VideoTutorial – Keygen y desempacado UPX para el Crackme#1 de ECloZion

Solución al Crackme Zebra 1.1 de aLoNg3x

Introducción
Hoy tenemos aquí un crackme de los que te hacen temblar las conexiones neuronales. Estamos acostumbrados al típico serial asociado a un nombre y a veces nos sorprenden.
El crackme data del año 2000, está realizado por aLoNg3x y lo tenéis colgado en crackmes.de. En crackmes.de también disponéis de una solución muy elegante realizada por cronos, pero que no acaba de saciar nuestro afán de descubrir todas las soluciones posibles.
El algoritmo
Abrimos el crackme con Olly y enseguida encontramos la rutina de comprobación junto con los mensajes de éxito y error. Os dejo la rutina comentada como siempre.
004012D7 |. 83C4 08 ADD ESP,8 ;
004012DA |. 09C0 OR EAX,EAX ;
004012DC |. /74 16 JE SHORT Zebrone.004012F4 ; Salta a Bad boy
004012DE |. |6A 00 PUSH 0 ; /Style = MB_OK|MB_APPLMODAL
004012E0 |. |68 26324000 PUSH Zebrone.00403226 ; |Title = "Great !!!"
004012E5 |. |68 30324000 PUSH Zebrone.00403230 ; |Text = "Congratulations, you have cracked the Zebra Crackme ver 1.1"
004012EA |. |FF75 08 PUSH [ARG.1] ; |hOwner = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
004012ED |. |E8 C6010000 CALL <JMP.&USER32.MessageBoxA> ; \MessageBoxA
004012F2 |. |EB 14 JMP SHORT Zebrone.00401308
004012F4 |> \6A 00 PUSH 0 ; /Style = MB_OK|MB_APPLMODAL
004012F6 |. 68 F8314000 PUSH Zebrone.004031F8 ; |Title = "Hmmmm :P"
004012FB |. 68 01324000 PUSH Zebrone.00403201 ; |Text = "Sorry... The Serial isn't correct :Þ"
00401300 |. FF75 08 PUSH [ARG.1] ; |hOwner = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
00401303 |. E8 B0010000 CALL <JMP.&USER32.MessageBoxA> ; \MessageBoxA
00401308 |> 31C0 XOR EAX,EAX
0040130A |. 40 INC EAX
0040130B |. EB 39 JMP SHORT Zebrone.00401346
0040130D |> 6A 00 PUSH 0 ; /Result = 0
0040130F |. FF75 08 PUSH [ARG.1] ; |hWnd = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
00401312 |. E8 89010000 CALL <JMP.&USER32.EndDialog> ; \EndDialog
00401317 |. 31C0 XOR EAX,EAX
00401319 |. 40 INC EAX
0040131A |. EB 2A JMP SHORT Zebrone.00401346
0040131C |> 6A 00 PUSH 0 ; /Style = MB_OK|MB_APPLMODAL
0040131E |. 68 40304000 PUSH Zebrone.00403040 ; |Title = "Zebra ver. 1.1"
00401323 |. 68 4F304000 PUSH Zebrone.0040304F ; |Text = "This is the 1.1 Zebra Crackme, Thanks to Quequero and Koma, to have said me a bug of the previous version. (It was due to an orrible cpu appoximation). As usually you cannot patch this .EXE, you've to find one of the many correct solut"...
00401328 |. FF75 08 PUSH [ARG.1] ; |hOwner = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
0040132B |. E8 88010000 CALL <JMP.&USER32.MessageBoxA> ; \MessageBoxA
00401330 |. 31C0 XOR EAX,EAX
00401332 |. 40 INC EAX
00401333 |. EB 11 JMP SHORT Zebrone.00401346
00401335 |> 6A 00 PUSH 0 ; /Result = 0
00401337 |. FF75 08 PUSH [ARG.1] ; |hWnd = 0011067C ('Zebra - aLoNg3x - 1.1 Version',class='#32770')
0040133A |. E8 61010000 CALL <JMP.&USER32.EndDialog> ; \EndDialog
0040133F |. 31C0 XOR EAX,EAX
00401341 |. 40 INC EAX
00401342 |. EB 02 JMP SHORT Zebrone.00401346
00401344 |> 31C0 XOR EAX,EAX
00401346 |> C9 LEAVE
00401347 \. C2 1000 RETN 10
================================================================
0040134A /$ 55 PUSH EBP
0040134B |. 89E5 MOV EBP,ESP
0040134D |. 83EC 68 SUB ESP,68
00401350 |. FF75 08 PUSH [ARG.1] ; /x1
00401353 |. E8 78010000 CALL <JMP.&CRTDLL.atof> ; \atof
00401358 |. DD55 E8 FST QWORD PTR SS:[EBP-18]
0040135B |. 83EC 08 SUB ESP,8
0040135E |. DD1C24 FSTP QWORD PTR SS:[ESP]
00401361 |. E8 82010000 CALL <JMP.&CRTDLL.floor>
00401366 |. DD5D F8 FSTP QWORD PTR SS:[EBP-8]
00401369 |. FF75 0C PUSH [ARG.2] ; /x2
0040136C |. E8 5F010000 CALL <JMP.&CRTDLL.atof> ; \atof
00401371 |. DD55 D8 FST QWORD PTR SS:[EBP-28]
00401374 |. 83EC 08 SUB ESP,8
00401377 |. DD1C24 FSTP QWORD PTR SS:[ESP]
0040137A |. E8 69010000 CALL <JMP.&CRTDLL.floor>
0040137F |. 83C4 18 ADD ESP,18
00401382 |. DD55 F0 FST QWORD PTR SS:[EBP-10]
00401385 |. DC4D F8 FMUL QWORD PTR SS:[EBP-8]
00401388 |. D9EE FLDZ
0040138A |. DED9 FCOMPP ; floor(x1)*floor(x2)=0 ???
0040138C |. DFE0 FSTSW AX ; <<Store status word
0040138E |. 9E SAHF ; <<Store AH into FLAGS
0040138F |. 75 07 JNZ SHORT Zebrone.00401398 ; Si salta todo OK
00401391 |. 31C0 XOR EAX,EAX
00401393 |. E9 96000000 JMP Zebrone.0040142E ; Bad boy
00401398 |> DD45 F8 FLD QWORD PTR SS:[EBP-8] ; <<Floating point load
0040139B |. DC5D F0 FCOMP QWORD PTR SS:[EBP-10] ; x1 = x2 ???
0040139E |. DFE0 FSTSW AX ; <<Store status word
004013A0 |. 9E SAHF ; <<Store AH into FLAGS
004013A1 |. 75 07 JNZ SHORT Zebrone.004013AA ; Si salta todo OK
004013A3 |. 31C0 XOR EAX,EAX
004013A5 |. E9 84000000 JMP Zebrone.0040142E ; Bad boy
004013AA |> DD45 F8 FLD QWORD PTR SS:[EBP-8] ; <<Floating point load
004013AD |. DD5D C8 FSTP QWORD PTR SS:[EBP-38]
004013B0 |. D9E8 FLD1 ; Carga 1 en el stack
004013B2 |. DD55 C0 FST QWORD PTR SS:[EBP-40] ; <<Floating point store
004013B5 |. DC5D C8 FCOMP QWORD PTR SS:[EBP-38] ; x1 > 1 ???
004013B8 |. DFE0 FSTSW AX ; <<Store status word
004013BA |. 9E SAHF ; <<Store AH into FLAGS
004013BB |. 77 2D JA SHORT Zebrone.004013EA ; Si salta bad boy
004013BD |. DF2D 38304000 FILD QWORD PTR DS:[403038] ; <<Load integer>> 2540BE400 = 10^10
004013C3 |. DD55 B8 FST QWORD PTR SS:[EBP-48] ; <<Floating point store
004013C6 |. DC5D C8 FCOMP QWORD PTR SS:[EBP-38] ; x1 < 10^10 ???
004013C9 |. DFE0 FSTSW AX ; <<Store status word
004013CB |. 9E SAHF ; <<Store AH into FLAGS
004013CC |. 72 1C JB SHORT Zebrone.004013EA ; Si salta bad boy
004013CE |. DD45 F0 FLD QWORD PTR SS:[EBP-10] ; <<Floating point load
004013D1 |. DD5D B0 FSTP QWORD PTR SS:[EBP-50] ; <<Store and pop
