Hoy tenemos un crackme realizado en ensamblador y sin empacar. Consiste en el típico serial asociado a un nombre sin mucha complicación excepto en lo que a la utilización de memoria se refiere. Como veremos más adelante si no tenemos cuidado se solapan en memoria el nombre y el serial y como siempre evitaremos eso.
El algoritmo
Abrimos el crackme con Olly y buscamos las string references, pinchamos sobre cualquiera y encima encontramos el código que no interesa.
Subimos hasta las funciones que recojen el nombre y serial (GetDlgItemTexA) y nos fijamos que guarda el nombre a partir de la dirección de memoria 403014 y el serial a partir de 40301A. Además el nombre debe tener por lo menos tres caracteres.
El algoritmo consiste en lo siguiente, recorre el nombre y comprueba si el dígito se corresponde con 5A(Z), 7A(z) y 39(9). Si coincide los deja como está y si no les suma 1 al valor ascii. A continuación concatena después de cada conversión de dígito el caracter 61(a) aumentándole en 1 para cada nuevo dígito del nombre.
Como veréis a continuación, para el nombre «deuru» el serial correcto sería «eafbvcsdve«. Simplemente a los caracteres del nombre les suma 1, d es e, e es f, u es v, etc, y los concatena con digito+a+digito+b+digito+c…
Nombre: deuru
Serial: eafbvcsdve
Bucle se repite tantos veces como dígitos tenga el nombre
d e u r u
64 65 75 72 75
e a f b v c s d v e
65 61 66 62 76 63 73 64 76 65
DUMP
----
00403010 00 00 00 00 64 65 75 72 75 00 65 61 66 62 76 63 ....deuru.eafbvc
00403020 73 64 76 65 00 05 00 00 00 00 00 00 00 00 00 00 sdve...........
La asignación de memoria
El problema viene cuando elegimos un nombre >5 caracteres, ya que, éste se solapa con la memoria del serial (recordemos 40301A y siguientes) haciendo que sea una chapuza. En la siguiente imagen queda claro. No se si es un error o es intencionado, pero nos conviene no utilizar nombres mayores de 5 dígitos para que nuestro keygen sea lo más limpio posible.
El KeyGen
Está realizado en C++ y como véis el nombre debe tener entre 3 y 5 dígitos para que todo vaya bien.
char Nombre[10];
GetWindowText(hwndEdit1, Nombre, 10);
SetWindowText(hwndEdit2, "");
string serial = "";
int len = strlen(Nombre);
char consecutivo[5] = {'a','b','c','d','e'};
if (len <=5 && len >=3){
for(int i = 0; i <= len; i++)
{
if (Nombre[i] == 0x5A || Nombre[i] == 0x7A || Nombre[i] == 0x39)
{
serial+=Nombre[i];
serial+=consecutivo[i];
}else{
serial+=Nombre[i]+1;
serial+=consecutivo[i];
}
}
serial = serial.substr(0, len*2);
LPCTSTR Sfinal = serial.c_str();
SetWindowText(hwndEdit2, Sfinal);
}else{
MessageBox(NULL,"Nombre demasiado largo/corto","Info",MB_OK | MB_ICONINFORMATION);
}
Lo que más me ha gustado del capítulo es el guiño que han hecho a la RaspBerry PI. La escena transcurre al inicio del capítulo cuando uno de los protagonistas se conecta a un vehículo para hackearlo con una Raspi 3 Model B con varios pines del GPIO doblados. Os dejo unas capturas a continuación donde se aprecia el logo.
Captura del episodio
Captura del episodio
Captura del episodio
Captura del episodio
La conexión
Ya puestos, la conexión parece micro usb tipo B. Al fondo se ve lo que parece un puerto HDMI.
