustiva. Para estos casos tengo una herramienta de creación propia que se llama Ancillary y que sirve para buscar cierto tipo de archivos dentro de otros como imágenes, documentos de Office, Open Office, pdf, etc. Ancillary encuentra otro jpg que es el que le daba el peso extra y que vemos a continuación. La clave es el título de la película (ojo a las mayúsculas/minúsculas).

image2_thumb

Stego 3

El tercer reto parece que tiene algún error debido a que el archivo coincide completamente con el original. Pienso que se ha subido la imagen original por error. Se lo he comunicado al admin del dominio y si algún día obtengo respuesta actualizaré la entrada.

ImagenTamañoSHA1
Original78447 bytes8924676317077fc07c252ddeec04bd2a0ecfdda4
imagen3.jpeg78447 bytes8924676317077fc07c252ddeec04bd2a0ecfdda4

Actualización 21/08/2016

Al parecer, la solución de este reto es llegar a la conclusión de que la imagen no está modificada. La respuesta del Administrador de la web así lo confirma.

desingsecurity [at] gmail [dot] com – Sorry about the delay, is precisely what is intended with that challenge, they can determine if the image is changed or not , the challenge was solved you . We’ll be equal way improving this point.

Greetings and Thanks

Stego 4

Lo primero es realizar de nuevo la comparación.

ImagenTamañoSHA1
Original78447 bytes8924676317077fc07c252ddeec04bd2a0ecfdda4
imagen4.jpeg93174 bytesa6329ea4562ef997e5afd067f3b53bdab4665851

Al igual que en el caso dos el tamaño ha aumentado significativamente de modo que miramos al final del archivo y esta vez si vemos que hay insertado unos bytes tras el final del jpg (recordemos FFD9)

18-06-2016 07-10-40

El archivo tiene pinta de ser una hoja de cálculo de Open Office o Libre Office según indica la palabra «spreadsheet«. Lo abrimos con Excel y tras analizar la maraña de datos enseguida vemos una clave que llama la atención.

  • Challengeland (El dominio ya no existe) [Archive]

Herramientas utilizadas

El reto

Se nos proporciona la imagen anterior y se nos invita a resolver la ecuación para el menor entero positivo que representa cada fruta. La solución del reto es concatenar «Flag-» a la suma de los valores de las tres frutas.

Análisis inicial

El enunciado es breve pero ya nos adelanta que existen varias soluciones y que además sólo quieren los números más pequeños que podamos encontrar.

Las frutas están muy bien y son muy sanas pero a nosotros se nos hace más sencillo plantear la ecuación con letras.

\begin{align}
&  \frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=4\\
\end{align}

Para arrojar algo de luz veamos la representación gráfica en 2D y 3D con la ayuda de Desmos.

3D

Las gráficas más que luz nos traen oscuridad de modo que preguntemos a ChatGPT.

ChatGPT

resuelve: (x/y+z)+(y/x+z)+(z/x+y)=4 para enteros positivos

Dado que las variables x, y, z son enteros positivos, podemos intentar encontrar una solución para la ecuación bajo estas condiciones. Sin embargo, encontrar una solución exacta puede ser complejo debido a la naturaleza no lineal de la ecuación. Aun así, podemos intentar algunos enfoques:

  • Prueba y error: Podemos probar diferentes combinaciones de valores enteros positivos para x, y, z y ver si satisfacen la ecuación.
  • Análisis de casos específicos: Podemos comenzar analizando casos más simples, como cuando dos de las variables son iguales, y luego ampliar nuestra búsqueda desde allí.
  • Análisis gráfico o numérico: Utilizando herramientas gráficas o numéricas, podríamos identificar posibles soluciones y luego verificar si son enteros positivos.

Voy a realizar un análisis numérico con un rango limitado de valores para ver si encontramos alguna solución que cumpla con las condiciones. Vamos a probar con valores de 1 a 10 para cada variable.