004013D4 |. DD45 C0 FLD QWORD PTR SS:[EBP-40] ; <<Floating point load
004013D7 |. DC5D B0 FCOMP QWORD PTR SS:[EBP-50] ; x2 > 1 ???
004013DA |. DFE0 FSTSW AX ; <<Store status word
004013DC |. 9E SAHF ; <<Store AH into FLAGS
004013DD |. 77 0B JA SHORT Zebrone.004013EA ; Si salta bad boy
004013DF |. DD45 B8 FLD QWORD PTR SS:[EBP-48] ; <<Floating point load>> carga 10^10
004013E2 |. DC5D B0 FCOMP QWORD PTR SS:[EBP-50] ; x2 < 10^10 ???
004013E5 |. DFE0 FSTSW AX ; <<Store status word
004013E7 |. 9E SAHF ; <<Store AH into FLAGS
004013E8 |. 73 04 JNB SHORT Zebrone.004013EE ; Salta si menor
004013EA |> 31C0 XOR EAX,EAX
004013EC |. EB 40 JMP SHORT Zebrone.0040142E ; Bad boy
004013EE |> DD45 F8 FLD QWORD PTR SS:[EBP-8] ; <<Floating point load>> carga x1
004013F1 |. D9FE FSIN ; Sin(x1)
004013F3 |. DD5D A8 FSTP QWORD PTR SS:[EBP-58] ; <<Store and pop
004013F6 |. DD45 F0 FLD QWORD PTR SS:[EBP-10] ; <<Floating point load>> carga x2
004013F9 |. D9FE FSIN ; Sin(x2)
004013FB |. DD5D A0 FSTP QWORD PTR SS:[EBP-60] ; <<Store and pop
004013FE |. DD45 A8 FLD QWORD PTR SS:[EBP-58] ; <<Floating point load
00401401 |. DC4D A0 FMUL QWORD PTR SS:[EBP-60] ; Sin(x1) * Sin(x2)
00401404 |. DF2D 30304000 FILD QWORD PTR DS:[403030] ; <<Load integer>> 2386F26FC10000 = 10^16
0040140A |. DEC9 FMULP ST(1),ST ; 10^16 * (Sin(x1) * Sin(x2))
0040140C |. 83EC 08 SUB ESP,8
0040140F |. DD1C24 FSTP QWORD PTR SS:[ESP] ; <<Store and pop
00401412 |. E8 D1000000 CALL <JMP.&CRTDLL.floor>
00401417 |. 83C4 08 ADD ESP,8
0040141A |. DD5D 98 FSTP QWORD PTR SS:[EBP-68]
0040141D |. D9EE FLDZ ; <<Load 0.0 onto stack
0040141F |. DC5D 98 FCOMP QWORD PTR SS:[EBP-68] ; 10^16 * (Sin(x1) * Sin(x2)) = 0 ???
00401422 |. DFE0 FSTSW AX
00401424 |. 9E SAHF ; <<Store AH into FLAGS
00401425 |. 75 05 JNZ SHORT Zebrone.0040142C ; Si NO salta todo OK
00401427 |. 31C0 XOR EAX,EAX
00401429 |. 40 INC EAX
0040142A |. EB 02 JMP SHORT Zebrone.0040142E
0040142C |> 31C0 XOR EAX,EAX
0040142E |> C9 LEAVE
0040142F \. C3 RETN
La primera dificultad que podemos encontrar es que utiliza instrucciones FPU y coma flotante, ya que si no tenemos la vista entrenada nos puede resultar un engorro. Superado esto, la rutina de comprobación se puede resumir así:
- x1 * x2 != 0
- x1 != x2
- x1 > 1 y < 10^10
- x2 > 1 y < 10^10
- Floor[10^16 * sin(x1) * sin(x2)] = 0
A priori no parece que tenga mucha dificultad, pero vamos a analizarlo más concienzudamente. Necesitamos que la parte entera del resultado de la multiplicación sea 0, algo que parece sencillo, pero fíjate que la constante 10^16 nos obliga a su vez, a que el resultado del seno sea muy pequeño, cosa que como comprobaréis limita mucho los resultados satisfactorios.
Repasando trigonometría
Cuando nos enseñó nuestro profesor la función del seno nos hizo el siguiente dibujo:
Partiendo de la circunferencia unitaria, podemos concluir que el seno de alpha es igual a la altura x. Como lo que nos interesa a nosotros es que el seno sea muy pequeño, en realidad estamos buscando que la x sea lo más pequeña posible. Llegamos entonces a la conclusión de que las soluciones para enteros entre 1 y 10^10 van a ser muy reducidas. Además nos percatamos que el ángulo alpha va a tener que estar muy proximo a 0º – 360 (0 – 2π) y a 180º (π). En el siguiente gráfico queda claro el estrecho margen en el que nos movemos.
Si habéis leído la solución de cronos ahora le encontraréis algo más de sentido a por que él utilizó fracciones continuas de π y cogió como resultado los numeradores más cercanos a 10^10, en su caso 245850922 y 411557987.
Análisis operacional
Vamos a analizar un ejemplo operacional.
sin( x rad) sin(245850922) = 6,1180653830011163142712109862972e-9 sin(411557987) = 2,536716051963676479648989773448e-9 sin(245850922)*sin(411557987) = 1,5519794664022230015882605365808e-17 10^16 * 1,5519794664022230015882605365808e-17 = 0,15519794664022230015882605365808 Floor(0,15519794664022230015882605365808) = 0
Como veis, el exponente negativo (^-17) debe ser mayor que el positivo (^16) para tener éxito.
Fuerza bruta
Lo que vamos a hacer a continuación es buscar todos los senos con exponente negativo ^-8 ó ^-9 de enteros entre 1 y 10^10, y vamos a cruzar los resultados para determinar todos los resultados válidos.
Preparamos el programa y le dejamos trabajar. En principio vamos a filtrar todos los resultados que tengan exponente negativo y luego ya aislaremos los que nos interesan. Esto lo hago por curiosidad.
La fuerza bruta nos arroja 63663 resultados con exponente negativo entre ^-5 y ^-9, de los cuales solamente nos quedamos con 65, que son los comprendidos a exponentes de entre ^-8 y ^-9. Los números mágicos son los siguientes:
Los rojos son exponentes ^-9, el resto ^-8.
La mayoría de estos números solo valen con ciertas combinaciones, de hecho, ninguno vale para todos. Esto se debe, a parte del propio exponente, a que hay senos positivos y negativos y para hacer válido a un seno negativo hay que combinarlo con otro negativo. Esto último se debe únicamente a la interpretación que hace el crackme.
Finalmente cruzamos los resultados y obtenemos 44 combinaciones de seriales válidos que si obviamos repeticiones se reducen a la mitad.
Combinaciones válidas:
Conclusiones
Podemos concluir que para cada 10^10 enteros hay 22 soluciones posibles. Finalmente comentar que si aLoNg3x no hubiera puesto el límite en 10^10, habría soluciones infinitas.
Links
- Crackme
- Archivos del proyecto (programas, logs…)
- Solución de cronos
- Instrucciones FPU
- Fracción continua o cual es la mejor aproximación (Gaussianos)
- Circunferencia unitaria (Video)
- Función Seno
- Función Floor
ThisIsLegal.com – Realistic Challenge 3

