Aviso: Este crackme forma parte de una serie de pruebas de Yoire.com que todavía está en activo. Lo ético si continuas leyendo este manual es que no utilices la respuesta para completar la prueba sin esfuerzo. 😉
Saltando el Anti-Debug
Abrimos el crackme con Ollydbg y nos salta una protección Anti-Debug.
Si nos fijamos en las «Text Strings» vemos que es la clásica isDebuggerPresent. Pinchamos en ella y vemos claramente el salto que debemos forzar, se encuentra en el offset 401015. Podemos invertir el salto o cambiarlo a JMP para que salte siempre.
Rutina de comprobación del serial
A simple vista vemos instrucciones como FILD y FIDIVR que trabajan con los registros FPU, por lo que tendremos que fijarnos en dichos registros.
Retomemos analizando la rutina de comprobación.
FLD DWORD PTR DS:[403080] - Carga el entero "720300" en ST7
FSTP [LOCAL.1] - Guarda "720300" en memoria (Local 1)
MOVSX EDX,BYTE PTR DS:[EAX] - Coje nuestro primer dígito en ascii y lo carga en EDX
SUB EDX,30 - Le resta 30 a EDX
PUSH EDX - Carga EDX en la pila
FILD DWORD PTR SS:[ESP] - Carga el valor de EDX en ST0
POP EDX - Recupera el valor de la pila
FDIVR [LOCAL.1] - Divide Local 1 entre nuestro dígito hex y lo guarda en ST0
FSTP [LOCAL.1] - Guarda el resultado de ST0 en Local 1
INC EAX - Siguiente dígito
CMP BYTE PTR DS:[EAX],0 - Comprueba si quedan dígitos en nuestro serial
JNZ SHORT 05_crack.004010F4 - Bucle
Después de la rutina de comprobación simplemente comprueba el valor del resultado de la división con 1 y si es verdad serial válido.
Buscando un serial válido
Podríamos hacer fuerza bruta, pero en esta ocasión no es necesario ya que con la calculadora, boli y papel lo sacamos rápido.
Hace poco me reencontré con esta entrañable serie que tanto me entretuvo cuando era pequeño y para mi sorpresa, me percaté de que nunca había visto el episodio piloto. La nostalgia me llevó a tragarme el episodio entero y a disfrutar a lo grande de la parafernalia técnica de la que hace gala para justificar la creación que da nombre a la serie.
La visión tecnológica de los años 80
Esto hay que analizarlo con perspectiva. Estamos en los años 80 y nos están presentando un coche capaz de mantener una conversación, es decir, nos están presentando una inteligencia artificial (IA) llamada KITT. Puede parecer que el término inteligencia artificial es nuevo pero realmente se acuño en 1956 por John McCarthy. A partir de ese momento surgieron líneas de estudio e hipótesis pero a partir de los 70 se puede considerar que la investigación sobre la IA perdió financiación y quedó en el congelador hasta los años 90. Dicho esto, cuando nos presentan a KITT lo hacen de la siguiente manera:
Devon Miles: Está totalmente controlado por microprocesadores que hacen físicamente imposible que se vea implicado en ningún tipo de colisión o percance a no ser que se lo ordene su piloto específicamente
Michael Knight: ¿Piloto?, no me diga que esta cosa vuela
Devon Miles: ¡No!, pero piensa
Michael Knight: ¿Piensa?, ¿mi coche piensa?
Intel daba a conocer el primer microprocesador allá por el 71 y la serie se estrenó en el 82 lo que le da credibilidad en ese aspecto, aunque dudo que el público de esa época supiera que era un microprocesador, un ordenador y menos una IA.
Los Chips
La serie arranca con un grupo de personas realizando espionaje industrial donde nos muestran las hojas de datos de dos chips Japoneses como son el PD8257-5 y el PD780. Un aplauso para los guionistas y sus asesores ya que el PD8257-5 es una interfaz de comunicaciones y el PD780 un microprocesador de 8 bits.