El análisis numérico para valores de en el rango de 1 a 10 no ha encontrado ninguna solución que satisfaga la ecuación. Esto sugiere que, dentro de este rango, no existen combinaciones de enteros positivos que cumplan con la ecuación.

Dado que la ecuación es bastante compleja y no lineal, es posible que las soluciones, si existen, se encuentren fuera del rango considerado o que requieran un enfoque diferente para ser identificadas. Si tienes un rango específico de valores en mente o si hay alguna otra restricción o contexto relevante, por favor házmelo saber para poder ajustar el análisis en consecuencia.

Básicamente nos está invitando a utilizar prueba y error para encontrar una solución, y el prueba y error de las matemáticas no es más que la fuerza bruta en programación.

El código

Partiendo del problema anterior dame un código en python que realice una comprobación recursiva de todas las variables con un rango de 1 a 999.

soluciones = []
rango_valores_x = range(1, 999)
rango_valores_y = range(1, 999)
rango_valores_z = range(1, 999)

for x in rango_valores_x:
    for y in rango_valores_y:
        for z in rango_valores_z:
            # Calculamos el valor de la expresión para cada combinación de x, y, z
            valor = x / (y + z) + y / (x + z) + z / (x + y)
            # Comprobamos si el valor es igual a 4 y agregamos la solución a la lista
            if abs(valor - 4) < 1e-6:  # Usamos una pequeña tolerancia para evitar errores de precisión
                soluciones.append((x, y, z))

print(soluciones)

Dejo resaltada la línea 12 del código ya que en ella reside el problema. Está comprobando con un margen de tolerancia de 10-6 ya que el resultado de las diferentes fracciones no da como resultado exacto 4. Esto es un problema ya que nosotros necesitamos que de exactamente 4 para validar los valores enteros de x, y y z. Pongo un ejemplo para el que se haya perdido con una solución válida para la tolerancia 10-6 siendo x=2, y=264 y z=993.

\begin{align}
&  \frac{2}{264+993}+\frac{264}{2+993}+\frac{993}{2+264}=4.000000429\\
\end{align}

En otras palabras, ChatGPT nos ha brindado una solución aproximada que no sirve para nuestro propósito. Seguimos probando con el código anterior quitando la tolerancia y con rangos mayores hasta que en 106 paro. Me acaba de quedar claro que con la fuerza bruta no vamos a ninguna parte, o más bien, no tenemos capacidad de computación para resolverlo de ésta manera.

¿Qué está pasando?

Lo que pasa es que estamos ante una ecuación algebraica de 3 incógnitas que deben ser enteros positivos cuya solución se alcanza mediante la teoría de curvas elípticas.

Curvas elípticas

Las curvas elípticas son fundamentales en matemáticas avanzadas, representadas por la ecuación y2=x3+Ax+B, donde A y B son constantes. Estas curvas son un punto de encuentro entre la geometría, la teoría de números y el álgebra, ofreciendo un campo rico para la exploración y el análisis. En este CTF, nos enfocaremos en los puntos racionales de las curvas elípticas. Utilizando el método tangente-secante, un procedimiento geométrico iterativo, buscaremos ampliar un conjunto finito de soluciones conocidas a la ecuación de la curva. Este método nos permite indagar en la estructura de las soluciones racionales, que potencialmente pueden ser infinitas. Además, estableceremos una conexión entre las soluciones enteras de las ecuaciones diofánticas y los puntos racionales en las curvas elípticas partiendo de la ecuación (1) especificada en el análisis inicial. A pesar de su aparente simplicidad, esta ecuación es conocida por presentar soluciones mínimas de gran tamaño.