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.
Introducción
Analizando a la víctima
¡Funcionó!, el enlace ha pasado el filtro.
¿Cómo podemos aprovechar esto?, pués la forma más común es «XSS cross site scripting«. Veamos una prueba. Con el parámetro oculto otra vez en 0 mandamos el siguiente enlace y reto superado.
Links
Reversing – Nosotros y ChatGPT contra un ELF desde Windows

Intro
Antes que nada, es importante saber que un archivo ELF en Linux es equivalente a un archivo EXE en Windows. Dicho esto, es bastante común encontrarnos con ejecutables ELF en diversos CTFs (Capture The Flag), y a menudo representan un desafío para aquellos no familiarizados con el uso cotidiano de Linux. Sin embargo, tengo una buena noticia si no eres aficionado de Linux: existen herramientas que permiten realizar un análisis preliminar para determinar si es necesario abordar el problema desde Linux o si podemos resolverlo directamente desde Windows. Estas herramientas facilitan una transición más cómoda para los usuarios de Windows, permitiéndoles interactuar eficazmente con archivos ELF.
ELF
Un archivo ELF (Executable and Linkable Format) es un formato común de archivo para archivos ejecutables, código objeto, bibliotecas compartidas y volcados de memoria en sistemas basados en Unix, como Linux. Es el estándar de formato de archivo para programas compilados y enlazados en este tipo de sistemas operativos.
La cabecera de un archivo ELF es una estructura de datos al comienzo del archivo que proporciona información esencial sobre el contenido y la forma de procesar el archivo. Esta cabecera es fundamental para que el sistema operativo y otros programas puedan interpretar correctamente el archivo ELF. Aquí están los componentes clave de la cabecera de un archivo ELF:
- Identificación (e_ident): Esta sección incluye la magia del archivo ELF, representada por los primeros cuatro bytes
0x7F 'E' 'L' 'F'. También incluye información como la clase del archivo (32 o 64 bits), la codificación de datos (endianness), y la versión del formato ELF. - Tipo (e_type): Indica el tipo de archivo ELF, como EXEC (ejecutable), DYN (biblioteca compartida), REL (relocalizable), entre otros.
- Máquina (e_machine): Especifica la arquitectura de hardware para la cual se diseñó el archivo, por ejemplo, x86, ARM.
- Versión (e_version): La versión del formato ELF, generalmente establecida en 1.
- Punto de Entrada (e_entry): La dirección de memoria virtual donde comienza la ejecución del proceso.
- Desplazamiento del Program Header (e_phoff): Indica dónde comienza el encabezado del programa en el archivo.
- Desplazamiento del Section Header (e_shoff): Indica dónde comienza el encabezado de la sección en el archivo.
- Flags (e_flags): Banderas específicas del procesador.
- Tamaño de esta cabecera (e_ehsize): El tamaño de la cabecera ELF.
- Tamaño del Program Header (e_phentsize): El tamaño de una entrada del encabezado del programa.
- Número de entradas del Program Header (e_phnum): El número total de entradas en el encabezado del programa.
- Tamaño del Section Header (e_shentsize): El tamaño de una entrada del encabezado de la sección.
- Número de entradas del Section Header (e_shnum): El número total de entradas en el encabezado de la sección.
- Índice del Section Header Table (e_shstrndx): El índice del encabezado de la sección que contiene los nombres de las secciones.
El reto
Se nos proporciona un fichero de 20KB que rápidamente catalogamos como ELF.