Detalle del esquema del chip PD8257-5 y del set de instrucciones del chip PD780
Lo más interesante es que lo que se muestra es real como podéis apreciar en la siguiente imagen
Detalle del esquema mostrado en la serie VS la hoja de datos
A continuación un detalle de las capturas realizadas:
Más adelante vuelven a aparecer imágenes en un PC que parecen puestas en post-producción y que son robadas en un maravilloso disco de 5 1/4.
Los diálogos
Llaman la atención mucho los diálogos centrados en el microprocesador como si de un ser superior se tratase, éste es la referencia continua y la parte central del guion de los dos primeros capítulos. Curiosamente aparecen en pantalla multitud de imágenes de circuitos integrados pero no se llega a ver ningún microprocesador. Por otro lado, es interesante el esfuerzo que hacen los guionistas por que llamemos a KITT él en vez de ello, convirtiendo al coche en un personaje más.
Otra cosa que llama mucho la atención son los tópicos de los que hace gala como la asociación de los microprocesadores a los videojuegos o que la empresa villana esté afincada en Silicon Valley. Incluso el nombre KITT es un tópico ya que las siglas vienen de Knight Industries Two Thousand que en cristiano quiere decir Industrias Knight 2000. Y es que en mi opinión el año 2000 se imaginaba como una barrera lejana en la que todo iba a ser tecnológicamente más avanzado.
Conclusiones
Tengo que reconocer que me ha sorprendido que dieran realismo a los chips mostrados teniendo en cuenta que aparecen muy pocos segundos en pantalla y podían haber puesto cualquier cosa.
Por otro lado, la realidad es que en el año 2022 aún nos queda recorrido para llegar a tener un coche fantástico y lo más parecido que tenemos hoy día sería un Tesla con Alexa.
Acabo de montar AperiSolve en una Raspi que tenía por casa pensando que sería coser y cantar, pero me he encontrado con que el repositorio no estaba preparado para todas las distros Linux de forma estándar. El resultado lo he colgado en Github, de modo que para montarlo en vuestra propia Raspi solo tenéis que seguir estos pasos:
1. Clonar el repositorio
git clone https://github.com/deurus/AperiSolve-Raspi3.git
cd AperiSolve-Raspi3/AperiSolve
2. Construir los contenedores
docker compose build
docker compose up -d
3. Abrir la web
http://<IP_RASPI>:5000
Si tenéis curiosidad de la adaptación que he tenido que hacer aquí están los pasos que he seguido:
1. Preparar el sistema
sudo apt update
sudo apt install -y git docker.io docker-compose
sudo usermod -aG docker $USER
newgrp docker
2. Clonar AperiSolve
git clone https://github.com/Zeecka/AperiSolve.git
cd AperiSolve
3. Crear la estructura de build para la imagen ARM/x86
nano docker-compose.yml
y pega este contenido:
FROM python:3.11-slim
RUN apt-get update && apt-get install -y \
zip \
p7zip-full \
binwalk \
foremost \
exiftool \
steghide \
ruby \
binutils \
pngcheck \
&& rm -rf /var/lib/apt/lists/*
COPY aperisolve/ /aperisolve/
RUN pip install --no-cache-dir -r /aperisolve/requirements.txt
WORKDIR /aperisolve
CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:5000", "wsgi:app"]
4. Arreglar docker-compose.yml para ser válido y compatible
services:
web:
image: aperisolve-local
build: .
container_name: aperisolve-web
ports:
- "5000:5000"
depends_on:
- redis
- postgres
environment:
DB_URI: "postgresql://aperiuser:aperipass@postgres:5432/aperisolve"
worker:
image: aperisolve-local
container_name: aperisolve-worker
depends_on:
- redis
- postgres
environment:
DB_URI: "postgresql://aperiuser:aperipass@postgres:5432/aperisolve"
redis:
image: redis:7
container_name: aperisolve-redis
postgres:
image: postgres:16
container_name: aperisolve-postgres
environment:
POSTGRES_USER: aperiuser
POSTGRES_PASSWORD: aperipass
POSTGRES_DB: aperisolve
volumes:
- postgres_data:/var/lib/postgresql/data
volumes:
postgres_data:
5. Modificar aperisolve/config.py
nano config.py
y pega este contenido:
from pathlib import Path
IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp", ".tiff"]
WORKER_FILES = ["binwalk", "foremost", "steghide", "zsteg"]
RESULT_FOLDER = Path(__file__).parent.resolve() / "results"
RESULT_FOLDER.mkdir(parents=True, exist_ok=True)
6. Modificación de aperisolve/app.py
Sustituir la línea: app.config["SQLALCHEMY_DATABASE_URI"] = os.environ.get("DB_URI")
por:
default_db = "postgresql://aperiuser:aperipass@postgres:5432/aperisolve"
app.config["SQLALCHEMY_DATABASE_URI"] = os.environ.get("DB_URI", default_db)
7. Construir la imagen
docker build -t aperisolve-local .