Captura del episodio
Captura del episodio
Captura del episodio
Cable comercial
La pifia
Lo que no me ha gustado es que al fijarme en el software que corre en el vehículo aparece un flamante OMNIBOOT.EXE con un aspecto parecido al símbolo de sistema, es decir, nos intentan vender que en un futuro el software que gestiona el vehículo es alguna variación de Windows, algo poco probable a día de hoy al menos. Con este tipo de predicciones no se puede escupir hacia arriba pero actualmente es más probable un nucleo tipo Linux u otro propietario al estilo Tesla.
Software del vehículo
Os dejo todas las capturas relevantes a continuación.
Tal y como nos adelanta el creador está programado en .NET. Lo abrimos para ver su comportamiento y a simple vista ya vemos algo que no nos gusta y es que se abre una ventana de DOS y posteriormente aparece el crackme. Esto indica que el ejecutable está escondido dentro de otro, empaquetado, encriptado o vete a saber.
Desempaquetado
Nuestras sospechas eran ciertas, abrimos el executable con ILSpy y no encontramos lo que buscamos, pero si vemos que al assembly se le hace algo parecido a un XOR. Probemos con algo sencillo, abrimos el crackme y la herramienta .Net Generic Unpacker y probamos a desempaquetar.
Esto nos genera un par de «exes» que ahora si abre correctamente nuestro decompilador.
Decompilado
Vamos a fijarnos en la rutina de comprobación del serial. Lo interesante se encuentra en btnCheckClick y TLicense.
Código fuente.
Como vemos en el código, License.a.a, License.a.b y License.a.c cogen 8 dígitos y License.a.d coge 10. A continuación comprueba que Licenseb.a = License.a.a XOR License.a.b y que Licenseb.b = License.a.c XOR License.a.d.
Una imagen vale más que mil palabras.
En su día hice un keygen, aquí teneis una captura.
Podeis encontrar el crackme, mi solución y otras soluciones en crackmes.de.
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.
If we go to the link, we view one string like a hash: 68a571bcf7bc9f76d43bf931f413ab2c. Umm, it’s like MD5. Go to decrypt online and we get the pass: «canyouhack.it». But if we test this password in the crackme, surprise!, nothing happens. We need to continue analyzing the code. Later we view the next interesting link:
Esta vez se trata de un crackme realizado en VC++ 5.0/6.0 y en sus entrañas utiliza RSA-24. En este caso la peculiaridad es que el nombre no interviene en la generación del serial siendo un resultado único.
Resumen RSA
Parámetros
p = Primer número primo
q = Segundo número primo
e = Exponente público que cumpla MCD(e,(p-1)*(q-1))==1
n = Módulo público siendo n=p*q
d = Exponente privado que cumpla d=e^(-1) mod ((p-1)*(q-1))
De este modo e y n son la parte pública de la clave y d y n la parte privada. Los número primos p y q se utilizan solo para generar los parámetros y de ahí en adelante se pueden desechar.
Funciones de Cifrado/Descifrado
cifrado = descifrado ^ e mod n
descifrado = cifrado ^ d mod n
OllyDbg
Nuestro primer vistazo con OllyDbg nos muestra cuatro números de los que podemos hacernos una idea de que 9901 es un buen candidato a ser el exponente público (e) y 12790891 el módulo n ya que casualmente es un número de 24 bits. Los otros dos números de momento no nos dicen nada.
Referencias de texto
A continuación de los números tenemos la rutina de comprobación en la que comprueba que nuestro serial tenga 14 dígitos y lo divide en dos partes de 7 dígitos. Interesante ya que los otros dos números que aparecían en las referencias de texto tienen 7 dígitos cada uno.
A continuación hace una serie de operaciones matemáticas para finalmente comparar el resultado con 8483678 y con 5666933. Lo que está haciendo es cifrar con nuestro serial en dos partes para comprobar que tenemos el número descifrado. Veamos un ejemplo con el serial 12345678901234.
descifrado ^ e mod n = cifrado
x1 = 1234567 y x2 = 8901234
1º parte del serial
x1 ^ 9901 mod 12790891 != 8483678
2º parte del serial
x2 ^ 9901 mod 12790891 != 5666933
Obviamente el resultado de las operaciones anteriores no da ese resultado y el Crackme nos tira fuera de modo que no nos queda más que atacar a RSA para obtener los primos p y q y el módulo privado d. De este modo podremos obtener los números buenos.