Para realizar un análisis preliminar siempre uso DogBolt, que no es más que un decompilador online con la ventaja de que usa varios motores y de esta forma casi siempre te da una decompilación aceptable. La versión actual tiene disponibles 11 motores y además es open source, ¿Qué más se puede pedir?

Echamos un vistazo y enseguida encontramos algo interesante.

La flag parece codificada de modo que vamos a indagar acerca de la función FUN_0010285d

Dentro de la función FUN_0010285d vemos que nuestra flag codificada la procesa la función FUN_00102752

Aquí os diría que depende de vuestra experiencia en programación veríais que se está procesando byte a byte la cadena de entrada (param_1) y haciendo a cada byte un XOR (^) con el param_3 (que es 1 según vemos en la llamada de la función FUN_00102752), pero en estos tiempos que corren vamos a preguntar a ChatGPT que opina.
ChatGPT
Le pido a ChapGPT que me analice el código y me responde:
Este código en C define una función llamada
FUN_00102752que realiza una operación de XOR (exclusivo OR) byte a byte sobre un bloque de memoria. La función toma tres parámetros:
long param_1: Este parámetro es tratado como una dirección de memoria. Se utiliza como la base de un bloque de memoria sobre el que se realizará la operación.ulong param_2: Este parámetro especifica el tamaño del bloque de memoria que será afectado por la operación.byte param_3: Este es el valor de un solo byte que se utilizará en la operación XOR.El cuerpo de la función consiste en un bucle
forque itera sobre el bloque de memoria:
int local_cse declara como una variable local y se inicializa en 0. Esta variable actúa como un contador para el bucle.- La condición del bucle
(ulong)(long)local_c < param_2asegura que el bucle se ejecute sobre el rango completo del bloque de memoria especificado porparam_2.- Dentro del bucle,
*(byte *)(param_1 + local_c) = *(byte *)(param_1 + local_c) ^ param_3;realiza la operación XOR. Aquí,*(byte *)(param_1 + local_c)accede al byte actual en el bloque de memoria. Este byte se modifica aplicándole un XOR conparam_3. La operación XOR se realiza entre el byte actual en la memoria y el valor deparam_3, y el resultado se escribe de nuevo en la misma ubicación de memoria.En resumen, la función
by ChatGPTFUN_00102752modifica un bloque de memoria aplicando una operación XOR con un valor dado (param_3) a cada byte dentro del rango de memoria especificado desdeparam_1hastaparam_1 + param_2. Este tipo de operación es común en tareas como la manipulación de datos para cifrado/descifrado o para la generación de patrones específicos en un bloque de datos.
Ahora imaginad que no sois muy dados a programar o simplemente estáis vagos de modo que volvemos a recurrir a ChatGPT con el promt «Haz un XOR 1 con javascript a la cadena: gmfzuihr^vr^o^drx^nod^shfiu|» a lo que responde:
function xorString(str) {
return Array.from(str).map(char => String.fromCharCode(char.charCodeAt(0) ^ 1)).join(»);
}console.log(xorString(‘gm
by ChatGPTfzuihr^vr^o^drx^nod^shfiu|’));
Copiamos el código y lo pegamos en un entorno online como por ejemplo playcode.io.

Este es un ejemplo simple, pero ¿percibís su potencial?
La imagen de portada de esta entrada ha sido generada con ChatGPT.
Keygen para el Crackme 1 de VisionZ

Intro
Aquí tenemos un crackme clásico realizado en Visual C++. La única particularidad que tiene es que no muestra MessageBox al introducir bien o mal el serial, simplemente cambia una imagen de un emoticono. Si observamos el comportamiento del crackme notaremos que inicialmente el emoticono está neutral y al fallar se pone triste y por lo tanto es de suponer que al acertar se pondrá contento.
El BreakPoint