8. Levantar los contenedores
docker compose down
docker compose up -d
9. Comprobar logs
docker logs aperisolve-web --tail=50
docker logs aperisolve-worker --tail=50
10. Acceder a la web
- Desde cualquier máquina de la red local: http://IP-DE-LA-MAQUINA:5000
- Desde la Raspi: http://localhost:5000
11. Limpieza (cuando necesites)
- Reiniciar contenedores:
docker compose restart
- Borrar resultados antiguos:
sudo rm -r aperisolve/results/*
En una entrada anterior sobre cómo Expediente X abordó la tecnología de vanguardia, comenté que dedicaría un espacio a esos tres personajes tan peculiares y entrañables que, desde el segundo plano, se ganaron un hueco en el corazón de los seguidores de la serie: los Pistoleros Solitarios. Pues bien, ha llegado el momento.
Estos tres tipos —John Fitzgerald Byers, Melvin Frohike y Richard “Ringo” Langly— no necesitaban armas ni placas del FBI. Su poder estaba en los teclados, los cables enredados y los monitores de tubo que parpadeaban en un sótano lleno de conspiraciones y café frío. Eran los outsiders de Expediente X, tres hackers con alma de periodistas que luchaban por algo tan simple y tan enorme como la verdad.
Su primera aparición fue en E.B.E. (temporada 1), casi como un alivio cómico: tres frikis que ayudaban a Mulder a rastrear información sobre ovnis. Pero pronto quedó claro que había algo especial en ellos. No solo eran fuente de datos, sino conciencia crítica en un mundo plagado de mentiras digitales y gobiernos con demasiados secretos. Con el tiempo se convirtieron en aliados imprescindibles de Mulder y Scully, y también en el reflejo más humano de lo que significa ser hacker: curiosos, testarudos, torpes a veces, pero con un sentido moral inquebrantable.
Byers era el idealista, el que aún creía en la decencia y en las instituciones (al menos en teoría). Frohike, el cínico veterano con corazón de oro, siempre dispuesto a arriesgarse por una buena causa… o por impresionar a Scully. Y Langly, el genio rebelde que parecía vivir en permanente conversación con su módem de 56 k. Juntos formaban un trío excéntrico, pero perfectamente equilibrado.
Mientras Mulder y Scully perseguían abducciones y virus extraterrestres, los pistoleros combatían en otra trinchera: la digital. Hackeaban redes gubernamentales, interceptaban comunicaciones cifradas y desmantelaban cortafuegos que, en los noventa, parecían pura ciencia ficción. Lo suyo no era la acción física, sino la resistencia informativa. Y aunque muchas veces eran el chiste del capítulo, también representaban algo muy real: la gente corriente que lucha contra el poder desde el conocimiento.
Su lema no declarado podría haber sido el clásico “la información quiere ser libre”, y en eso se mantuvieron firmes hasta el final. Si había que elegir entre la seguridad o la verdad, ellos siempre elegían la verdad, aunque les costara caro.
Langly como conciencia digital en un servidor. Debate sobre IA y trascendencia del código.
Morir por la verdad
El final de los pistoleros fue tan inesperado como heroico. En el episodio “Jump the Shark” de la novena temporada, descubren un complot bioterrorista que amenaza con liberar un virus mortal. No hay tiempo para avisar a nadie, ni margen para escapar. Así que, fieles a su estilo, deciden sacrificarse para salvar a otros. Sellan el laboratorio desde dentro, sabiendo que no volverán a salir.
