Intro

El crackme que analizamos hoy está hecho en ensamblador y si bien su dificultad es baja, la creación del keygen es un poco liosa. Al keygen que veremos más adelante, le he dado cierta aleatoriedad para que quede más elegante.

El crackme comprueba el serial en función de un identificador de 4 dígitos que el mismo crackme genera.

Análisis

Coje nuestro serial mediante la función GetDlgItemTextA.

004010D3  |.  68 FF000000   PUSH 0FF                                 ; /MaxCount = 255.
004010D8  |.  68 40324000   PUSH OFFSET 00403240                     ; |String
004010DD  |.  68 EC030000   PUSH 3EC                                 ; |ItemID = 1004.
004010E2  |.  FF75 08       PUSH DWORD PTR SS:[ARG.1]                ; |hDialog => [ARG.1]
004010E5  |.  E8 6E010000   CALL <JMP.&user32.GetDlgItemTextA>       ; \USER32.GetDlgItemTextA
004010EA  |.  68 40324000   PUSH OFFSET 00403240                     ; /String
004010EF  |.  E8 52010000   CALL <JMP.&kernel32.lstrlenA>            ; \KERNEL32.lstrlen
004010F4  |.  A3 47334000   MOV DWORD PTR DS:[403347],EAX
004010F9  |.  33DB          XOR EBX,EBX
004010FB  |.  33C0          XOR EAX,EAX
004010FD  |.  EB 54         JMP SHORT 00401153

Comprueba que nuestro serial esté formado por números (30h – 39h), letras de la A a la F (41h – 46h) y el guión (2Dh), es decir, el alfabeto hexadecimal más el guión. Si hay algún dígito indeseado nos tira fuera.

004010FF  |>  8A83 40324000 /MOV AL,BYTE PTR DS:[EBX+403240]
00401105  |.  3C 2D         |CMP AL,2D
00401107  |.  74 40         |JE SHORT 00401149
00401109  |.  3C 30         |CMP AL,30
0040110B  |.  74 3C         |JE SHORT 00401149
0040110D  |.  3C 31         |CMP AL,31
0040110F  |.  74 38         |JE SHORT 00401149
00401111  |.  3C 32         |CMP AL,32
00401113  |.  74 34         |JE SHORT 00401149
00401115  |.  3C 33         |CMP AL,33
00401117  |.  74 30         |JE SHORT 00401149
00401119  |.  3C 34         |CMP AL,34
0040111B  |.  74 2C         |JE SHORT 00401149
0040111D  |.  3C 35         |CMP AL,35
0040111F  |.  74 28         |JE SHORT 00401149
00401121  |.  3C 36         |CMP AL,36
00401123  |.  74 24         |JE SHORT 00401149
00401125  |.  3C 37         |CMP AL,37
00401127  |.  74 20         |JE SHORT 00401149
00401129  |.  3C 38         |CMP AL,38
0040112B  |.  74 1C         |JE SHORT 00401149
0040112D  |.  3C 39         |CMP AL,39
0040112F  |.  74 18         |JE SHORT 00401149
00401131  |.  3C 41         |CMP AL,41
00401133  |.  74 14         |JE SHORT 00401149
00401135  |.  3C 42         |CMP AL,42
00401137  |.  74 10         |JE SHORT 00401149
00401139  |.  3C 43         |CMP AL,43
0040113B  |.  74 0C         |JE SHORT 00401149
0040113D  |.  3C 44         |CMP AL,44
0040113F  |.  74 08         |JE SHORT 00401149
00401141  |.  3C 45         |CMP AL,45
00401143  |.  74 04         |JE SHORT 00401149
00401145  |.  3C 46         |CMP AL,46
00401147  |.  75 07         |JNE SHORT 00401150
00401149  |>  8305 4B334000 |ADD DWORD PTR DS:[40334B],1
00401150  |>  83C3 01       |ADD EBX,1
00401153  |>  3B1D 47334000 |CMP EBX,DWORD PTR DS:[403347]
00401159  |.^ 76 A4         \JBE SHORT 004010FF
0040115B  |. A1 47334000 MOV EAX,DWORD PTR DS:[403347]
00401160  |. 3905 4B334000 CMP DWORD PTR DS:[40334B],EAX     ; si no coincide el tamaño del serial con el
00401166  |. 0F85 94000000 JNE 00401200                      ; contador nos tira fuera

La comprobación del serial la realiza sumando el valor ascii del primer dígito al valor ascii del tercero y sucesivos y a continuación restando la suma anterior al ID. Cuando finalice la comprobación de todos los dígitos del serial, el restador tiene que ser cero, de lo contrario nos tira fuera. Si el ID es cero también nos tira fuera.

Ejemplo (base 10)para ID = 4011 y SERIAL: 1-23456

  • Valores del serial: 1(49) -(no se usa) 2(50) 3(51) 4(52) 5(53) 6(54)
  • 1º + 3º: 49 + 50 = 99
  • 4011 – 99 = 3912
  • 1º + 4º: 49 + 51 = 100
  • 3912 – 100 = 3812
  • 1º + 5º: 49 + 52 = 101
  • 3812 – 101 = 3711
  • 1º + 6º: 49 + 53 = 102
  • 3711 – 102 = 3609
  • 1º + 7º: 49 + 54 = 103
  • 3609 – 103 = 3506
  • ¿3506 = 0?
0040116C  |.  33C0          XOR EAX,EAX
0040116E  |.  BB 02000000   MOV EBX,2
00401173  |.  A0 40324000   MOV AL,BYTE PTR DS:[403240]
00401178  |.  A3 43334000   MOV DWORD PTR DS:[403343],EAX
0040117D  |.  EB 13         JMP SHORT 00401192
0040117F  |>  8A83 40324000 /MOV AL,BYTE PTR DS:[EBX+403240]         ; Coje el dígito correspondiente
00401185  |.  0305 43334000 |ADD EAX,DWORD PTR DS:[403343]           ; 1ºdig + dig
0040118B  |.  2905 4F334000 |SUB DWORD PTR DS:[40334F],EAX           ; ID - (1ºdig + dig)
00401191  |.  43            |INC EBX
00401192  |>  3B1D 47334000 |CMP EBX,DWORD PTR DS:[403347]
00401198  |.^ 72 E5         \JB SHORT 0040117F
0040119A  |.  833D 4F334000 CMP DWORD PTR DS:[40334F],0              ; CHECK RESTADOR SEA = 0
004011A1  |.  75 49         JNE SHORT 004011EC
004011A3  |.  833D 3F334000 CMP DWORD PTR DS:[40333F],0              ; CHECK ID <> 0
004011AA  |.  74 40         JE SHORT 004011EC
004011AC  |.  FF35 3F334000 PUSH DWORD PTR DS:[40333F]               ; /<%d> = 0
004011B2  |.  68 00304000   PUSH OFFSET 00403000                     ; |Format = "REGISTRADO CON ID:%d"
004011B7  |.  68 40324000   PUSH OFFSET 00403240                     ; |Buf
004011BC  |.  E8 A9000000   CALL <JMP.&user32.wsprintfA>             ; \USER32.wsprintfA

Como veis, el resultado de ir restando todos los dígitos de nuestro serial con la ID debe ser cero para que el serial sea correcto.

Keygen

Lo primero que se me ocurre para obtener una solución directa es buscar una combinación de dígito + dígito que sea múltiplo del ID. Para ello podemos usar la función módulo. La función módulo lo que hace es darnos el resto de la división de dos números, de modo que si el resto es cero los números son múltiplos. Para ello debemos cruzar todos los números y letras hasta encontrar los dígitos múltiplos del ID. Un serial de este primer tipo quedaría algo así como 1-FFFFFFFFFFFFFFFFFF ya que como el primer dígito es fijo el otro se repetirá tanta veces como sea necesario para hacer que el ID sea cero.

Con nuestro reducido alfabeto, cabe la posibilidad de que no encontremos una combinación válida, por lo que tendremos que pensar en un plan B. El plan B que se me ocurre a mi es intentar forzar el plan A restando caracteres aleatorios al ID y volviendo a comprobar si encontramos múltiplos del nuevo ID. Un serial de este tipo quedaría más elegante, por ejemplo 3-A6D53B628BBBBB.

Os dejo unos cuantos números de serie.

  • Tipo A
    • ID: 1111 SERIAL: 0-55555555555
    • ID: 2500 SERIAL: 0-4444444444444444444444444
    • ID: 4982 SERIAL: 1-99999999999999999999999999999999999999999999999
    • ID: 4992 SERIAL: 0-0000000000000000000000000000000000000000000000000000
  • Tipo B
    • ID: 1112 SERIAL: 9-19247C5555
    • ID: 2499 SERIAL: A-C5ADC2233333333333333
    • ID: 4981 SERIAL: 7-C6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
    • ID: 4999 SERIAL: 4-A37BEEB8146A5CE6ECFB422B1BFF8474E852314F5A999
'Keygen for Flamer's asm keygenme
    Dim id As Integer
    Dim serial As String
    Dim tmp, tmp2, na, nb As Integer
    Dim alfabeto As Integer() = New Integer() {48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 65, 66, 67, 68, 69, 70}
    Dim r As Random = New Random
    'Button generate
    Private Sub btngen_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btngen.Click
ini:
        If txtid.TextLength <> 4 Then GoTo Mal
        id = txtid.Text
        txtdebug.Text = ""
        na = alfabeto(r.Next(1, 16))
        serial = Chr(na) & "-"
        tmp = id
        For i = 0 To alfabeto.Length - 1
            For y = 0 To alfabeto.Length - 1
                'Solución directa
                If id Mod (alfabeto(i) + alfabeto(y)) = 0 Then
                    tmp = id / (alfabeto(i) + alfabeto(y))
                    txtserial.Text = Chr(alfabeto(i)) & "-"
                    For z = 0 To tmp - 1
                        txtserial.Text &= Chr(alfabeto(y))
                    Next
                    GoTo fuera
                End If
                'Indirecta con aleatoriedad
                nb = alfabeto(r.Next(1, 16))
                tmp = tmp - (na + nb)
                serial &= Chr(nb)
                If tmp Mod (na + nb) = 0 Then
                    tmp2 = tmp / (na + nb)
                    For z = 0 To tmp2 - 1
                        serial &= Chr(nb)
                    Next
                    txtserial.Text = serial
                    GoTo fuera
                End If
                If tmp < 0 Then
                    GoTo ini
                Else
                    txtdebug.Text &= tmp & " "
                End If
            Next
        Next
Mal:
        txtserial.Text = "¿id?"
fuera:

    End Sub

Me doy cuenta que en el keygen no he utilizado el guión, pero no pasa nada, se lo dejo al lector como curiosidad.