Al mirar en las Intermodular Calls de OllyDbg vemos que LoadIconA es un buen candidato para ubicar la comprobación del serial. Si nos fijamos hay tres llamadas, ponemos un breakpoint en las tres y enseguida llegamos a la zona de comprobación del serial.
La comprobación
00401180 . 6A FF PUSH -1 00401182 . 68 68194000 PUSH CrackMe_.00401968 00401187 . 64:A1 00000000 MOV EAX,DWORD PTR FS:[0] 0040118D . 50 PUSH EAX 0040118E . 64:8925 000000>MOV DWORD PTR FS:[0],ESP 00401195 . 83EC 0C SUB ESP,0C 00401198 . 53 PUSH EBX 00401199 . 55 PUSH EBP 0040119A . 8BE9 MOV EBP,ECX 0040119C . 56 PUSH ESI 0040119D . 57 PUSH EDI 0040119E . 8D4C24 10 LEA ECX,DWORD PTR SS:[ESP+10] 004011A2 . E8 2F050000 CALL <JMP.&MFC42.#540> 004011A7 . 8D4C24 14 LEA ECX,DWORD PTR SS:[ESP+14] 004011AB . C74424 24 0000>MOV DWORD PTR SS:[ESP+24],0 004011B3 . E8 1E050000 CALL <JMP.&MFC42.#540> 004011B8 . 8D4424 10 LEA EAX,DWORD PTR SS:[ESP+10] 004011BC . 8BCD MOV ECX,EBP 004011BE . 50 PUSH EAX 004011BF . 68 E9030000 PUSH 3E9 004011C4 . C64424 2C 01 MOV BYTE PTR SS:[ESP+2C],1 004011C9 . E8 02050000 CALL <JMP.&MFC42.#3097> ; Lee el tamano del nombre 004011CE . 8D4C24 14 LEA ECX,DWORD PTR SS:[ESP+14] 004011D2 . 51 PUSH ECX 004011D3 . 68 EA030000 PUSH 3EA 004011D8 . 8BCD MOV ECX,EBP 004011DA . E8 F1040000 CALL <JMP.&MFC42.#3097> ; Lee el tamano del serial 004011DF . 51 PUSH ECX 004011E0 . 8D5424 14 LEA EDX,DWORD PTR SS:[ESP+14] 004011E4 . 8BCC MOV ECX,ESP 004011E6 . 896424 1C MOV DWORD PTR SS:[ESP+1C],ESP 004011EA . 52 PUSH EDX 004011EB . E8 DA040000 CALL <JMP.&MFC42.#535> 004011F0 . 8D4424 1C LEA EAX,DWORD PTR SS:[ESP+1C] 004011F4 . 8BCD MOV ECX,EBP 004011F6 . 50 PUSH EAX 004011F7 . E8 D4010000 CALL CrackMe_.004013D0 004011FC . 50 PUSH EAX 004011FD . 8D4C24 14 LEA ECX,DWORD PTR SS:[ESP+14] 00401201 . C64424 28 02 MOV BYTE PTR SS:[ESP+28],2 00401206 . E8 B9040000 CALL <JMP.&MFC42.#858> 0040120B . 8D4C24 18 LEA ECX,DWORD PTR SS:[ESP+18] 0040120F . C64424 24 01 MOV BYTE PTR SS:[ESP+24],1 00401214 . E8 A5040000 CALL <JMP.&MFC42.#800> 00401219 . 8B4C24 10 MOV ECX,DWORD PTR SS:[ESP+10] 0040121D . 8B5424 14 MOV EDX,DWORD PTR SS:[ESP+14] 00401221 . 8B41 F8 MOV EAX,DWORD PTR DS:[ECX-8] 00401224 . 8B4A F8 MOV ECX,DWORD PTR DS:[EDX-8] 00401227 . 3BC1 CMP EAX,ECX ; CMP len nombre y len serial 00401229 . 0F85 2C010000 JNZ CrackMe_.0040135B 0040122F . 83F8 03 CMP EAX,3 ; len nombre >=3 00401232 . 0F8C 23010000 JL CrackMe_.0040135B 00401238 . 50 PUSH EAX 00401239 . E8 7A040000 CALL <JMP.&MFC42.#823> 0040123E . 8BF0 MOV ESI,EAX 00401240 . 8B4424 14 MOV EAX,DWORD PTR SS:[ESP+14] 00401244 . 83C4 04 ADD ESP,4 00401247 . 33C9 XOR ECX,ECX 00401249 . 8B50 F8 MOV EDX,DWORD PTR DS:[EAX-8] 0040124C . 4A DEC EDX 0040124D . 85D2 TEST EDX,EDX 0040124F . 7E 37 JLE SHORT CrackMe_.00401288 ....... 1ºBUCLE ....... 00401251 > 8A1401 MOV DL,BYTE PTR DS:[ECX+EAX] 00401254 . 8A5C01 01 MOV BL,BYTE PTR DS:[ECX+EAX+1] 00401258 . 8B4424 14 MOV EAX,DWORD PTR SS:[ESP+14] 0040125C . 0FBED2 MOVSX EDX,DL 0040125F . 0FBE0401 MOVSX EAX,BYTE PTR DS:[ECX+EAX] 00401263 . 8D4410 FE LEA EAX,DWORD PTR DS:[EAX+EDX-2] 00401267 . 99 CDQ 00401268 . 2BC2 SUB EAX,EDX 0040126A . 0FBED3 MOVSX EDX,BL 0040126D . D1F8 SAR EAX,1 0040126F . 40 INC EAX 00401270 . 83EA 02 SUB EDX,2 00401273 . 3BC2 CMP EAX,EDX 00401275 . 0F94C0 SETE AL 00401278 . 880431 MOV BYTE PTR DS:[ECX+ESI],AL 0040127B . 8B4424 10 MOV EAX,DWORD PTR SS:[ESP+10] 0040127F . 41 INC ECX 00401280 . 8B50 F8 MOV EDX,DWORD PTR DS:[EAX-8] 00401283 . 4A DEC EDX 00401284 . 3BCA CMP ECX,EDX 00401286 .^7C C9 JL SHORT CrackMe_.00401251 ........ Última comprobación ........ 00401288 > 0FBE1401 MOVSX EDX,BYTE PTR DS:[ECX+EAX] 0040128C . 0FBE78 01 MOVSX EDI,BYTE PTR DS:[EAX+1] 00401290 . 8B4424 14 MOV EAX,DWORD PTR SS:[ESP+14] 00401294 . 83C7 FE ADD EDI,-2 00401297 . 0FBE0401 MOVSX EAX,BYTE PTR DS:[ECX+EAX] 0040129B . 8D4410 FE LEA EAX,DWORD PTR DS:[EAX+EDX-2] 0040129F . 99 CDQ 004012A0 . 2BC2 SUB EAX,EDX 004012A2 . D1F8 SAR EAX,1 004012A4 . 40 INC EAX 004012A5 . 3BC7 CMP EAX,EDI 004012A7 . 0F94C2 SETE DL 004012AA . 881431 MOV BYTE PTR DS:[ECX+ESI],DL
La comprobación es muy sencilla, en resumen hace esto con todas las letras del nombre excepto la última:
1º Caracter
(1ºname + 1ºserial - 2 = X)
(X / 2)
(X + 1)
(2ºname - 2 = Y)
¿Y = X?
2º Caracter
(2ºname + 2ºserial - 2 = X)
(X / 2)
(X + 1)
(3ºname - 2 = Y)
¿Y = X?
...
Con el último caracter del nombre hace lo siguiente:
(6ºname + 6ºserial - 2 = X)
(X / 2)
(X + 1)
(2ºname - 2 = Y)
¿Y = X?
---------
Para revertir la primera parte de la comprobación para el nombre deurus quedaría:
X1 = (((2ºname-2-1)*2)+2)-1ºname
X2 = (((3ºname-2-1)*2)+2)-2ºname
X3 = (((4ºname-2-1)*2)+2)-3ºname
X4 = (((5ºname-2-1)*2)+2)-4ºname
X5 = (((6ºname-2-1)*2)+2)-5ºname
X6 = (((2ºname-2-1)*2)+2)-6ºname
Keygen
var nombre = "deurus";
nombre = nombre.toUpperCase();
var serial = "";
var tmp = "";
var i;
for (i = 0; i < nombre.length-1 ; i++) {
tmp = ((nombre.charCodeAt(i+1)-2-1)*2+2)-nombre.charCodeAt(i);
serial += String.fromCharCode(tmp);
}
tmp = ((nombre.charCodeAt(1)-2-1)*2+2)-nombre.charCodeAt(nombre.length-1);
serial += String.fromCharCode(tmp);
document.write(serial);
Enlaces
Y eso es todo, ¡a disfrutar!
Karpoff’s CrackME1 Keygen