Los primos p y q se obtienen factorizando (botón Factor N) y una vez que tenemos p y q hallamos d (botón Calc. D). Todo esto es coser y cantar con la ayuda de la herramienta RSA-Tool 2. El exponente público e se introduce en hexadecimal.
Obteniendo p, q y d
Una vez que tenemos d hallamos el serial de forma sencilla con la herramienta Big Integer Calculator.
cifrado ^ d mod n = descifrado
1º parte del serial
8483678 ^ 10961333 mod 12790891 = 7167622
2º parte del serial
5666933 ^ 10961333 mod 12790891 = 3196885
SERIAL = 71676223196885
Hoy tenemos un crackme hecho en ensamblador y que cuenta con tres niveles. En el primero de todos nos enfrentamos a una «Splash screen» o nag. El segundo en un serial Hardcodeado y el tercero un número de serie asociado a un nombre.
Nopeando la Splash Screen
Abrimos el crackme con Olly y vamos a las «Intermodular Calls«, enseguida vemos la función que crea las ventanas «CreateWindowExA«. Se puede ver lo que parece ser la creación de la pantalla del crackme y al final hay algo que salta a la vista y es la propiedad «WS_TOPMOST», es decir, que se mantenga delante del resto de ventanas.
Pinchamos sobre la función y vamos a parar aquí.
Vemos la llamada a CreateWindowExA que podríamos parchear pero vamos a pensar un poco. Vemos la función GetTickCount y que carga el valor 7D0. 7D0 es 2000 en decimal, que perfectamente pueden ser milisegundos, por lo tanto el parcheo más elegante sería poner la función GetTickCount a 0. En la imagen inferior se puede ver como queda parcheado el valor 7D0.
Probamos y funciona, pasamos a lo siguiente.
Serial Hardcodeado
El mensaje de error del serial hardcodeado dice «Sorry, please try again». Lo buscamos en las string references y vamos a parar aquí.
Vemos un bucle de comparación que carga unos bytes de la memoria, los bytes dicen «HardCoded«, probamos y prueba superada.
El nombre y número de serie
Con el mismo método de las string references localizamos el código que nos interesa. Metemos deurus como nombre y 12345 como serial y empezamos a tracear. Lo primero que hace es una serie de operaciones con nuestro nombre a las que podemos llamar aritmética modular. Aunque en la imagen viene bastante detallado se vé mejor con un ejemplo.
Ejemplo para Nombre: deurus
d e u r u s
64 65 75 72 75 73 -hex
100 101 117 114 117 115 -dec
1ºByte = ((Nombre[0] % 10)^0)+2
2ºByte = ((Nombre[1] % 10)^1)+2
3ºByte = ((Nombre[2] % 10)^2)+2
4ºByte = ((Nombre[3] % 10)^3)+2
5ºByte = ((Nombre[4] % 10)^4)+2
6ºByte = ((Nombre[5] % 10)^5)+2
1ºByte = ((100 Mod 10) Xor 0) + 2
2ºByte = ((101 Mod 10) Xor 1) + 2
3ºByte = ((117 Mod 10) Xor 2) + 2
4ºByte = ((114 Mod 10) Xor 3) + 2
5ºByte = ((117 Mod 10) Xor 4) + 2
6ºByte = ((115 Mod 10) Xor 5) + 2
Si el byte > 10 --> Byte = byte - 10
1ºByte = 2
2ºByte = 2
3ºByte = 7
4ºByte = 9
5ºByte = 5
6ºByte = 2
Lo que nos deja que los Bytes mágicos para deurus son: 227952.
Debido a la naturaleza de la operación IDIV y el bucle en general, llegamos a la conclusión de que para cada letra es un solo byte mágico y que este está comprendido entre 0 y 9.
A continuación realiza las siguientes operaciones con el serial introducido.