Links


Intro Análisis Keygen Links Intro El crackme que analizamos hoy está hecho en ensamblador y si bien su dificultad es
Se nos entrega un ELF que decompilado presenta este aspecto: Para resolver el juego y obtener una licencia válida, nos
Warning: This challenge is still active and therefore should not be resolved using this information.  Aviso: Este reto sigue en
Introducción Aquí tenemos un crackme hecho en Java, lo que como comprobareis a continuación no es muy buena idea ya

Aquí tenemos un crackme fuera de lo común, más que nada por que está programado en Brainfuck, un lenguaje de programación esotérico bastante complejo.

[-]>[-]<>++++++++[<++++++++++>-]<.+++++++++++++++++.>+++[<++++++>-]<..++++.-
-------.+++.--------------.>++++++[<------>-]<-.>+++++[<------>-]<-.,>,>,>,>
>>>+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++>>>>+++++++++++++++++++++++++++++++++++++++++
+++++++++++>>>>+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++>>>>++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<<<
<<<<<<<<<<<<<<<<[>>>>>>>-<<<<<<<-]>>>>>>><<+>>[[-]++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++.<]<[>]<<<<<[>>>>>>>>>>-<<<<<<<<
<<-]>>>>>>>>>><<+>>[[-]+++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++.<]<[>]<<<<<<<<[>>>>>>>>>>>>>-<<<<<<<<<<<<<-]>>>>>>>>>>>>><<+>>[
[-]+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
.<]<[>]<<<<<<<<<<<[>>>>>>>>>>>>>>>>-<<<<<<<<<<<<<<<<-]>>>>>>>>>>>>>>>><<+>>[
[-]+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++.<]<[>]>>>[-]>[-]<+++++++++++++.---.>+++++++[<++++++++++++>-]<.>+++++++[<
--------->-]<+.>+++++[<++++++++>-]<+.>++++[<+++++++>-]<+.>+++++++[<---------
->-]<.>++++++++[<+++++++++>-]<+.+++++++++++.>+++++++[<----------->-]<.>+++++
++[<+++++++++++>-]<-.>+++++++[<------------>-]<+.>++++++++[<+++++++++++>-]<-
.-----.---------.+++++++++++..---------------.+++++++++.>++++++[<-----------
-->-]<.+++++++.>+++++[<++++++>-]<+.-----.++++++++.+++.>++++++[<------>-]<-.-
------.>++++++++[<++++++++++>-]<-.+++.>+++++++++[<--------->-]<-.+++++++.>++
+++[<++++++>-]<+.-----.+++++++++++.>++++++[<------>-]<-.-------.>++++++++[<+
+++++++++>-]<-.+++.>+++++++++[<--------->-]<-.+++++++.>+++++[<+++++>-]<+.+++
+++++.+++.>++++++[<------>-]<-.+++++++...--------------.>++++++++[<+++++++++
++>-]<+.----------.++++++.>+++++++[<------------>-]<-.>++++++++[<+++++++++>-
]<.-------.>+++[<+++++++>-]<.-----------------.>+++++++[<---------->-]<+.>++
+++++[<++++++++++>-]<.-----.++++++++.+++.-------.-.>++++++[<--------->-]<.--
------------.>+++++[<++++++++>-]<+.>++++[<+++++++>-]<+.>+++++++[<---------->
-]<.>+++++++[<++++++++++++>-]<.------------.---.+++++++++++++.-------------.
>+++++++[<---------->-]<+.>++++++++[<+++++++++>-]<+.++++++++++.>+++++++[<---
--------->-]<+.>++++++[<+++++++++++++>-]<.+.+++++.------------.+.+++++.-----
--.>++++++[<---------->-]<+.------------.>++++++++[<+++++++++++>-]<+.-------
---.++++++.>+++++++[<------------>-]<-.>++++++++[<+++++++++>-]<.-------.>+++
[<+++++++>-]<.-----------------.>+++++++[<---------->-]<+.>++++++++[<+++++++
++++>-]<-.--------------.+++++.>++++++[<------------->-]<.+.

La solución que he encontrado yo, es convertir el código brainfuck a algo más amigable y depurarlo hasta encontrar la solución. La conversión la he realizado con VBBrainFNET y luego la depuración con Visual Studio. El crackme te pide una clave de cuatro cifras para darte la solución, pero si no quieres volverte loco puedes amañar los bucles para encontrar la solución.

¡SUERTE!

Enlaces

 

Introducción

El otro día navegando por la red fuí a dar a un mirror de la gran web «Karpoff Spanish Tutor«. Para los que no la conozcais, debeis saber que fué una referencia para el Cracking en la escena nacional. Contenía manuales, cursos, utilidades y todo lo que te pudieras imaginar y/o necesitar para iniciarte en el mundillo del Cracking. Por aquel entonces yo era un cigoto en esto de la Ingeniería Inversa pero la web de Karpoff sentó mis bases y contribuyó a mi afán por saber y compartir. El lector debería saber que estamos hablando de finales de los 90, por lo que este crackme y sucesivos de la web de Karpoff ahora pueden parecer más fáciles pero hay que tener en cuenta que ahora tenemos mejores herramientas.

El objetivo es sacar un serial valido o hacer un generador de llaves, esta hecho para newbies y no tiene ninguna otra proteccion.

El crackme está hecho en Delphi y no tiene ningún tipo de protección antidebug ni nada por el estilo.

El algoritmo

Abrimos  Delphi Decompiler y buscamos en los eventos el botón de registro, en este caso se llama «focusClick» y vemos que su RVA apunta a la dirección «442AEC«, lo apuntamos y abrimos el crackme con Ollydbg.

03-09-2014 16-54-45

En Olly pulsamos Ctrl+G e introducimos el offset anterior. Un poco más abajo vemos un Call interesante, entramos en el.

03-09-2014 17-34-01

Dentro del Call vemos a simple vista dos funciones muy interesantes como son «GetVolumeInformationA» y «GetUserNameA«.

03-09-2014 17-37-08

Traceamos el código y vemos que obtiene el número de serie del disco C y el usuario de windows y finalmente los concatena. Se puede ver a simple vista en el Stack o Pila.

03-09-2014 17-33-22

No necesitamos saber nada más, probamos el número de serie cazado y funciona. Os adjunto el keygen hecho en C++.

03-09-2014 17-34-51

Links


Introducción Hoy vamos a enfrentarnos a cuatro retos de esteganografía relativamente sencillos, y digo relativamente, debido a que hay tantas
El reto Se nos proporciona la imagen anterior y se nos invita a resolver la ecuación para el menor entero
Introducción Tal y como nos adelanta el creador está programado en .NET. Lo abrimos para ver su comportamiento y a
Intro Análisis Keygen Links Intro El crackme que analizamos hoy está hecho en ensamblador y si bien su dificultad es

Introducción

Hoy vamos a enfrentarnos a cuatro retos de esteganografía relativamente sencillos, y digo relativamente, debido a que hay tantas formas de esconder información en un archivo, ya sea imagen, vídeo o sonido, que afrontarlos suele ser desesperante. Las cuatro imágenes son aparentemente las mismas que la que se ve en portada.

Una buena práctica cuando te enfrentas a retos stego de tipo imagen es realizar una búsqueda inversa. Una búsqueda inversa consiste en buscar la imagen original mediante buscadores especializados como TinEye o Google. Si conseguimos la imagen original podemos resolver el reto simplemente comparando o nos puede dar una idea del tipo de modificación por su diferencia de tamaño, colores, degradados, etc.

Stego 1

Descargamos la imagen del reto. Se trata de una imagen JPEG de 526×263 y 76.6 KB (78445 bytes). Su hash SHA1 es «89aed5bbc3542bf5c60c4c318fe99cb1489f267a«

Realizamos una búsqueda inversa de la imagen y encontramos sin dificultad la imagen original mediante TinEye.

18-06-2016 07-27-02

Características de la imagen original:

  • Resolución: 526×263
  • Tamaño: 78447 bytes (76.6 KB)
  • Hash SHA1: 8924676317077fc07c252ddeec04bd2a0ecfdda4

Por lo que vemos ha cambiado el tamaño de 78447 bytes a 78445 bytes y su hash SHA1 tampoco coincide obviamente, lo que nos confirma que ha sufrido alguna modificación. Echando un vistazo con un editor hexadecimal te puedes volver loco por lo que vamos a realizar una comparación mediante la herramienta online DiffNow.

18-06-2016 07-40-51

Al realizar la comparación sale a relucir lo que buscamos. La clave es una simple cadena de texto.

Stego 2

Lo primero es realizar de nuevo la comparación.