Introducción
El otro día navegando por la red fuí a dar a un mirror de la gran web «Karpoff Spanish Tutor«. Para los que no la conozcais, debeis saber que fué una referencia para el Cracking en la escena nacional. Contenía manuales, cursos, utilidades y todo lo que te pudieras imaginar y/o necesitar para iniciarte en el mundillo del Cracking. Por aquel entonces yo era un cigoto en esto de la Ingeniería Inversa pero la web de Karpoff sentó mis bases y contribuyó a mi afán por saber y compartir. El lector debería saber que estamos hablando de finales de los 90, por lo que este crackme y sucesivos de la web de Karpoff ahora pueden parecer más fáciles pero hay que tener en cuenta que ahora tenemos mejores herramientas.
El objetivo es sacar un serial valido o hacer un generador de llaves, esta hecho para newbies y no tiene ninguna otra proteccion.
El crackme está hecho en Delphi y no tiene ningún tipo de protección antidebug ni nada por el estilo.
El algoritmo
Abrimos Delphi Decompiler y buscamos en los eventos el botón de registro, en este caso se llama «focusClick» y vemos que su RVA apunta a la dirección «442AEC«, lo apuntamos y abrimos el crackme con Ollydbg.
En Olly pulsamos Ctrl+G e introducimos el offset anterior. Un poco más abajo vemos un Call interesante, entramos en el.
Dentro del Call vemos a simple vista dos funciones muy interesantes como son «GetVolumeInformationA» y «GetUserNameA«.
Traceamos el código y vemos que obtiene el número de serie del disco C y el usuario de windows y finalmente los concatena. Se puede ver a simple vista en el Stack o Pila.
No necesitamos saber nada más, probamos el número de serie cazado y funciona. Os adjunto el keygen hecho en C++.
Links
Blooper Tech Movie XII – Enemigo público

Sinopsis
Enemigo público (Enemy of the State) es una película de acción y suspense dirigida por Tony Scott, estrenada en 1998. La historia sigue a Robert Clayton Dean (Will Smith), un abogado de Washington D.C. que se ve atrapado en una conspiración de vigilancia masiva cuando recibe, sin saberlo, una cinta de video que documenta el asesinato de un congresista a manos de un alto funcionario de la Agencia de Seguridad Nacional (NSA), interpretado por Jon Voight. La situación se complica cuando la NSA utiliza toda su tecnología de espionaje para seguir y neutralizar a Dean.
Dean encuentra ayuda en Edward «Brill» Lyle (Gene Hackman), un exanalista de la NSA convertido en un experto en vigilancia que vive en el anonimato. Juntos intentan descubrir la verdad y exponer la conspiración, mientras son perseguidos por la propia NSA. Un papel crucial también lo desempeña el personaje de Daniel Zavitz, interpretado por Jason Lee, un joven investigador que graba accidentalmente el asesinato y termina transmitiendo la evidencia a Dean. El elenco incluye además a Lisa Bonet, Regina King, Jack Black, Barry Pepper, y Seth Green.
Tecnología utilizada
En Enemigo Público, la tecnología juega un papel crucial no solo en la trama sino también en la ambientación de la película. La precisión y el realismo de los equipos informáticos utilizados contribuyen a la atmósfera de paranoia y vigilancia que define la narrativa.
El PC de Daniel Zavitz (Jason Lee)
Jason Lee, en su papel de Daniel Zavitz, utiliza un PC clónico, claramente identificado por el logo de Sun Microsystems en la torre del ordenador. Sin embargo, el sistema operativo que corre en esta máquina es Windows 3.1, una versión que, para 1998, ya estaba obsoleta, habiendo sido lanzada en 1992. Esta elección subraya el hecho de que Zavitz utiliza equipamiento más económico y anticuado, en contraste con la tecnología más avanzada de otros personajes.
Zavitz también utiliza Media Player, un reproductor de video básico integrado en Windows 3.1. Durante la reproducción del archivo de video crucial para la trama, se puede observar que la extensión del archivo es .CAM. Este tipo de archivo podría implicar un video capturado por una cámara, pero también sugiere (por otros fotogramas de la película) que el codec utilizado para comprimir el video podría ser QuickTime, permitiendo una reproducción cruzada entre diferentes sistemas operativos.
Además, Zavitz utiliza un reproductor portátil NEC Turbo Express, un dispositivo de videojuegos portátil de la época. En la película, este dispositivo es empleado de manera innovadora para reproducir y transferir datos, algo poco realista pero que añade dramatismo a la escena. La tarjeta PCMCIA de 200MB que Zavitz utiliza para almacenar el video es otro ejemplo de la tecnología de la época, reflejando la capacidad de almacenamiento portátil antes de la popularización de los dispositivos USB.
El Equipo de Edward «Brill» Lyle (Gene Hackman)
Por su parte, Gene Hackman, en su papel de Brill, maneja un sistema considerablemente más avanzado, utilizando Windows 98. Este sistema operativo, lanzado también en 1998, representaba lo más avanzado en términos de compatibilidad y usabilidad en ese momento, lo que refuerza la imagen de Brill como un experto en tecnología con acceso a mejores recursos.
Aunque en la película no se detalla el hardware específico de Brill, el hecho de que use Windows 98, junto con las capacidades de manipulación y decodificación de video que se muestran, sugiere que tiene acceso a tecnología de alta gama para la época. En una escena clave, se observa cómo Brill decodifica el video utilizando una interfaz gráfica llamativa, diseñada claramente para atraer la atención del espectador, más que para reflejar la realidad de la tecnología disponible en ese momento.
Conclusión
La producción de Enemigo Público es destacable por su atención al detalle en lo referente al equipamiento tecnológico de los personajes. El contraste entre el equipo más antiguo y económico utilizado por Daniel Zavitz (Jason Lee) y el sistema más avanzado de Edward Lyle (Gene Hackman) refleja de manera efectiva el trasfondo de los personajes. Zavitz, como investigador freelance, se maneja con recursos limitados, mientras que Lyle, con su pasado en la NSA y mayor poder adquisitivo, tiene acceso a tecnología más avanzada.
Otro detalle interesante es la diferenciación en el equipamiento dentro de la central de la NSA. Mientras los empleados comunes utilizan monitores CRT, que eran estándar en la época, el personaje de Thomas Reynolds (Jon Voight) dispone de una pantalla plana, lo que subraya su estatus superior dentro de la agencia. Estos detalles de producción contribuyen a la autenticidad y la profundidad visual de la película.