Ejemplo para serial: 12345
1 2 3 4 5
31 32 33 34 35 -hex
49 50 51 52 53 -dec
49 mod 10 = 9
50 mod 10 = 0
51 mod 10 = 1
52 mod 10 = 2
53 mod 10 = 3
Los bytes mágicos del serial son: 90123, que difieren bastante de los conseguidos con el nombre.
A continuación compara byte a byte227952 con 90123.
En resumen, para cada nombre genera un código por cada letra y luego la comprobación del serial la realiza usando el módulo 10 del dígito ascii. Lo primero que se me ocurre es que necesitamos cotejar algún dígito del 0 al 9 para tener cubiertas todas las posibilidades. Realizamos manualmente mod 10 a los números del 0 al 9 y obtenemos sus valores.
(0) 48 mod 10 = 8
(1) 49 mod 10 = 9
(2) 50 mod 10 = 0
(3) 51 mod 10 = 1
(4) 52 mod 10 = 2
(5) 53 mod 10 = 3
(6) 54 mod 10 = 4
(7) 55 mod 10 = 5
(8) 56 mod 10 = 6
(9) 57 mod 10 = 7
Con esto ya podríamos generar un serial válido.
0123456789 - Nuestro alfabeto numérico
8901234567 - Su valor Mod 10
Por lo que para deurus un serial válido sería: 449174. Recordemos que los bytes mágicos para deurus eran «227952», solo hay que sustituir.
Para realizar un KeyGen más interesante, he sacado los valores de un alfabeto mayor y le he añadido una rutina aleatoria para que genere seriales diferentes para un mismo nombre.
'abcdefghijklmnñppqrstuvwxyz0123456789ABCDEFGHIJKLMNÑOPQRSTUVWXYZ - Alfabeto
'7890123456778901234567789018901234567567890123455678901234556880 - Valor
Dim suma As Integer = 0
'Para hacer el serial más divertido
Dim brute() As String = {"2", "3", "4", "5", "6", "7", "8", "9", "0", "1"}
Dim brute2() As String = {"d", "e", "f", "g", "h", "i", "j", "a", "b", "c"}
Dim brute3() As String = {"P", "Q", "R", "S", "T", "U", "j", "a", "D", "E"}
Dim alea As New Random()
txtserial.Text = ""
'Evito nombres mayores de 11 para evitar el BUG comentado en le manual
If Len(txtnombre.Text) > 0 And Len(txtnombre.Text) < 12 Then
For i = 1 To Len(txtnombre.Text)
Dim aleatorio As Integer = alea.Next(0, 9)
suma = (((Asc(Mid(txtnombre.Text, i, 1))) Mod 10) Xor i - 1) + 2
If suma > 9 Then
suma = suma - 10
End If
If (aleatorio) >= 0 And (aleatorio) <= 4 Then
txtserial.Text = txtserial.Text & brute(suma)
ElseIf (aleatorio) > 4 And (aleatorio) <= 7 Then
txtserial.Text = txtserial.Text & brute2(suma)
ElseIf (aleatorio) > 7 And (aleatorio) <= 10 Then
txtserial.Text = txtserial.Text & brute3(suma)
End If
suma = 0
Next
Else
txtserial.Text = "El Nombre..."
End If
Notas finales
Hay un pequeño bug en el almacenaje del nombre y serial y en el guardado de bytes mágicos del serial. Si nos fijamos en los bucles del nombre y el serial, vemos que los bytes mágicos del nombre los guarda a partir de la dirección de memoria 403258 y los bytes mágicos del serial a partir de 40324D. En la siguiente imagen podemos ver seleccionados los 11 primeros bytes donde se almacenan los bytes mágicos del serial. Vemos que hay seleccionados 11 bytes y que el siguiente sería ya 403258, precisamente donde están los bytes mágicos del nombre. Como puedes imaginar si escribes un serial >11 dígitos se solapan bytes y es una chapuza, de modo que el keygen lo he limitado a nombres de 11 dígitos.