ImagenTamañoSHA1
Original78447 bytes8924676317077fc07c252ddeec04bd2a0ecfdda4
imagen2.jpeg116386 bytes7641e3906f795c137269cefef29f30fcb9cb1b07

Como vemos, la imagen ha aumentado significativamente, de 76,6 KB a 113 KB. Cuando el aumento de tamaño llama la atención normalmente tenemos otro archivo insertado. Lo primero que suelo hacer yo es fijarme si ha sido modificado el final del archivo con un editor hexadecimal. Los bytes de cola de un archivo jpg/jpeg son FFD9 y en este caso no vemos modificación alguna al final del archivo. Si el archivo no está al final requiere realizar una búsqueda más exhaustiva. Para estos casos tengo una herramienta de creación propia que se llama Ancillary y que sirve para buscar cierto tipo de archivos dentro de otros como imágenes, documentos de Office, Open Office, pdf, etc. Ancillary encuentra otro jpg que es el que le daba el peso extra y que vemos a continuación. La clave es el título de la película (ojo a las mayúsculas/minúsculas).

image2_thumb

Stego 3

El tercer reto parece que tiene algún error debido a que el archivo coincide completamente con el original. Pienso que se ha subido la imagen original por error. Se lo he comunicado al admin del dominio y si algún día obtengo respuesta actualizaré la entrada.

ImagenTamañoSHA1
Original78447 bytes8924676317077fc07c252ddeec04bd2a0ecfdda4
imagen3.jpeg78447 bytes8924676317077fc07c252ddeec04bd2a0ecfdda4

Actualización 21/08/2016

Al parecer, la solución de este reto es llegar a la conclusión de que la imagen no está modificada. La respuesta del Administrador de la web así lo confirma.

desingsecurity [at] gmail [dot] com – Sorry about the delay, is precisely what is intended with that challenge, they can determine if the image is changed or not , the challenge was solved you . We’ll be equal way improving this point.

Greetings and Thanks

Stego 4

Lo primero es realizar de nuevo la comparación.

ImagenTamañoSHA1
Original78447 bytes8924676317077fc07c252ddeec04bd2a0ecfdda4
imagen4.jpeg93174 bytesa6329ea4562ef997e5afd067f3b53bdab4665851

Al igual que en el caso dos el tamaño ha aumentado significativamente de modo que miramos al final del archivo y esta vez si vemos que hay insertado unos bytes tras el final del jpg (recordemos FFD9)

18-06-2016 07-10-40

El archivo tiene pinta de ser una hoja de cálculo de Open Office o Libre Office según indica la palabra «spreadsheet«. Lo abrimos con Excel y tras analizar la maraña de datos enseguida vemos una clave que llama la atención.

  • Challengeland (El dominio ya no existe) [Archive]

Herramientas utilizadas

El reto

Se nos proporciona la imagen anterior y se nos invita a resolver la ecuación para el menor entero positivo que representa cada fruta. La solución del reto es concatenar «Flag-» a la suma de los valores de las tres frutas.

Análisis inicial

El enunciado es breve pero ya nos adelanta que existen varias soluciones y que además sólo quieren los números más pequeños que podamos encontrar.

Las frutas están muy bien y son muy sanas pero a nosotros se nos hace más sencillo plantear la ecuación con letras.

\begin{align}
&  \frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=4\\
\end{align}

Para arrojar algo de luz veamos la representación gráfica en 2D y 3D con la ayuda de Desmos.

3D

Las gráficas más que luz nos traen oscuridad de modo que preguntemos a ChatGPT.

ChatGPT

resuelve: (x/y+z)+(y/x+z)+(z/x+y)=4 para enteros positivos

Dado que las variables x, y, z son enteros positivos, podemos intentar encontrar una solución para la ecuación bajo estas condiciones. Sin embargo, encontrar una solución exacta puede ser complejo debido a la naturaleza no lineal de la ecuación. Aun así, podemos intentar algunos enfoques:

  • Prueba y error: Podemos probar diferentes combinaciones de valores enteros positivos para x, y, z y ver si satisfacen la ecuación.
  • Análisis de casos específicos: Podemos comenzar analizando casos más simples, como cuando dos de las variables son iguales, y luego ampliar nuestra búsqueda desde allí.
  • Análisis gráfico o numérico: Utilizando herramientas gráficas o numéricas, podríamos identificar posibles soluciones y luego verificar si son enteros positivos.

Voy a realizar un análisis numérico con un rango limitado de valores para ver si encontramos alguna solución que cumpla con las condiciones. Vamos a probar con valores de 1 a 10 para cada variable.

El análisis numérico para valores de en el rango de 1 a 10 no ha encontrado ninguna solución que satisfaga la ecuación. Esto sugiere que, dentro de este rango, no existen combinaciones de enteros positivos que cumplan con la ecuación.

Dado que la ecuación es bastante compleja y no lineal, es posible que las soluciones, si existen, se encuentren fuera del rango considerado o que requieran un enfoque diferente para ser identificadas. Si tienes un rango específico de valores en mente o si hay alguna otra restricción o contexto relevante, por favor házmelo saber para poder ajustar el análisis en consecuencia.

Básicamente nos está invitando a utilizar prueba y error para encontrar una solución, y el prueba y error de las matemáticas no es más que la fuerza bruta en programación.

El código

Partiendo del problema anterior dame un código en python que realice una comprobación recursiva de todas las variables con un rango de 1 a 999.

soluciones = []
rango_valores_x = range(1, 999)
rango_valores_y = range(1, 999)
rango_valores_z = range(1, 999)

for x in rango_valores_x:
    for y in rango_valores_y:
        for z in rango_valores_z:
            # Calculamos el valor de la expresión para cada combinación de x, y, z
            valor = x / (y + z) + y / (x + z) + z / (x + y)
            # Comprobamos si el valor es igual a 4 y agregamos la solución a la lista
            if abs(valor - 4) < 1e-6:  # Usamos una pequeña tolerancia para evitar errores de precisión
                soluciones.append((x, y, z))

print(soluciones)

Dejo resaltada la línea 12 del código ya que en ella reside el problema. Está comprobando con un margen de tolerancia de 10-6 ya que el resultado de las diferentes fracciones no da como resultado exacto 4. Esto es un problema ya que nosotros necesitamos que de exactamente 4 para validar los valores enteros de x, y y z. Pongo un ejemplo para el que se haya perdido con una solución válida para la tolerancia 10-6 siendo x=2, y=264 y z=993.

\begin{align}
&  \frac{2}{264+993}+\frac{264}{2+993}+\frac{993}{2+264}=4.000000429\\
\end{align}

En otras palabras, ChatGPT nos ha brindado una solución aproximada que no sirve para nuestro propósito. Seguimos probando con el código anterior quitando la tolerancia y con rangos mayores hasta que en 106 paro. Me acaba de quedar claro que con la fuerza bruta no vamos a ninguna parte, o más bien, no tenemos capacidad de computación para resolverlo de ésta manera.

¿Qué está pasando?

Lo que pasa es que estamos ante una ecuación algebraica de 3 incógnitas que deben ser enteros positivos cuya solución se alcanza mediante la teoría de curvas elípticas.

Curvas elípticas

Las curvas elípticas son fundamentales en matemáticas avanzadas, representadas por la ecuación y2=x3+Ax+B, donde A y B son constantes. Estas curvas son un punto de encuentro entre la geometría, la teoría de números y el álgebra, ofreciendo un campo rico para la exploración y el análisis. En este CTF, nos enfocaremos en los puntos racionales de las curvas elípticas. Utilizando el método tangente-secante, un procedimiento geométrico iterativo, buscaremos ampliar un conjunto finito de soluciones conocidas a la ecuación de la curva. Este método nos permite indagar en la estructura de las soluciones racionales, que potencialmente pueden ser infinitas. Además, estableceremos una conexión entre las soluciones enteras de las ecuaciones diofánticas y los puntos racionales en las curvas elípticas partiendo de la ecuación (1) especificada en el análisis inicial. A pesar de su aparente simplicidad, esta ecuación es conocida por presentar soluciones mínimas de gran tamaño.

Adecuación

Antes de nada, necesitamos saber el grado de la ecuación, de modo que planteamos la ecuación en forma polinómica estándar deshaciéndonos de los denominadores.

\begin{align}
\begin{split}
n(a+b)(b+c)(c+a)=a(a+b)(c+a)+b(b+c)(a+b)+c(c+a)(b+c)
\end{split}
\end{align}

Ahora necesitamos expandir y simplificar para llegar a la conclusión de que estamos ante una ecuación diofántica de grado 3. Este proceso es engorroso por la cantidad de términos a manejar así que vamos a utilizar Mathematica como software de respaldo para finalmente obtener el polinomio en la forma de Weierstrass según la ecuación 4.

\begin{align}
&  y^2=x^3+109x^2+224x\\
\end{align}

donde:

\begin{align}
x = \frac{−28(a+b+2c)}{(6a+6b−c)}\\
y = \frac{364(a−b)}{(6a+6b−c)}
\end{align}

Las relación entre la ecuación 3 y los puntos de la curva elíptica se establecen mediante la ecuación 4. Las transformaciones entre las soluciones (a, b, c) y los puntos (x, y) en la curva elíptica vienen dados por las ecuaciones 5 y 6. Con estas transformaciones, cada solución de la ecuación diofántica se puede representar como un punto en la curva elíptica, y las operaciones de suma de puntos en la curva elíptica pueden usarse para encontrar nuevas soluciones de la ecuación diofántica.

Mathematica

El código que tenéis a continuación pertenece al gran trabajo de Aditi Kulkarni [7], que además nos da el resultado para cualquier valor de n. Ojo porque para n=4 el resultado tiene 81 dígitos, para n=6 tiene 134, para n=10 tiene 190 y para n=12 asciende a 2707 dígitos.