Sin embargo, la película no está exenta de licencias creativas que sacrifican el realismo tecnológico en favor del impacto visual. Un ejemplo claro es cuando un técnico de la NSA, a partir de un fotograma de un vídeo de seguridad, rota la imagen en 3D para simular lo que Zavitz podría haber introducido en la bolsa de Dean. Aunque esta secuencia añade dramatismo, carece de una base tecnológica realista.











Del mismo modo, la escena donde Brill decodifica el vídeo utilizando una interfaz visualmente llamativa es un claro ejemplo de cómo la película opta por elementos más glamurosos para captar la atención del espectador, alejándose de la realidad técnica, donde estos procesos serían mucho menos espectaculares y más funcionales. Además se pueden observar las siguientes curiosidades:
- Se ve el escritorio de Windows 98 con fondo negro y tres aplicaciones abiertas, QuickTime for Windows, una carpeta y una imagen.
- Una carpeta abierta con cuatro archivos DIR y nombres que nos hacen creer que uno está encriptado y otro no. Dos archivos de imagen con extensión TIF y dos archivos de vídeo con extensión MOV. Ojo porque DIR es la extensión de proyectos de Adobe Director, ahí lo dejo.
- La animación muestra el 100% antes que la barra de progreso llegue al final.
- Una vez decodificado se nos muestra el vídeo pero como se nos mostró anteriormente con el media player de Windows 3.1. Incluso se ve el icono de minimizar típico de Windows 3.1 en la parte superior izquierda (última imagen).
















En resumen, Enemigo Público logra un equilibrio eficaz entre el realismo tecnológico y las exigencias dramáticas del cine. A pesar de algunas exageraciones en la representación de la tecnología, la atención al detalle en los aspectos técnicos y la diferenciación de equipos según los personajes y sus circunstancias es un testimonio del buen trabajo de producción que hace que la película siga siendo entretenida, incluso más de dos décadas después de su estreno.
Stego X – Chunk

Intro
Se suele decir que para cada problema hay una solución. Si esto lo llevamos al terreno stego podemos decir que para cada reto hay una herramienta que nos da la solución. En la entrada anterior os comenté que mi fondo de armario son steganabara y stegsolve aunque cuando la imagen es PNG, una herramienta de uso obligatorio es TweakPNG.
La víctima
Nos enfrentamos a una imagen PNG de 112KB (115477 bytes) con una resolución de 300×225 píxeles. A priori llama la atención el elevado tamaño VS la baja resolución, lo que aviva nuestras sospechas de que esos KB extras se deban a que haya insertado otro archivo en su interior.
Chunk
Los archivos PNG tienen la peculiaridad de que están divididos en secciones (chunks) en la que algunas son críticas como IHDR (cabecera), IDAT (la imagen) e IEND (final) y otras muchas secundarias como por ejemplo tEXt (para insertar texto). Al explorar el archivo con TweakPNG vemos la cabecera, varios chunks de texto, muchos IDAT que he combinado en uno para mejorar el análisis y la sección final. Si os fijáis, al combinar los IDAT ha cambiado el tamaño del PNG de 115447 a 110893 bytes aunque en este caso sigue siendo un tamaño elevado.
Llama la atención el chunk cHRm de 12595 bytes del que TweakPNG ya nos avisa que no reconoce su contenido. Cargamos la imagen en un editor hexadecimal y buscamos la palabra «Great» que es el texto que hay justo antes del chunk cHRm que nos interesa.
La búsqueda da sus frutos ya que el chunk parece que está formado por un archivo mp4. A partir de aquí tenemos varias opciones, para mí la más limpia es con un editor hexadecimal apuntar los offsets de inicio y fin del chunk y crear un archivo nuevo con el contenido. Otra opción es exportar el chunk desde TweakPNG con extensión mp4 y borrar los bytes del nombre del chunk con un editor hexadecimal, de lo contrario no podréis reproducir el mp4.
Hecho esto, al escuchar el mp4 obtenemos la solución del reto.
Enlaces
Nota: si algo os pide clave es deurus.info
ThisIsLegal.com – Realistic Challenge 3

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.
Introducción
Analizando a la víctima
¡Funcionó!, el enlace ha pasado el filtro.
¿Cómo podemos aprovechar esto?, pués la forma más común es «XSS cross site scripting«. Veamos una prueba. Con el parámetro oculto otra vez en 0 mandamos el siguiente enlace y reto superado.
Links
Del Hacking a la IA: Cómo Expediente X Abordó la Tecnología de Vanguardia