Aviso: Este crackme forma parte de una serie de pruebas de Yoire.com que todavía está en activo. Lo ético si continuas leyendo este manual es que no utilices la respuesta para completar la prueba sin esfuerzo. 😉
Saltando el Anti-Debug
Abrimos el crackme con Ollydbg y nos salta una protección Anti-Debug.
Si nos fijamos en las «Text Strings» vemos que es la clásica isDebuggerPresent. Pinchamos en ella y vemos claramente el salto que debemos forzar, se encuentra en el offset 401015. Podemos invertir el salto o cambiarlo a JMP para que salte siempre.
Rutina de comprobación del serial
A simple vista vemos instrucciones como FILD y FIDIVR que trabajan con los registros FPU, por lo que tendremos que fijarnos en dichos registros.
Retomemos analizando la rutina de comprobación.
FLD DWORD PTR DS:[403080] - Carga el entero "720300" en ST7
FSTP [LOCAL.1] - Guarda "720300" en memoria (Local 1)
MOVSX EDX,BYTE PTR DS:[EAX] - Coje nuestro primer dígito en ascii y lo carga en EDX
SUB EDX,30 - Le resta 30 a EDX
PUSH EDX - Carga EDX en la pila
FILD DWORD PTR SS:[ESP] - Carga el valor de EDX en ST0
POP EDX - Recupera el valor de la pila
FDIVR [LOCAL.1] - Divide Local 1 entre nuestro dígito hex y lo guarda en ST0
FSTP [LOCAL.1] - Guarda el resultado de ST0 en Local 1
INC EAX - Siguiente dígito
CMP BYTE PTR DS:[EAX],0 - Comprueba si quedan dígitos en nuestro serial
JNZ SHORT 05_crack.004010F4 - Bucle
Después de la rutina de comprobación simplemente comprueba el valor del resultado de la división con 1 y si es verdad serial válido.
Buscando un serial válido
Podríamos hacer fuerza bruta, pero en esta ocasión no es necesario ya que con la calculadora, boli y papel lo sacamos rápido.
Hoy analizamos Copycat, un thriller psicológico de 1995 que, como muchas películas de la época, no pudo resistirse a incorporar elementos tecnológicos que, vistos desde una perspectiva actual, nos sacan una sonrisa. Vamos a desmontar algunos gazapos tecnológicos y curiosidades relacionadas con los sistemas informáticos que aparecen en la película.
El escritorio de tres pantallas: ¿el futuro en 1995?
La protagonista, la Dra. Helen Hudson (Sigourney Weaver), trabaja en un escritorio con tres pantallas, algo futurista para la época. En 1995, esto no era tan común como hoy en día. Para lograrlo, probablemente necesitaría tres ordenadores conectados de forma independiente, ya que los sistemas operativos y hardware de la época no solían soportar múltiples monitores en una sola máquina. Esto plantea preguntas interesantes sobre la logística de su set-up: ¿Cómo sincronizaba su trabajo entre tres PCs?
Un detalle curioso es que, en algunas tomas, se distingue la marca Compaq en los equipos. Compaq era una de las compañías líderes en la fabricación de ordenadores personales durante los 90 y conocida por sus soluciones de alta calidad. Este dato refuerza la idea de que el set-up de Helen estaba diseñado para representar lo último en tecnología de la época, aunque hoy resulte un tanto rudimentario. La elección de Compaq no es casual: en ese momento, era sinónimo de equipos potentes, usados tanto en oficinas como en entornos domésticos avanzados.
Internet y la magia de los módems
En una escena, Helen navega por internet con lo que suponemos es un módem de 28.8 kbps (o como mucho, un flamante 33.6 kbps, tecnología de vanguardia allá por 1995). Hasta ahí, vale. Sin embargo, la fluidez de su conexión sorprende: carga archivos, recibe correos y no se queda esperando con una pantalla de “Conectando…”. Pero lo mejor llega cuando, estando conectada, ¡suena el teléfono! En la realidad, esto cortaría la conexión o comunicaría, a menos que tuviera dos líneas telefónicas (algo raro en domicilios particulares de la época) o algún dispositivo milagroso que no conocemos.