(* Asignar un valor numérico a n *)
n = 4;
(* Definir la ecuación de una curva elíptica en términos de n *)
curve4 = y^2 == x^3 + (4*n^2 + 12*n - 3)*x^2 + 32*(n + 3)*x;
(* Encontrar un punto racional en la curva que no sea (4,0) *)
P4 = {x, y} /. First[FindInstance[curve4 && x != 4 && y != 0, {x, y}, Integers]];
(* Función para calcular la pendiente entre dos puntos en la curva, 
   o la derivada en el punto si son iguales *)
Slope4[{x1_, y1_}, {x2_, y2_}] := 
  If[x1 == x2 && y1 == y2, 
     ImplicitD[curve4, y, x] /. {x -> x1, y -> y1}, 
     (y2 - y1)/(x2 - x1)];
(* Función para calcular la intersección en y de la línea entre dos puntos 
   o la tangente en el punto si son iguales *)
Intercept4[{x1_, y1_}, {x2_, y2_}] := y1 - Slope4[{x1, y1}, {x2, y2}]*x1; 
(* Función para encontrar el siguiente punto racional en la curva *)
nextRational4[{x1_, y1_}, {x2_, y2_}] := 
  {Slope4[{x1, y1}, {x2, y2}]^2 - CoefficientList[curve4[[2]], x][[3]] - x1 - x2, 
   -Slope4[{x1, y1}, {x2, y2}]^3 + Slope4[{x1, y1}, {x2, y2}]*(CoefficientList[curve4[[2]], x][[3]] + x1 + x2) - Intercept4[{x1, y1}, {x2, y2}]};
(* Función para convertir un punto en la curva elíptica a una solución diofántica *)
ellipticToDiophantine[n_, {x_, y_}] := 
  {(8*(n + 3) - x + y)/(2*(4 - x)*(n + 3)), 
   (8*(n + 3) - x - y)/(2*(4 - x)*(n + 3)), 
   (-4*(n + 3) - (n + 2)*x)/((4 - x)*(n + 3))};
(* Usar nextRational4 para iterar desde P4 hasta encontrar una solución 
   válida y positiva para la ecuación diofántica *)
sol4 = ellipticToDiophantine[n, 
   NestWhile[nextRational4[#, P4] &, P4, 
     ! AllTrue[ellipticToDiophantine[n, #], Function[item, item > 0]] &]];
(* Escalar la solución para obtener enteros mínimos *)
MinSol4 = sol4*(LCM @@ Denominator[sol4])
(* Suma de las tres variables*)
Total[MinSol4]

Solución

Concatenando Flag- con el resultado de Mathematica tenemos la ansiada flag.

Flag-195725546580804863527010379187516702463973843196699016314931210363268850137105614

Conclusiones

ChatGPT ha demostrado ser eficaz en el análisis y la resolución de problemas, siempre que se le proporcione el contexto adecuado. Sin embargo, es importante ser conscientes de que la respuesta proporcionada puede ser aproximada, especialmente si la solución requiere una gran cantidad de recursos computacionales. Por ejemplo, al trabajar con una ecuación diofántica y valores específicos para (x) e (y), ChatGPT puede ayudar a calcular puntos como (P), (2P), (3P), etc., pero hay que tener en cuenta que los resultados para estos puntos pueden ser estimaciones.

Finalmente, os invito a leer la solución de Mingliang Z. [4], en la que se resuelve el problema por completo y de forma muy detallada.

Enlaces

Introducción

Tal y como nos adelanta el creador está programado en .NET. Lo abrimos para ver su comportamiento y a simple vista ya vemos algo que no nos gusta y es que se abre una ventana de DOS y posteriormente aparece el crackme. Esto indica que el ejecutable está escondido dentro de otro, empaquetado, encriptado o vete a saber.

Desempaquetado

Nuestras sospechas eran ciertas, abrimos el executable con ILSpy y no encontramos lo que buscamos, pero si vemos que al assembly se le hace algo parecido a un XOR. Probemos con algo sencillo, abrimos el crackme y la herramienta .Net Generic Unpacker y probamos a desempaquetar.
27-08-2014-2B12-33-33
Esto nos genera un par de «exes» que ahora si abre correctamente nuestro decompilador.

Decompilado

Vamos a fijarnos en la rutina de comprobación del serial. Lo interesante se encuentra en btnCheckClick y TLicense.
Código fuente.
Como vemos en el código, License.a.a, License.a.b y License.a.c cogen 8 dígitos y License.a.d coge 10. A continuación comprueba que Licenseb.a = License.a.a XOR License.a.b y que Licenseb.b = License.a.c XOR License.a.d.
Una imagen vale más que mil palabras.
En su día hice un keygen, aquí teneis una captura.
Podeis encontrar el crackme, mi solución y otras soluciones en crackmes.de.

Links


Warning: This challenge is still active and therefore should not be resolved using this information.  Aviso: Este reto sigue en
La esperada cuarta entrega de La Jungla de Cristal se metió de lleno en el mundo de los Hackers. Cuando
En Parque Jurásico (1993), la informática no es solo un elemento narrativo, es una pieza clave del suspense y del
En este reto se nos entrega un archivo WAV de 9,92 MB. Tras escucharlo y analizarlo por encima con Audacity

Warning: This challenge is still active and therefore should not be resolved using this information.
 Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Introducción

 Realistic Challenge 1: Your friend tried to purchase some software off a company. But after he paid they decided to increase it’s price by a large amount. They are now refusing to send it him. Get them back by getting their most expensive software a lot cheaper than they intended you to.
Lo que nos dice el enunciado del reto a groso modo es que debemos cambiar el precio del software antes de comprarlo.

Firebug

 Para resolver este reto basta con tener instalado el complemento para Firefox «Firebug«. Abrimos la web y echamos un vistazo con Firebug
Vemos un parámetro oculto que se llama «amount» y que tiene un valor de 100$. Basta con cambiarlo a 00,01$ y ya tenemos resuelto el reto.

Links

La esperada cuarta entrega de La Jungla de Cristal se metió de lleno en el mundo de los Hackers. Cuando la vi en su época he de reconocer que el detalle que explicaremos a continuación me pasó desapercibido.

Hablemos de mineralismo.. digo de IPs privadas

Digamos que a día de hoy, quien más y quien menos, sabe lo que es una IP y para que sirve. Si no lo sabes, digamos resumidamente que es un número que nos identifica dentro de una red. En el protocolo IPv4 son 4 grupos de números entre 0 y 255. Como todo protocolo que se precie, tiene ciertos rangos de direcciones reservados para redes privadas y el resto digamos que son públicas. El rango de direcciones privadas para IPv4 es el siguiente:

  • De 10.0.0.0 a 10.255.255.255
  • 172.16.0.0 a 172.31.255.255
  • 192.168.0.0 a 192.168.255.255
  • 169.254.0.0 a 169.254.255.255

BTM

Como hemos hablado en otras ocasiones, en el cine se exagera todo lo relacionado con el mundo tecnológico y en especial el mundo «Hacking«, y es normal encontrarnos elaborados entornos gráficos que quedan muy bien pero que no existen en el mundo real.

En la Jungla 4.0 usaron IPs privadas como públicas sin ton ni son y perdón si me repito pero, ¿nadie contrata consultores?, es decir, vas a realizar una película sobre hackers y ¿no contratas a alguien que tenga unos conocimientos mínimos?, pues al parecer es mucho pedir, las imágenes hablan por si solas.

En la imagen superior se puede ver como están conectados al sistema de ventilación del NDA. Podría pasar si estuvieran físicamente en las instalaciones del NDA y se conectaran desde un equipo de allí, pero al hacerlo de forma remota crean un enorme gazapo.

Esto es una pequeña muestra de lo que muestra la película. También hay escenas en las que se usan IPs públicas correctamente pero en general cometen el error de forma recurrente.

Enlaces


BTM
Introducción Funcionamiento de RSA OllyDbg Calculando un serial válido Ejemplo operacional Keygen Links Introducción Empezamos con lo que espero que
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
Habitualmente suelo descargar shareware por diversión para evaluar de que manera protegen los programadores su software. Cada vez es más

Introducción

Empezamos con lo que espero que sea una serie de crackmes RSA. En este caso en particular y como el propio autor nos adelanta, se trata de RSA-200.

En criptografía, RSA (Rivest, Shamir y Adleman) es un sistema criptográfico de clave pública desarrollado en 1977. Es el primer y más utilizado algoritmo de este tipo y es válido tanto para cifrar como para firmar digitalmente.

 Funcionamiento de RSA

  1. Inicialmente es necesario generar aleatoriamente dos números primos grandes, a los que llamaremos p y q.
  2. A continuación calcularemos n como producto de p y q:
    n = p * q
  3. Se calcula fi:
    fi(n)=(p-1)(q-1)
  4. Se calcula un número natural e de manera que MCD(e, fi(n))=1 , es decir e debe ser primo relativo de fi(n). Es lo mismo que buscar un numero impar por el que dividir fi(n) que de cero como resto.
  5. Mediante el algoritmo extendido de Euclides se calcula d que es el inverso modular de e.
    Puede calcularse d=((Y*fi(n))+1)/e para Y=1,2,3,... hasta encontrar un d entero.
  6. El par de números (e,n) son la clave pública.
  7. El par de números (d,n) son la clave privada.
  8. Cifrado: La función de cifrado es.
    c = m^e mod n
  9. Descifrado: La función de descifrado es.
    m = c^d mod n

OllyDbg

Con OllyDbg analizamos la parte del código que nos interesa.