La serie «Expediente X» (The X-Files) ha capturado la imaginación de los espectadores desde su debut en 1993, con sus intrigantes historias de fenómenos paranormales y conspiraciones gubernamentales. Sin embargo, más allá de los extraterrestres y las criaturas sobrenaturales, la serie también exploró el mundo del hacking, la inteligencia artificial y la piratería informática, temas que se adelantaron a su tiempo y que siguen siendo relevantes hoy en día. A continuación, exploramos algunos de los episodios más emblemáticos que abordan estos temas, revelando detalles fascinantes, curiosidades y tomas falsas que los hicieron memorables.
«Ghost in the Machine» (Temporada 1, Episodio 7)

En este episodio, Mulder y Scully investigan un asesinato en una empresa de tecnología avanzada, Eurisko, donde un sistema de inteligencia artificial llamado «COS» (Central Operating System) podría ser el responsable. La trama se centra en las posibles implicaciones de las IA descontroladas y las vulnerabilidades tecnológicas.
Curiosidades:
- Este episodio fue uno de los primeros en abordar el tema de la inteligencia artificial en la televisión.
- El nombre «COS» es una referencia al sistema operativo OS/2 de IBM, que estaba en uso en la época.
Tomas falsas:
- Durante una de las escenas de acción, el actor encargado de operar el COS tuvo dificultades para mantener la seriedad debido a los efectos especiales rudimentarios, resultando en varias tomas falsas.
«Kill Switch» (Temporada 5, Episodio 11)
Escrito por los renombrados autores de ciencia ficción William Gibson y Tom Maddox, este episodio trata sobre un hacker llamado Donald Gelman que desarrolla una inteligencia artificial avanzada y peligrosa. Mulder y Scully se encuentran en una carrera contra el tiempo para detener a la IA antes de que cause más daño.

Curiosidades:
- William Gibson es considerado el padre del ciberpunk, y su influencia se nota en la atmósfera y el estilo del episodio.
- La tecnología y los conceptos presentados en «Kill Switch» fueron increíblemente visionarios para su tiempo, anticipando el desarrollo de IA avanzada y redes cibernéticas.
Tomas falsas:
- Las escenas de acción en el episodio, especialmente las que involucran a Mulder y Scully en entornos virtuales, resultaron en varios momentos divertidos detrás de cámaras, con los actores luchando por coordinar sus movimientos con los efectos especiales.
«First Person Shooter» (Temporada 7, Episodio 13)
En este episodio, Mulder y Scully se encuentran atrapados en un videojuego de realidad virtual mientras investigan una serie de asesinatos en una empresa de desarrollo de videojuegos. La trama explora los peligros potenciales de la inmersión tecnológica y los límites entre la realidad y la ficción.

En este episodio, Mulder y Scully se encuentran atrapados en un videojuego de realidad virtual mientras investigan una serie de asesinatos en una empresa de desarrollo de videojuegos. La trama explora los peligros potenciales de la inmersión tecnológica y los límites entre la realidad y la ficción.
Curiosidades:
- Este episodio fue dirigido por Chris Carter, el creador de la serie, y escrito por William Gibson y Tom Maddox, quienes también escribieron «Kill Switch».
- «First Person Shooter» fue criticado y elogiado a partes iguales por su tratamiento de la cultura de los videojuegos y la tecnología de realidad virtual.
Tomas falsas:
- Las escenas dentro del videojuego requirieron el uso de efectos especiales avanzados para la época, lo que resultó en numerosos errores técnicos y momentos de risas entre el elenco.
«Rm9sbG93ZXJz» (Temporada 11, Episodio 7)
Este episodio de la temporada más reciente se centra en el impacto de la inteligencia artificial y la tecnología moderna en la vida cotidiana. Mulder y Scully son perseguidos por drones y dispositivos automatizados después de un malentendido en un restaurante automatizado.

Curiosidades:
- El título del episodio, «Rm9sbG93ZXJz», es «Followers» en base64, una referencia a la temática del episodio sobre las redes sociales y la vigilancia tecnológica.
- Este episodio es casi completamente sin diálogos, lo que crea una atmósfera única y tensa que subraya la dependencia moderna de la tecnología.
Tomas falsas:
- La falta de diálogos resultó en situaciones cómicas durante el rodaje, ya que los actores tenían que comunicar mucho con expresiones faciales y movimientos, lo que llevó a varios malentendidos y momentos divertidos.
Cabe mencionar que, en esta ocasión, no he incluido ningún episodio protagonizado por los Pistoleros Solitarios, el trío de hackers y teóricos de la conspiración favoritos de los fans. Este grupo merece un artículo dedicado para explorar en profundidad sus contribuciones únicas a la serie y su propio spin-off, que también aborda numerosos temas tecnológicos y conspirativos con su estilo distintivo.
Estos episodios no solo nos ofrecen emocionantes tramas y misterios tecnológicos, sino que también nos brindan un vistazo a un futuro potencial, uno en el que la línea entre lo humano y lo artificial se vuelve cada vez más difusa. Las curiosidades y tomas falsas detrás de cámaras añaden una capa adicional de encanto, mostrando el esfuerzo y la creatividad necesarios para dar vida a estos complejos temas.
Como fanáticos de «Expediente X», podemos apreciar cómo la serie ha sido capaz de mantenerse relevante y cautivadora al abordar cuestiones tecnológicas que son tanto atemporales como urgentes. Nos ha llevado a cuestionar nuestra confianza en las máquinas, a temer las posibles repercusiones de una inteligencia artificial sin control y a maravillarnos con las posibilidades de la realidad virtual.
En resumen, «Expediente X» no solo ha sido un pionero en la televisión de ciencia ficción y misterio, sino que también ha demostrado una notable capacidad para explorar y anticipar los dilemas tecnológicos que enfrentamos hoy en día. Estos episodios son un recordatorio de que, en el vasto universo de lo desconocido, la tecnología juega un papel crucial y, a veces, aterrador. Para los verdaderos fans, cada uno de estos episodios es una joya que merece ser revivida y analizada, apreciando su profundidad y relevancia en nuestro mundo cada vez más digital.
Todas las imágenes de esta entrada han sido generadas con ChatGPT.
