Adecuación

Antes de nada, necesitamos saber el grado de la ecuación, de modo que planteamos la ecuación en forma polinómica estándar deshaciéndonos de los denominadores.

\begin{align}
\begin{split}
n(a+b)(b+c)(c+a)=a(a+b)(c+a)+b(b+c)(a+b)+c(c+a)(b+c)
\end{split}
\end{align}

Ahora necesitamos expandir y simplificar para llegar a la conclusión de que estamos ante una ecuación diofántica de grado 3. Este proceso es engorroso por la cantidad de términos a manejar así que vamos a utilizar Mathematica como software de respaldo para finalmente obtener el polinomio en la forma de Weierstrass según la ecuación 4.

\begin{align}
&  y^2=x^3+109x^2+224x\\
\end{align}

donde:

\begin{align}
x = \frac{−28(a+b+2c)}{(6a+6b−c)}\\
y = \frac{364(a−b)}{(6a+6b−c)}
\end{align}

Las relación entre la ecuación 3 y los puntos de la curva elíptica se establecen mediante la ecuación 4. Las transformaciones entre las soluciones (a, b, c) y los puntos (x, y) en la curva elíptica vienen dados por las ecuaciones 5 y 6. Con estas transformaciones, cada solución de la ecuación diofántica se puede representar como un punto en la curva elíptica, y las operaciones de suma de puntos en la curva elíptica pueden usarse para encontrar nuevas soluciones de la ecuación diofántica.

Mathematica

El código que tenéis a continuación pertenece al gran trabajo de Aditi Kulkarni [7], que además nos da el resultado para cualquier valor de n. Ojo porque para n=4 el resultado tiene 81 dígitos, para n=6 tiene 134, para n=10 tiene 190 y para n=12 asciende a 2707 dígitos.

(* Asignar un valor numérico a n *)
n = 4;
(* Definir la ecuación de una curva elíptica en términos de n *)
curve4 = y^2 == x^3 + (4*n^2 + 12*n - 3)*x^2 + 32*(n + 3)*x;
(* Encontrar un punto racional en la curva que no sea (4,0) *)
P4 = {x, y} /. First[FindInstance[curve4 && x != 4 && y != 0, {x, y}, Integers]];
(* Función para calcular la pendiente entre dos puntos en la curva, 
   o la derivada en el punto si son iguales *)
Slope4[{x1_, y1_}, {x2_, y2_}] := 
  If[x1 == x2 && y1 == y2, 
     ImplicitD[curve4, y, x] /. {x -> x1, y -> y1}, 
     (y2 - y1)/(x2 - x1)];
(* Función para calcular la intersección en y de la línea entre dos puntos 
   o la tangente en el punto si son iguales *)
Intercept4[{x1_, y1_}, {x2_, y2_}] := y1 - Slope4[{x1, y1}, {x2, y2}]*x1; 
(* Función para encontrar el siguiente punto racional en la curva *)
nextRational4[{x1_, y1_}, {x2_, y2_}] := 
  {Slope4[{x1, y1}, {x2, y2}]^2 - CoefficientList[curve4[[2]], x][[3]] - x1 - x2, 
   -Slope4[{x1, y1}, {x2, y2}]^3 + Slope4[{x1, y1}, {x2, y2}]*(CoefficientList[curve4[[2]], x][[3]] + x1 + x2) - Intercept4[{x1, y1}, {x2, y2}]};
(* Función para convertir un punto en la curva elíptica a una solución diofántica *)
ellipticToDiophantine[n_, {x_, y_}] := 
  {(8*(n + 3) - x + y)/(2*(4 - x)*(n + 3)), 
   (8*(n + 3) - x - y)/(2*(4 - x)*(n + 3)), 
   (-4*(n + 3) - (n + 2)*x)/((4 - x)*(n + 3))};
(* Usar nextRational4 para iterar desde P4 hasta encontrar una solución 
   válida y positiva para la ecuación diofántica *)
sol4 = ellipticToDiophantine[n, 
   NestWhile[nextRational4[#, P4] &, P4, 
     ! AllTrue[ellipticToDiophantine[n, #], Function[item, item > 0]] &]];
(* Escalar la solución para obtener enteros mínimos *)
MinSol4 = sol4*(LCM @@ Denominator[sol4])
(* Suma de las tres variables*)
Total[MinSol4]

Solución

Concatenando Flag- con el resultado de Mathematica tenemos la ansiada flag.