Lo reconozco, este desenlace mi cogió completamente por sorpresa. No hay épica de Hollywood, ni música grandilocuente. Solo tres hombres anónimos haciendo lo correcto. Mueren juntos, sin reconocimiento, sin medallas, pero con la serenidad de quienes saben que su causa era justa. Y en ese silencio final, Expediente X nos recordó algo que las grandes historias suelen olvidar: que los verdaderos héroes a veces no llevan traje ni pistola, solo convicción.
Años después, Mulder vuelve a verlos —o cree verlos— en The Truth. Ya no están en este mundo, pero siguen a su lado, como fantasmas digitales de la conciencia hacker. Es un homenaje discreto a quienes siempre pelearon desde las sombras por liberar la verdad.
Para cerrar el círculo, Langly reaparece de forma inesperada en la temporada 11, dentro del episodio This. Su mente, o más bien su copia digital, sobrevive atrapada en un servidor, reclamando ser liberada. Es el epílogo perfecto: el hacker que muere físicamente, pero cuya conciencia sigue inmortal. Una vez más me volvió a sorprender Chris Carter con este homenaje.
Me gusta pensar que los pistoleros solitarios representaban algo más que tres hackers secundarios en una serie de los noventa. Fueron el reflejo de una época en la que creíamos que la tecnología podía liberar al ser humano, antes de que las redes sociales y la hiperconectividad lo diluyeran todo. Byers, Frohike y Langly no luchaban por fama ni por dinero: luchaban por entender el sistema para exponerlo, por esa curiosidad genuina que hoy apenas sobrevive entre líneas de código y algoritmos opacos. Quizá por eso seguimos recordándolos y mola tanto volver a ver los capítulos. Porque, de algún modo, todos los que amamos el conocimiento libre llevamos dentro un pequeño pistolero solitario, buscando la verdad entre los bits.
Aquí tenemos un crackme clásico realizado en Visual C++. La única particularidad que tiene es que no muestra MessageBox al introducir bien o mal el serial, simplemente cambia una imagen de un emoticono. Si observamos el comportamiento del crackme notaremos que inicialmente el emoticono está neutral y al fallar se pone triste y por lo tanto es de suponer que al acertar se pondrá contento.
El BreakPoint
Intermodular Calls
Al mirar en las Intermodular Calls de OllyDbg vemos que LoadIconA es un buen candidato para ubicar la comprobación del serial. Si nos fijamos hay tres llamadas, ponemos un breakpoint en las tres y enseguida llegamos a la zona de comprobación del serial.
La comprobación es muy sencilla, en resumen hace esto con todas las letras del nombre excepto la última:
1º Caracter
(1ºname + 1ºserial - 2 = X)
(X / 2)
(X + 1)
(2ºname - 2 = Y)
¿Y = X?
2º Caracter
(2ºname + 2ºserial - 2 = X)
(X / 2)
(X + 1)
(3ºname - 2 = Y)
¿Y = X?
...
Con el último caracter del nombre hace lo siguiente:
(6ºname + 6ºserial - 2 = X)
(X / 2)
(X + 1)
(2ºname - 2 = Y)
¿Y = X?
---------
Para revertir la primera parte de la comprobación para el nombre deurus quedaría:
X1 = (((2ºname-2-1)*2)+2)-1ºname
X2 = (((3ºname-2-1)*2)+2)-2ºname
X3 = (((4ºname-2-1)*2)+2)-3ºname
X4 = (((5ºname-2-1)*2)+2)-4ºname
X5 = (((6ºname-2-1)*2)+2)-5ºname
X6 = (((2ºname-2-1)*2)+2)-6ºname
Keygen
var nombre = "deurus";
nombre = nombre.toUpperCase();
var serial = "";
var tmp = "";
var i;
for (i = 0; i < nombre.length-1 ; i++) {
tmp = ((nombre.charCodeAt(i+1)-2-1)*2+2)-nombre.charCodeAt(i);
serial += String.fromCharCode(tmp);
}
tmp = ((nombre.charCodeAt(1)-2-1)*2+2)-nombre.charCodeAt(nombre.length-1);
serial += String.fromCharCode(tmp);
document.write(serial);