¿Qué sistema operativo usa?
Aunque no se distingue claramente el sistema operativo, vemos una interfaz gráfica con ventanas y una consola de comandos. Esto podría ser un guiño a Windows 3.1 o Windows 3.11, ya maduro en esa época aunque la interfaz no termina de encajar. Sin embargo, también podría ser una mezcla ficticia para hacer que el entorno luciera “tecnológico” sin comprometerse demasiado con la realidad. Detalle curioso: en los 90, las películas solían personalizar las interfaces para no tener problemas legales.
El email como el epicentro de la tecnología
En los 90, el email era el rey. En las películas, los escritorios siempre tenían un gran icono de correo (a menudo animado, porque lo cool siempre parpadeaba). En Copycat, Helen recibe un correo con un archivo AVI de unos 30 segundos, lo cual plantea otra duda técnica: ¿Cuánto espacio ocupaba ese archivo en 1995?
Un AVI de 30 segundos probablemente tendría una resolución baja (320×240 píxeles o menos) y una tasa de compresión eficiente para la época, pero aun así podría pesar entre 2 y 5 MB, dependiendo de la calidad del audio y vídeo. Eso hubiera supuesto una odisea por email, ya que los servidores de la época limitaban los adjuntos a unos pocos cientos de KB. ¿Quizás el villano usó un protocolo privado para saltarse las restricciones?
Tomorrow.AVI
Tras recibir un inquietante archivo AVI, la protagonista llama a la policía, lo que desencadena una conversación cargada de decisiones tecnológicas cuestionables:
«¿Cómo le han enviado esto?» / «Consiguiendo su dirección de internet»: El archivo es descrito como enviado a través de «su dirección de internet», un término extraño para la época en la que lo habitual habría sido referirse al correo electrónico. Esto refleja un intento de sonar sofisticado sin usar los términos correctos.
«¿No podríamos localizarlo?»: La respuesta de los policías es que no pueden rastrear el origen del archivo «a no ser que esté conectado». Sin embargo, incluso en 1995, las cabeceras de los emails contenían suficiente información para rastrear el servidor de origen, aunque la práctica era más rudimentaria que en la actualidad. Ignorar esto parece una licencia creativa del guion o un concepto equivocado de localizar asociándolo quizá a las llamadas telefónicas.
«Es demasiado grande para pasarlo a disco»: Aquí surge el principal obstáculo: el archivo AVI es considerado «demasiado grande» para transferirlo a un disquete de 3,5 pulgadas (con una capacidad máxima de 1,44 MB). Aunque esto tiene sentido desde una perspectiva técnica, resulta extraño que fuera posible enviarlo por email en primer lugar, dado que los servidores de correo de la época tenían limitaciones más estrictas que un disquete. Esto sugiere una inconsistencia en la lógica tecnológica de la escena.
«Lo pasaremos a vídeo»: Ante la imposibilidad de transferirlo a un disquete, la solución propuesta es convertir el archivo a un formato reproducible en un dispositivo analógico (probablemente una cinta VHS) para transportarlo físicamente. Aunque esta decisión es plausible dentro de las limitaciones tecnológicas de la época, omite soluciones más digitales, como volver a enviarlo por email (¿acaso la policía no tenía correo electrónico?). Además, surge la pregunta de por qué no se recurre a los forenses técnicos de la policía (o del FBI) para analizar el disco duro, quienes, curiosamente, no aparecen en ningún momento de la película.
«Oh, Dios. ¿Cómo sabes todas estas cosas?» / «Malgasté mi juventud en los salones de videojuegos»: Esta frase añade un toque humorístico, pero no tiene relación alguna con las habilidades necesarias para resolver el problema en cuestión. Más bien, refuerza la desconexión entre los diálogos y las acciones tecnológicas presentadas.