00401065  |>push    19                          ; /Count = 19 (25.)
00401067  |>push    00404330                    ; |Buffer = dihux_ke.00404330
0040106C  |>push    2711                        ; |ControlID = 2711 (10001.)
00401071  |>push    dword ptr [ebp+8]           ; |hWnd
00401074  |>call    <GetDlgItemTextA>           ; \GetDlgItemTextA
00401079  |>cmp     eax, 5                      ;  Tamaño nombre >= 5
0040107C  |>jb      00401214
00401082  |>cmp     eax, 14                     ;  Tamaño nombre <= 0x14
00401085  |>ja      00401214
0040108B  |>mov     [404429], eax
00401090  |>push    96                          ; /Count = 96 (150.)
00401095  |>push    00404349                    ; |Buffer = dihux_ke.00404349
0040109A  |>push    2712                        ; |ControlID = 2712 (10002.)
0040109F  |>push    dword ptr [ebp+8]           ; |hWnd
004010A2  |>call    <GetDlgItemTextA>           ; \GetDlgItemTextA
004010A7  |>test    al, al
........
004010D8  |>xor     ecx, ecx                    ;  Case 0 of switch 004010B6
004010DA  |>/push    0
004010DC  |>|call    <__BigCreate@4>
004010E1  |>|mov     [ecx*4+404411], eax
004010E8  |>|inc     ecx
004010E9  |>|cmp     ecx, 6
004010EC  |>\jnz     short 004010DA
004010EE  |>push    dword ptr [404411]          ; /Arg3 = 00B60000
004010F4  |>push    10                          ; |16??
004010F6  |>push    0040401F                    ; |Arg1 = 0040401F ASCII "8ACFB4D27CBC8C2024A30C9417BBCA41AF3FC3BD9BDFF97F89"
004010FB  |>call    <__BigIn@12>                ; \dihux_ke.004013F3
00401100  |>push    dword ptr [404415]          ; /Arg3 = 00C70000
00401106  |>push    10                          ; |Arg2 = 00000010
00401108  |>push    00404019                    ; |Arg1 = 00404019 ASCII "10001"
0040110D  |>call    <__BigIn@12>                ; \dihux_ke.004013F3
00401112  |>push    dword ptr [404425]          ; /Arg3 = 00CB0000
00401118  |>push    10                          ; |Arg2 = 00000010
0040111A  |>push    00404349                    ; |Arg1 = 00404349 ASCII "123456789123456789"
0040111F  |>call    <__BigIn@12>                ; \dihux_ke.004013F3
00401124  |>push    00404330                    ; /String = "deurus"
00401129  |>call    <lstrlenA>                  ; \lstrlenA
0040112E  |>push    dword ptr [404419]
00401134  |>push    eax
00401135  |>push    00404330                    ;  ASCII "deurus"
0040113A  |>call    <__BigInB256@12>
0040113F  |>push    dword ptr [404421]          ;  c
00401145  |>push    dword ptr [404411]          ;  n = 8ACFB4D27CBC8C2024A30C9417BBCA41AF3FC3BD9BDFF97F89
0040114B  |>push    dword ptr [404415]          ;  e = 10001
00401151  |>push    dword ptr [404425]          ;  serial
00401157  |>call    <__BigPowMod@16>            ;  c = serial^e (mod n)
0040115C  |>mov     eax, 1337
00401161  |>push    0                           ; /Arg4 = 00000000
00401163  |>push    dword ptr [40441D]          ; |x
00401169  |>push    eax                         ; |0x1337
0040116A  |>push    dword ptr [404421]          ; |c
00401170  |>call    <__BigDiv32@16>             ; \x = c/0x1337
00401175  |>push    dword ptr [40441D]          ;  x
0040117B  |>push    dword ptr [404419]          ;  nombre
00401181  |>call    <__BigCompare@8>            ; ¿x = nombre?
00401186  |>jnz     short 0040119C
00401188  |>push    0                           ; /Style = MB_OK|MB_APPLMODAL
0040118A  |>push    00404014                    ; |Title = "iNFO"
0040118F  |>push    00404004                    ; |Text = "Serial is valid"
00401194  |>push    dword ptr [ebp+8]           ; |hOwner
00401197  |>call    <MessageBoxA>               ; \MessageBoxA
0040119C  |>xor     ecx, ecx
0040119E  |>/push    dword ptr [ecx*4+404411]
004011A5  |>|call    <__BigDestroy@4>
004011AA  |>|inc     ecx
004011AB  |>|cmp     ecx, 6
004011AE  |>\jnz     short 0040119E

 Lo primero que observamos es que el código nos proporciona el exponente público (e) y el módulo (n).

  • e = 10001
  • n = 8ACFB4D27CBC8C2024A30C9417BBCA41AF3FC3BD9BDFF97F89

A continuación halla c = serial^d mod n. Finalmente Divide c entre 0x1337 y lo compara con el nombre.

Como hemos visto en la teoría de RSA, necesitamos hallar el exponente privado (d) para poder desencriptar, según la fórmula vista anteriormente.

  • Fórmula original: m=c^d mod n
  • Nuestra fórmula: Serial = x^d mod n. Siendo x = c * 0x1337

Calculando un serial válido

Existen varios ataques a RSA, nosotros vamos a usar el de factorización. Para ello vamos a usar la herramienta RSA Tool. Copiamos el módulo (n), el exponente público (e) y factorizamos (Factor N).

rsatool1

Hallados los primos p y q, hallamos d (Calc. D).

rsatool4

Una vez obtenido d solo nos queda obtener x, que recordemos es nombre * 0x1337.

Cuando decimos nombre nos referimos a los bytes del nombre en hexadecimal, para deurus serían 646575727573.

Ejemplo operacional

Nombre: deurus

x = 646575727573 * 0x1337 = 7891983BA4EC4B5
Serial = x^d mod n
Serial = 7891983BA4EC4B5^32593252229255151794D86C1A09C7AFCC2CCE42D440F55A2D mod 8ACFB4D27CBC8C2024A30C9417BBCA41AF3FC3BD9BDFF97F89
Serial = FD505CADDCC836FE32E34F5F202E34D11F385DEAD43D87FCD

Como la calculadora de Windows se queda un poco corta para trabajar con números tan grandes, vamos a usar la herramienta Big Integer Calculator. A continuación os dejo unas imágenes del proceso.

bigint_1

bigint_2

crackme_dihux_solved

Keygen

En esta ocasión hemos elegido Java ya que permite trabajar con números grandes de forma sencilla, os dejo el código más importante.

dihux_keygenme1_keygen

JButton btnNewButton = new JButton("Generar");
btnNewButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent arg0) {
BigInteger serial = new BigInteger("0");
BigInteger n = new BigInteger("871332984042175151665553882265818310920539633758381377421193");//módulo
BigInteger d = new BigInteger("316042180198461106401603389463895139535543421270452849695277");//exponente privado
BigInteger x = new BigInteger("4919");//0x1337
String nombre = t1.getText();
BigInteger nombre2 = new BigInteger(nombre.getBytes());
nombre2 = nombre2.multiply(x);
serial = nombre2.modPow(d, n);
t2.setText(serial.toString(16).toUpperCase());
}
});

Links


Intro Hoy vamos a hacer algo diferente, vamos a hacer un keygen con la propia víctima. El término anglosajón para
MI_cartel
Intro La primera entrega de Misión Imposible es ya un clásico y poco o nada tiene que envidiar a sus
En Parque Jurásico (1993), la informática no es solo un elemento narrativo, es una pieza clave del suspense y del
AVISO: Debido a que este reto está en activo no publicaré a donde pertenece. El reto en cuestión nos presenta

Hace poco me puse a leer El oscuro pasajero de Jeff Lindsay, novela que inspiró la serie Dexter. La nostalgia me invadió y al final decidí volver a ver la primera temporada que tanto me gustó hace unos años. Para mi sorpresa, muchos de los detalles que recordaba de la serie eran incorrectos o incompletos. Bueno, el caso es que en esta ocasión me he fijado más en los detalles y he descubierto una pequeña perla en el capítulo 8 de la primera temporada.

ALERTA DE SPOILER: Aunque la serie tiene unos añitos no quisiera fastidiarsela a nadie. Si continuas leyendo puede que te enteres de algo que no quieras.

Missed connection

En un momento dado, a Dexter se le ocurre la feliz idea de contactar con el asesino en serie que le está dejando regalitos y no se le ocurre mejor idea que hacerlo en una web de contactos cualquiera. La web en cuestión es www.miamilist12.com/miami/main y Dexter decide escribir un mensaje en el hilo missed connections. A continuación la secuencia de imágenes.

mailto:frozenbarbie@hotmail.???

La simple idea de escribir en un tablón, foro, lista, etc y esperar que el asesino en serie lo lea ya es una locura. Pero señor@s, esto es ficción, y por supuesto el asesino no solo ve el mensaje si no que responde a Dexter creando un pequeño error con las direcciones de email. Y es que cuando el asesino ve el mensaje se puede apreciar que la dirección de email de Dexter es frozenbarbie@hotmail.web y cuando el asesino le responde, se ve claramente que lo hace a la dirección frozenbarbie@hotmail.com. A continuación las imágenes.

Además me ha llamado la atención que aunque es evidente que el asesino usa Windows XP, se puede apreciar que han retocado en post-producción el botón de inicio para que quede oculto.

Nos vemos en el siguiente BTM.

Intro

Hoy tenemos un crackme realizado en Visual C++ 6. Es el típico serial asociado a un nombre.

El algoritmo

Localizamos con Olly la rutina de comprobación del serial y empezamos a analizar. Vemos una serie de Calls que lo único que hacen es comprobar el tamaño de nuestro nombre y serial y si es <5 dígitos nos tira afuera.

saltos_iniciales

Una vez pasada la traba anterior procede con un bucle para el nombre y otro para el serial. Yo he metido deurus y 123456. El bucle del nombre hace xor al los dígitos ascii con un valor incremental a partir de 1. Reconvierte el valor resultante en su caracter correspondiente y lo almacena.

00401576     |.  B9 01000000   MOV ECX,1                         ; ECX = 1
0040157B     |.  33D2          XOR EDX,EDX
0040157D     |.  8B45 E4       MOV EAX,[LOCAL.7]                 ; EAX = Nombre
00401580     |>  8A18          /MOV BL,BYTE PTR DS:[EAX]         ; BL = digito que toque  <--
00401582     |.  32D9          |XOR BL,CL                        ; digito XOR ECX
00401584     |.  8818          |MOV BYTE PTR DS:[EAX],BL         ; sustituye el digito nombre por el resultante del xor
00401586     |.  41            |INC ECX                          ; ECX++
00401587     |.  40            |INC EAX                          ; Siguiente digito
00401588     |.  8038 00       |CMP BYTE PTR DS:[EAX],0
0040158B     |.^ 75 F3         \JNZ SHORT crackme3.00401580      ; Bucle -->

 Ejemplo:

d  e  u  r  u  s
64 65 75 72 75 73

(d)64 xor 1 = 65(e)
(e)65 xor 2 = 67(g)
(u)75 xor 3 = 76(v)
(r)72 xor 4 = 76(v)
(u)75 xor 5 = 70(p)
(s)73 xor 6 = 75(u)

Nombre:    deurus
Resultado: egvvpu

Hace lo mismo con el serial pero con el valor incremental a partir de 0xA (10).