Flag-195725546580804863527010379187516702463973843196699016314931210363268850137105614

Conclusiones

ChatGPT ha demostrado ser eficaz en el análisis y la resolución de problemas, siempre que se le proporcione el contexto adecuado. Sin embargo, es importante ser conscientes de que la respuesta proporcionada puede ser aproximada, especialmente si la solución requiere una gran cantidad de recursos computacionales. Por ejemplo, al trabajar con una ecuación diofántica y valores específicos para (x) e (y), ChatGPT puede ayudar a calcular puntos como (P), (2P), (3P), etc., pero hay que tener en cuenta que los resultados para estos puntos pueden ser estimaciones.

Finalmente, os invito a leer la solución de Mingliang Z. [4], en la que se resuelve el problema por completo y de forma muy detallada.

Enlaces

Si te interesa el mundo del hacking, ya sea como aficionado o como profesional, seguramente querrás estar al día de las últimas novedades, técnicas y herramientas que se utilizan en este campo. Para ello, una buena opción es suscribirte a alguna de las revistas sobre hacking que existen en el mercado. Estas publicaciones te ofrecen información de calidad, actualizada y veraz sobre todo lo relacionado con la seguridad informática, el pentesting, el hacking ético y otros temas de interés. En este artículo te presentamos cinco revistas sobre hacking que deberías leer si quieres ampliar tus conocimientos y habilidades en este ámbito.

Es una de las revistas más populares y reconocidas sobre hacking. Se publica desde el año 2005 y cuenta con una amplia comunidad de lectores y colaboradores. Su contenido abarca desde los aspectos más básicos hasta los más avanzados del hacking, con artículos, tutoriales, entrevistas, casos de estudio y reseñas de herramientas. Además, tiene ediciones especiales dedicadas a temas específicos como el hacking web, el hacking móvil, el malware o el IoT. Puedes acceder a su versión digital o impresa desde su página web.

hakin9.org

Es una revista electrónica sobre hacking que se publica desde el año 1985. Tiene una periodicidad irregular y se distribuye de forma gratuita a través de Internet. Sus contenidos son principalmente artículos técnicos sobre hacking, seguridad informática, programación, etc. También incluye algunos textos de ficción y humor relacionados con el hacking. Es una revista muy apreciada por la comunidad hacker por su calidad y originalidad.

phrack.org

2600: The Hacker Quarterly es una revista legendaria entre los hackers, ya que se publica desde 1984 y ha sido testigo de la evolución de este movimiento a lo largo de las décadas. Su nombre hace referencia a la frecuencia de 2600 Hz que se usaba para hackear las líneas telefónicas en los años 60 y 70. En sus páginas encontrarás artículos sobre hacking, seguridad informática, cultura hacker, activismo digital y mucho más.

2600.com

Revista especializada en pentesting o pruebas de penetración, una de las ramas más importantes del hacking ético. Su contenido está dirigido tanto a principiantes como a expertos en esta materia, con artículos prácticos, teóricos y metodológicos sobre cómo realizar pentests eficaces y profesionales. También incluye entrevistas a destacados pentesters, reseñas de herramientas y reportajes sobre proyectos y eventos relevantes. Puedes descargar su versión digital desde su página web o comprar su versión impresa.

pentestmag.com

Es una revista para los entusiastas del hacking creativo, es decir, aquellos que usan la tecnología para crear proyectos innovadores y divertidos. En sus páginas encontrarás ideas, tutoriales, consejos y reseñas sobre temas como la electrónica, la robótica, el hardware libre, el software libre, el internet de las cosas, la impresión 3D y mucho más..

hackspace.raspberrypi.com