00401593     |.  B9 0A000000    MOV ECX,0A                      ; ECX = A
00401598     |.  33D2           XOR EDX,EDX
0040159A     |.  8B45 F0        MOV EAX,[LOCAL.4]               ; EAX = Serial
0040159D     |>  8A18           /MOV BL,BYTE PTR DS:[EAX]       ; BL = digito que toque  <--
0040159F     |.  32D9           |XOR BL,CL                      ; BL XOR CL
004015A1     |.  8818           |MOV BYTE PTR DS:[EAX],BL       ; sustituye el digito serial por el resultante del xor
004015A3     |.  41             |INC ECX                        ; ECX++
004015A4     |.  40             |INC EAX                        ; Siguiente digito
004015A5     |.  8038 00        |CMP BYTE PTR DS:[EAX],0
004015A8     |.^ 75 F3          \JNZ SHORT crackme3.0040159D    ; Bucle -->

Ejemplo:

1  2  3  4  5  6
31 32 33 34 35 35

(1)31 xor A = 3B(;)
(2)32 xor B = 39(9)
(3)33 xor C = 3F(?)
(4)34 xor D = 39(9)
(5)35 xor E = 3B(;)
(6)36 xor F = 39(9)

Serial:    123456
Resultado: ;9?9;9

A continuación compara «egvvpu» con «;9?9;9» byte a byte.

KeyGen

El KeyGen quedaría así

for(int i = 0; i <= strlen(Nombre); i = i + 1)
                {
                        Serial[i] = (Nombre[i]^(i+1))^(0xA + i);
                }

 Links


Intro Hoy tenemos aquí otro crackme sacado del baúl de los recuerdos. En este caso se trata de una protección
AVISO: Debido a que este reto está en activo no publicaré a donde pertenece. Ya sabéis que los retos stego
Introducción Javascript 1 (Serial a la vista) Javascript 2 (La función charAt()) Javascript 3 (Input) Javascript 4 (Fuerza bruta manual) Javascript
Introducción Siguiendo con los crackmes que contienen RSA, esta vez tenemos un Keygenme del grupo PGC (Pirates Gone Crazy) que

st2 arcade

He de iniciar esta entrada diciendo que la segunda temporada de Stranger Things es sencillamente genial. Son 9 horas intensas que no dejan indiferente a nadie y además en el capítulo 8 nos han dejado una de esas perlas informáticas que tanto nos gustan.

La escena la protagoniza Bob Newby, un buen hombre amante de la electrónica de aquella época que trabaja en RadioShack y transcurre en el laboratorio secreto de Hawkins. En un momento dado, Bob propone «saltarse» la seguridad del laboratorio y para ello se traslada al sótano donde se encuentran los «servidores».

El PC de la época

Para comprender esta escena hay que situarse temporalmente. Estamos hablando de los años 80, en concreto la escena transcurre en 1984 y los equipos de los que dispone el laboratorio son unos maravillosos IBM. No se llega a apreciar bien el modelo de IBM utilizado pero teniendo en cuenta que el monitor que aparece es un terminal IBM 3180, la búsqueda se reduce a los sistemas compatibles S/36, S/38, AS/400, 5294 ó 5394.

IBM 3180

IBM 3180 (https://www.argecy.com/3180)

Cracking BASIC or BASIC Cracking?

La escena plantea un ataque de fuerza bruta a un código de 4 dígitos como se puede observar en la imagen a continuación. Esto puede parecer una chorrada hoy día pero podía suponer un pequeño reto para un micro de 8 bits.

Cracking Basic or Basic Cracking?

Cracking Basic or Basic Cracking?

A simple vista se aprecian una serie de bucles recursivos, una llamada a una función y una sentencia condicional. Desconozco si la sintaxis del lenguaje es la correcta pero mucho me temo que es más bien una mezcla de BASIC y pseudocódigo. Pero lo que más me ha llamado la atención sin duda es que la palabra THEN parece que se sale del monitor como si estuviera realizado en post-producción. Os invito a que ampliéis la imagen y comentéis lo que os parece a vosotr@s.

Os dejo aquí el código para los más curiosos.

10 DIM FourDigitPassword INTEGER
20 FOR i = 0 TO 9
30 		FOR j = 0 TO 9
40			FOR k = 0 TO 9
50				FOR l = 0 TO 9
60					FourDigitPassword = getFourDigits (i,j,k,l)
70					IF checkPasswordMatch(FourDigitPassword) = TRUE THEN
80						GOTO 140
90					END
100				NEXT l
110			NEXT k
120		NEXT j
130 NEXT i
140 PRINT FourDigitPassword

Aunque  la entrada está dentro del contexto de los Blooper Tech Movies, digamos que en esta ocasión no voy a ir más allá. La escena es creíble y queda bien integrada en la época en la que se desarrolla el capítulo. Por esto mismo, solamente espero que las temporadas venideras sean tan buenas y cuiden tanto los detalles como sus predecesoras.

Referencias

[1] Ficha IMDB – Stranger Thing

[2] Wikia de Stranger Things

[3] IBM 3180

[4] BASIC

Libros

Hacker Épico

La apacible existencia de Ángel Ríos da un vuelco cuando una antigua compañera de clase, de la que siempre ha estado enamorado, le pide ayuda para descifrar un misterioso archivo. A partir de entonces, Ángel se verá envuelto en una intriga relacionada con el contenido del archivo, que complicará su vida y lo expondrá a un grave peligro. En el camino hacia la verdad, únicamente contará con sus sorprendentes conocimientos de hacking y el apoyo de su peculiar amigo Marcos. Técnicas de hacking web, sistemas y análisis forense son algunos de los temas que se tratan con total rigor en esta mezcla de novela negra y manual técnico.

Web oficial

La Caza de Hackers: Ley y Desorden en la Frontera Electrónica

En 1990, la caída del sistema del día de Martin Luther King, que afecto a la compañía telefónica AT&T y dejó sin comunicaciones a millones de norteamericanos, desencadenó la persecución y detención de decenas de hackers, acusados de causar el hundimiento, que hasta ese momento era ignorados por la policía y las leyes. Bruce Sterling, considerado uno de los mayores expertos en el género del ciberpunk, nos ofrece un apasionante reportaje desde el principio de la era de internet, los ordenadores personales, y la frontera electrónica partiendo de la base de ese hecho inaudito. Con una entretenida prosa novelesca, Sterling nos lleva a conocer a todos los implicados en el asunto, desde los primeros activistas de internet hasta los policías encargados del caso, que cimentó los pilares de lo que hoy es la libertad de expresión en Internet. 25 años después de los sucesos del día de Martin King, «La Caza de Hackers», se ha convertido en un libro de culto y un documento histórico imprescindible para comprender y entender la transformación y el impacto de las nuevas comunicaciones en el Siglo XXI.

Cybersecurity for the Home and Office

El título de este libro anima a que tomes control de la ciberseguridad no solo en tu trabajo, sino también para tus asuntos personales. La ciberdelincuencia es una industria delictiva que mueve miles de millones de dólares al año y cuyos actores apenas temen a las fuerzas del orden. Los incidentes siguen creciendo, y más allá de la protección en los lugares de trabajo, también es necesario protegernos a nosotros mismos y a nuestras familias.

Web oficial

Messing with the Enemy: Surviving in a Social Media World of Hackers, Terrorists, Russians, and Fake News

Clint Watts, un ex agente especial del FBI, oficial del Ejército de Estados Unidos y destacado experto en ciberseguridad, ofrece una mirada devastadora y esencial a las campañas de desinformación, las noticias falsas y las operaciones de espionaje electrónico que se han convertido en la vanguardia de la guerra moderna. También ofrece consejos para protegernos en nuestro día a día.

Cybersecurity: An Essential Guide to Computer and Cyber Security for Beginners, Including Ethical Hacking, Risk Assessment, Social Engineering, Attack and Defense Strategies, and Cyberwarfare

Con multitud de ejemplos, este libro le mostrará que Internet no es simplemente una forma de ver vídeos de gatos monos; es un campo de batalla, un invento militar que se descubrió accidentalmente que era capaz de dominar cualquier amenaza económica, digital y políticamente.
Desde los foros más burdos hasta los servicios en línea más sofisticados, hay una guerra en marcha y, lo quieras o no, estás implicado por el mero hecho de estar aquí, así que mejor ármate de conocimientos.

Hackstory.es

Historia de la comunidad hacker en España, centrada en la década de los 90, cuando aparecen los primeros grupos y nace la cultura hacker. El libro narra el quién fue quién, así como sus hazañas, anécdotas y colectivos e individuales más punteros. Este ingente trabajo de investigación nació en 2009, con la puesta en marcha de un wiki, al estilo wikipedia, llamado Hackstory.net y donde en estos años la autora ha ido creando fichas, accesibles al público, que le han permitido escribir este libro, sin parangón en Europa. La comunidad hacker ha revisado los textos así como apoyado a la autora, tanto a la hora de aportar información, como en una campaña de «crowdfunding» con la que se consiguió una respetable cantidad para tener el tiempo suficiente de escribir el libro. Además de ser sus principales mecenas, protagonistas y aportadores de información, los hackers españoles han participado en todos los aspectos organizativos relacionados con la producción y distribución del libro.

Documentales

Hackers wanted

Documental narrado por Kevin Spacey que explora los orígenes y la naturaleza de los hackers y los piratas informáticos.
Sigue las aventuras de Adrián Lamo, un célebre hacker y periodista estadounidense, conocido por haber delatado a Chelsea Manning, el soldado que presuntamente filtró a WikiLeaks el vídeo que mostraba a soldados americanos asesinando a civiles en
Afganistán.

Hackers are people too

Este documental tiene como objetivo retratar de forma exhaustiva la comunidad hacker. En un esfuerzo por cuestionar las ideas preconcebidas y los estereotipos de los medios de comunicación, HACKERS ARE PEOPLE TOO permite a los hackers hablar por sí mismos y presentar su comunidad al público.

Hackers in Wonderland

Hackers in Wonderland es un documental del año 2000, producido y dirigido por Russell Barnes.
Se centra en los hackers del Reino Unido, y contiene entrevistas con ellos donde revelan lo que les impulsa a hackear y sus opiniones sobre el hacktivismo.

Hackers: Wizards of the electronic age

Este documental sobre la comunidad de hackers incluye imágenes de una conferencia de hackers y entrevistas con algunos de los programadores que crearon la revolución de los ordenadores personales, como Bill Atkinson, Bill Budge o Doug Carlston.
Convertido ya en un clásico sobre la revolución de los ordenadores, las entrevistas fueron grabadas durante un largo fin de semana en una conferencia de hackers
de 1984.

Podcast

conCISOS

Programa en el que se conversa con grandes profesionales del mundo de la seguridad para conocer su visión sobre la situación actual y la ciberseguridad.

Spotify | Ivoox

Brigada OSINT

El único Podcast en español íntegramente dedicado al OSINT (Open Source Intelligence), conjunto de técnicas y herramientas para recopilar información pública, correlacionar los datos y procesarlos. Está dirigido por el Analista y Consultor OSINT David Sanz y son episodios de menos de una hora donde se habla de casos reales, herramientas, noticias, libros y documentales.

Web Oficial

Ciberseguridad sin censura

Ciberseguridad sin censura, es el podcast del Instituto de Ciberseguridad en el que se tocan temas relacionados a la tecnología y seguridad, de forma objetiva y sin censura.
Su visión es que a través de este podcast, puedas encontrar noticias, entrevistas y temas de tecnología y seguridad en general desde un punto de vista completamente imparcial.

Spotify

The social engineer

Podcast centrado en ingeniería social. Entender cómo interactuamos, nos comunicamos y transmitimos información puede ayudarnos a proteger, mitigar y comprender este tipo de ataques.

Spotify

401 access denied

Cada quince días, el hacker ético de Delinea Joseph Carson y los expertos en formación en ciberseguridad deCybrary comparten sus puntos de vista con invitados especiales en este interesante podcast sobre la actualidad en materia de ciberseguridad.

Web oficial

Videojuegos

else Heart.Break ()

Sebastian acaba de conseguir su primer trabajo en la lejana ciudad de Dorisburg. Se traslada allí para
comenzar su vida adulta y averiguar quién quiere ser realmente.
Entre una extraña colección de personas, hackers y activistas, encuentra algunos verdaderos amigos, e incluso el amor. Pero, ¿podrán detener los terribles actos de la gente que gobierna la ciudad?
Else Heart.Break () es una vuelta de tuerca del juego de aventuras: una historia fantástica ambientada en un mundo totalmente dinámico e interactivo.

Steam

Hackmud

Hackmund es un simulador de hacking multijugador basado en texto para ordenadores personales compatibles con Intel.
En este emocionante videojuego, los jugadores pueden descifrar sistemas protegidos y resolver rompecabezas mientras exploran la abandonada Internet del futuro. Además, pueden escribir scripts para proteger sus ganancias y engañar a otros jugadores.

Steam | Web oficial

TIS-100

En este juego de programación desarrollado por Zachtronics Industries, puedes desarrollar un código de lenguaje ensamblador simulado para realizar ciertas tareas en un ordenador ficticio virtualizado de la década de 1970.

Steam | Web oficial

Pelis

Algorithm

Will es un experto en seguridad informática que trabaja como consultor y hacker independiente en San Francisco.
Su vida da un vuelco cuando es contratado por un hombre que quiere pruebas de la infidelidad de su mujer. En su investigación, descubre un misterioso programa informático del gobierno, un aterrador sistema de identificación y tracking de personas.

23 – Nichts ist so wie es scheint («Nothing is what it seems»)

Hannover, finales de los años ochenta. El huérfano Karl Koch invierte su herencia en un ordenador personal. Al principio lo usa para captar noticias sobre discusiones de teorías conspirativas inspiradas en su novela favorita, “Illuminatus”, de R.A. Wilson, pero pronto Karl y su amigo David empiezan a introducirse en ordenadores del gobierno y del ejército.
Esta apasionante historia real sobre unos jóvenes alemanes, obtuvo reconocimientos a premios importantes dentro de su país de origen.

Johnny Mnemonic

Película de 1995 que tiene a Keanu Reeves como protagonista.
Corre el año 2021 y la mitad de la población sufre de una enfermedad llamada “síndrome de atenuación de los nervios”. Johnny es un mensajero de información, una persona que lleva los datos más importantes del siglo XXI directamente implantados en su cerebro. Su información será muy valiosa para una gran corporación, que no parará hasta dar con él.
A pesar de no haber recibido buenas críticas en su momento, su visionado futurista resulta entretenido.

Who Am I: ningún sistema es seguro

Benjamin se siente invisible, pero esto cambia cuando conoce al carismático Max. Aunque aparentemente no podrían ser más diferentes, ambos comparten el mismo interés: la piratería informática.
Junto con los amigos de Max, forman un grupo subversivo de hackers que desafía al sistema y Benjamin se siente parte de algo por primera vez en su vida.
Pero la cosa se pone seria de repente, cuando el grupo es incluido en la lista de buscados de la policía alemana y la Europol.

Hackers (Piratas Informáticos)

Dade acaba de mudarse con su madre a la ciudad de Nueva York. En su primer día de escuela conocerá a un grupo de jóvenes cuya afición es piratear sistemas informáticos por diversión. Dadee se unirá a ellos, pero todo se complica cuando descubren que están siendo vigilados por las autoridades. Cuando el grupo se entera de la existencia de un plan para liberar un peligroso virus en la Red, todos deberán utilizar sus habilidades informáticas para conseguir pruebas de ello mientras el Servicio Secreto y el malvado genio de los ordenadores que ha creado el virus les pisan los talones.

La Red Social

Película biográfica dirigida por David Fincher, estrenada el 24 de septiembre de 2010, en el Festival de Cine de Nueva York. Esta narra un drama de tribunales, sobre las implicaciones morales del entonces ascendente Mark Zuckerberg (interpretado por Jesse Eisenberg), cuyas peripecias lo encaminaron en la construcción de un imperio billonario, y de cómo alguien poco sociable logró conectar a cientos de millones de personas a través de su creación, Facebook.

La Red

El primer día de sus vacaciones, una programadora de ordenadores recibe un extraño disquet para que lo investigue. Se lo guarda y descubre que posee una clave para acceder al control de las bases de datos protegidas de Estados Unidos. A la vez ve cómo todos los datos de su vida que figuran en archivos informáticos son suprimidos o tergiversados.

Blackhat – Amenaza en la red

Thriller cibernético en el que varios agentes norteamericanos y chinos, con ayuda de un convicto liberado, se unen para detener a un misterioso hacker. Todo comienza cuando los gobiernos de Estados Unidos y China se ven obligados a cooperar por el bien de la seguridad nacional de ambas potencias. El motivo: una fuerte amenaza informática está poniendo en riesgo las vidas y el futuro de la población. Delitos informáticos de alto nivel para los que deberán recurrir a sus mejores agentes de campo si quieren llegar a tiempo para evitar lo peor.

The Matrix

Representa un futuro distópico en el que la humanidad está atrapada sin saberlo dentro de una realidad simulada llamada Matrix, que las máquinas inteligentes han creado para distraer a los humanos mientras usan sus cuerpos como fuente de energía en campos de cultivo.​ Cuando el programador informático Thomas Anderson, bajo el alias de hacker «Neo», descubre la incómoda verdad, se une a una rebelión contra las máquinas junto con otras personas que han sido liberadas de Matrix. Siendo estrenada en los Estados Unidos el 31 de marzo de 1999, es la primera entrega de la franquicia Matrix, de la que derivan (dado su éxito) una serie de videojuegos, cortos animados y cómics, llegando a ser un claro ejemplo del subgénero cyberpunk.

Juegos de guerra

Un joven informático, con una gran habilidad para falsificar notas, entra en una compañía de juegos de ordenador para probarlos y consigue poner en jaque al Departamento de Defensa de los Estados Unidos y provocar la III Guerra Mundial.

Snowden

La épica historia del hombre que en 2013 puso en jaque a los EE.UU. Cuando Edward J. Snowden desveló los documentos del programa de vigilancia mundial secreto de la NSA abrió los ojos del mundo y cerró las puertas de su propio futuro. Se vio obligado a renunciar a su carrera, a su novia de toda la vida y a su patria. ¿Fue un patriota o un traidor?

Series

Eye Candy

Esta serie de televisión estadounidense está basada en una novela y tiene como protagonista a Lindy Sampson, una solitaria hacker que tiene un blog en el que expone todo tipo de cosas: desde planes terroristas hasta presuntos asesinos.
Un día, Lindy se convierte en el blanco de un peligroso acosador cibernético y asesino en serie, que se obsesiona con ella. A partir de entonces, Lindy se sumerge en la investigación policial para capturar al asesino, utilizando su especial habilidad.

Mr. Robot

Esta aclamada serie de cuatro temporadas ha sido nominada durante varios años seguidos tanto a los Globos de Oro como a los Emmy y ha sido destacada por muchos críticos como una de las mejores series de los últimos años.
El protagonista es Elliot Anderson, interpretado por un estupendo Rami Malek. Un brillante programador con problemas para las relaciones sociales que durante el día trabaja como técnico de ciberseguridad y por la noche es un desinteresado justiciero cibernético, que se ve envuelto en una oscura trama.

Devs

Lily es una joven ingeniera informática que decide investigar a la empresa de tecnología para la que trabaja, pues cree que está detrás de la desaparición de su novio.
A medida que avanza la investigación, descubre que la empresa está desarrollando un código que desafía las leyes del espacio y el tiempo.
El director de Ex_Machina firma este hipnótico thriller que habla sobre el uso indiscriminado del Big Data, reflexiona sobre el determinismo, (alegando que ninguno de nuestros actos es libre), y diseña una interesante radiografía sobre las relaciones humanas.

Silicon Valley

Richard es un tímido programador que vive con sus tres únicos amigos y descubren un importante algoritmo que supondrá una batalla con intereses y falsas amistades. Además, una chica se cruza por primera vez en la vida de Richard.

Intro

Aquí tenemos un crackme clásico realizado en Visual C++. La única particularidad que tiene es que no muestra MessageBox al introducir bien o mal el serial, simplemente cambia una imagen de un emoticono. Si observamos el comportamiento del crackme notaremos que inicialmente el emoticono está neutral y al fallar se pone triste y por lo tanto es de suponer que al acertar se pondrá contento.

El BreakPoint

Intermodular Calls

Al mirar en las Intermodular Calls de OllyDbg vemos que LoadIconA es un buen candidato para ubicar la comprobación del serial. Si nos fijamos hay tres llamadas, ponemos un breakpoint en las tres y enseguida llegamos a la zona de comprobación del serial.

La comprobación

00401180   . 6A FF          PUSH -1
00401182   . 68 68194000    PUSH CrackMe_.00401968
00401187   . 64:A1 00000000 MOV EAX,DWORD PTR FS:[0]
0040118D   . 50             PUSH EAX
0040118E   . 64:8925 000000>MOV DWORD PTR FS:[0],ESP
00401195   . 83EC 0C        SUB ESP,0C
00401198   . 53             PUSH EBX
00401199   . 55             PUSH EBP
0040119A   . 8BE9           MOV EBP,ECX
0040119C   . 56             PUSH ESI
0040119D   . 57             PUSH EDI
0040119E   . 8D4C24 10      LEA ECX,DWORD PTR SS:[ESP+10]
004011A2   . E8 2F050000    CALL <JMP.&MFC42.#540>
004011A7   . 8D4C24 14      LEA ECX,DWORD PTR SS:[ESP+14]
004011AB   . C74424 24 0000>MOV DWORD PTR SS:[ESP+24],0
004011B3   . E8 1E050000    CALL <JMP.&MFC42.#540>
004011B8   . 8D4424 10      LEA EAX,DWORD PTR SS:[ESP+10]
004011BC   . 8BCD           MOV ECX,EBP
004011BE   . 50             PUSH EAX
004011BF   . 68 E9030000    PUSH 3E9
004011C4   . C64424 2C 01   MOV BYTE PTR SS:[ESP+2C],1
004011C9   . E8 02050000    CALL <JMP.&MFC42.#3097>                  ;  Lee el tamano del nombre
004011CE   . 8D4C24 14      LEA ECX,DWORD PTR SS:[ESP+14]
004011D2   . 51             PUSH ECX
004011D3   . 68 EA030000    PUSH 3EA
004011D8   . 8BCD           MOV ECX,EBP
004011DA   . E8 F1040000    CALL <JMP.&MFC42.#3097>                  ;  Lee el tamano del serial
004011DF   . 51             PUSH ECX
004011E0   . 8D5424 14      LEA EDX,DWORD PTR SS:[ESP+14]
004011E4   . 8BCC           MOV ECX,ESP
004011E6   . 896424 1C      MOV DWORD PTR SS:[ESP+1C],ESP
004011EA   . 52             PUSH EDX
004011EB   . E8 DA040000    CALL <JMP.&MFC42.#535>
004011F0   . 8D4424 1C      LEA EAX,DWORD PTR SS:[ESP+1C]   
004011F4   . 8BCD           MOV ECX,EBP       
004011F6   . 50             PUSH EAX                 
004011F7   . E8 D4010000    CALL CrackMe_.004013D0 
004011FC   . 50             PUSH EAX
004011FD   . 8D4C24 14      LEA ECX,DWORD PTR SS:[ESP+14]
00401201   . C64424 28 02   MOV BYTE PTR SS:[ESP+28],2
00401206   . E8 B9040000    CALL <JMP.&MFC42.#858>
0040120B   . 8D4C24 18      LEA ECX,DWORD PTR SS:[ESP+18]
0040120F   . C64424 24 01   MOV BYTE PTR SS:[ESP+24],1
00401214   . E8 A5040000    CALL <JMP.&MFC42.#800>
00401219   . 8B4C24 10      MOV ECX,DWORD PTR SS:[ESP+10]
0040121D   . 8B5424 14      MOV EDX,DWORD PTR SS:[ESP+14]
00401221   . 8B41 F8        MOV EAX,DWORD PTR DS:[ECX-8]
00401224   . 8B4A F8        MOV ECX,DWORD PTR DS:[EDX-8]
00401227   . 3BC1           CMP EAX,ECX                              ;  CMP len nombre y len serial
00401229   . 0F85 2C010000  JNZ CrackMe_.0040135B
0040122F   . 83F8 03        CMP EAX,3                                ;  len nombre >=3
00401232   . 0F8C 23010000  JL CrackMe_.0040135B
00401238   . 50             PUSH EAX
00401239   . E8 7A040000    CALL <JMP.&MFC42.#823>
0040123E   . 8BF0           MOV ESI,EAX
00401240   . 8B4424 14      MOV EAX,DWORD PTR SS:[ESP+14]
00401244   . 83C4 04        ADD ESP,4
00401247   . 33C9           XOR ECX,ECX
00401249   . 8B50 F8        MOV EDX,DWORD PTR DS:[EAX-8]
0040124C   . 4A             DEC EDX
0040124D   . 85D2           TEST EDX,EDX
0040124F   . 7E 37          JLE SHORT CrackMe_.00401288
.......
1ºBUCLE
.......
00401251   > 8A1401         MOV DL,BYTE PTR DS:[ECX+EAX]
00401254   . 8A5C01 01      MOV BL,BYTE PTR DS:[ECX+EAX+1]
00401258   . 8B4424 14      MOV EAX,DWORD PTR SS:[ESP+14]
0040125C   . 0FBED2         MOVSX EDX,DL
0040125F   . 0FBE0401       MOVSX EAX,BYTE PTR DS:[ECX+EAX]
00401263   . 8D4410 FE      LEA EAX,DWORD PTR DS:[EAX+EDX-2]
00401267   . 99             CDQ
00401268   . 2BC2           SUB EAX,EDX
0040126A   . 0FBED3         MOVSX EDX,BL
0040126D   . D1F8           SAR EAX,1
0040126F   . 40             INC EAX
00401270   . 83EA 02        SUB EDX,2
00401273   . 3BC2           CMP EAX,EDX
00401275   . 0F94C0         SETE AL
00401278   . 880431         MOV BYTE PTR DS:[ECX+ESI],AL
0040127B   . 8B4424 10      MOV EAX,DWORD PTR SS:[ESP+10]
0040127F   . 41             INC ECX
00401280   . 8B50 F8        MOV EDX,DWORD PTR DS:[EAX-8]
00401283   . 4A             DEC EDX
00401284   . 3BCA           CMP ECX,EDX
00401286   .^7C C9          JL SHORT CrackMe_.00401251
........
Última comprobación
........
00401288   > 0FBE1401       MOVSX EDX,BYTE PTR DS:[ECX+EAX]
0040128C   . 0FBE78 01      MOVSX EDI,BYTE PTR DS:[EAX+1]
00401290   . 8B4424 14      MOV EAX,DWORD PTR SS:[ESP+14]
00401294   . 83C7 FE        ADD EDI,-2
00401297   . 0FBE0401       MOVSX EAX,BYTE PTR DS:[ECX+EAX]
0040129B   . 8D4410 FE      LEA EAX,DWORD PTR DS:[EAX+EDX-2]
0040129F   . 99             CDQ
004012A0   . 2BC2           SUB EAX,EDX
004012A2   . D1F8           SAR EAX,1
004012A4   . 40             INC EAX
004012A5   . 3BC7           CMP EAX,EDI
004012A7   . 0F94C2         SETE DL
004012AA   . 881431         MOV BYTE PTR DS:[ECX+ESI],DL

La comprobación es muy sencilla, en resumen hace esto con todas las letras del nombre excepto la última:

1º Caracter
(1ºname + 1ºserial - 2 = X)
(X / 2)
(X + 1)
(2ºname - 2 = Y)
¿Y = X?
2º Caracter
(2ºname + 2ºserial - 2 = X)
(X / 2)
(X + 1)
(3ºname - 2 = Y)
¿Y = X?
...
Con el último caracter del nombre hace lo siguiente:
(6ºname + 6ºserial - 2 = X)
(X / 2)
(X + 1)
(2ºname - 2 = Y)
¿Y = X?
---------
Para revertir la primera parte de la comprobación para el nombre deurus quedaría:
X1 = (((2ºname-2-1)*2)+2)-1ºname
X2 = (((3ºname-2-1)*2)+2)-2ºname
X3 = (((4ºname-2-1)*2)+2)-3ºname
X4 = (((5ºname-2-1)*2)+2)-4ºname
X5 = (((6ºname-2-1)*2)+2)-5ºname
X6 = (((2ºname-2-1)*2)+2)-6ºname

Keygen

var nombre = "deurus";
nombre = nombre.toUpperCase();
var serial = "";
var tmp = "";

var i;
for (i = 0; i < nombre.length-1 ; i++) {
  tmp = ((nombre.charCodeAt(i+1)-2-1)*2+2)-nombre.charCodeAt(i);
  serial += String.fromCharCode(tmp);
}

tmp = ((nombre.charCodeAt(1)-2-1)*2+2)-nombre.charCodeAt(nombre.length-1);
serial += String.fromCharCode(tmp);

document.write(serial);

Enlaces

Y eso es todo, ¡a disfrutar!