Conclusión
Copycat (1995) es un buen ejemplo de cómo el cine de los 90 abordaba la tecnología con una mezcla de admiración y confusión. Desde la exageración de tener tres monitores en el escritorio de Helen hasta la torpe gestión del archivo Tomorrow.AVI, la película refleja tanto las limitaciones tecnológicas de la época como las libertades creativas de los guionistas.
En el caso del archivo AVI, los personajes deciden que no se puede gestionar digitalmente y optan por convertirlo a vídeo analógico, ignorando soluciones más simples como volver a enviarlo por correo electrónico (suponiendo que fuera posible). Este detalle, combinado con la ausencia aparente de personal técnico en la policía, subraya una desconexión entre la narrativa y las capacidades reales de la tecnología, incluso para 1995.
Aunque estos detalles pueden parecer cómicos 30 años después, forman parte del encanto de un cine que imaginaba el futuro sin comprender del todo su presente. Más que errores, son un recordatorio de cómo la tecnología ha evolucionado y de cómo nuestra percepción de ella también lo ha hecho.
Hoy vamos a enfrentarnos a cuatro retos de esteganografía relativamente sencillos, y digo relativamente, debido a que hay tantas formas de esconder información en un archivo, ya sea imagen, vídeo o sonido, que afrontarlos suele ser desesperante. Las cuatro imágenes son aparentemente las mismas que la que se ve en portada.
Una buena práctica cuando te enfrentas a retos stego de tipo imagen es realizar una búsqueda inversa. Una búsqueda inversa consiste en buscar la imagen original mediante buscadores especializados como TinEye o Google. Si conseguimos la imagen original podemos resolver el reto simplemente comparando o nos puede dar una idea del tipo de modificación por su diferencia de tamaño, colores, degradados, etc.
Stego 1
Descargamos la imagen del reto. Se trata de una imagen JPEG de 526×263 y 76.6 KB (78445 bytes). Su hash SHA1 es «89aed5bbc3542bf5c60c4c318fe99cb1489f267a«
Realizamos una búsqueda inversa de la imagen y encontramos sin dificultad la imagen original mediante TinEye.
Por lo que vemos ha cambiado el tamaño de 78447 bytes a 78445 bytes y su hash SHA1 tampoco coincide obviamente, lo que nos confirma que ha sufrido alguna modificación. Echando un vistazo con un editor hexadecimal te puedes volver loco por lo que vamos a realizar una comparación mediante la herramienta online DiffNow.
Al realizar la comparación sale a relucir lo que buscamos. La clave es una simple cadena de texto.
Stego 2
Lo primero es realizar de nuevo la comparación.
Imagen
Tamaño
SHA1
Original
78447 bytes
8924676317077fc07c252ddeec04bd2a0ecfdda4
imagen2.jpeg
116386 bytes
7641e3906f795c137269cefef29f30fcb9cb1b07
Como vemos, la imagen ha aumentado significativamente, de 76,6 KB a 113 KB. Cuando el aumento de tamaño llama la atención normalmente tenemos otro archivo insertado. Lo primero que suelo hacer yo es fijarme si ha sido modificado el final del archivo con un editor hexadecimal. Los bytes de cola de un archivo jpg/jpeg son FFD9 y en este caso no vemos modificación alguna al final del archivo. Si el archivo no está al final requiere realizar una búsqueda más exhaustiva. Para estos casos tengo una herramienta de creación propia que se llama Ancillary y que sirve para buscar cierto tipo de archivos dentro de otros como imágenes, documentos de Office, Open Office, pdf, etc. Ancillary encuentra otro jpg que es el que le daba el peso extra y que vemos a continuación. La clave es el título de la película (ojo a las mayúsculas/minúsculas).
Stego 3
El tercer reto parece que tiene algún error debido a que el archivo coincide completamente con el original. Pienso que se ha subido la imagen original por error. Se lo he comunicado al admin del dominio y si algún día obtengo respuesta actualizaré la entrada.
Imagen
Tamaño
SHA1
Original
78447 bytes
8924676317077fc07c252ddeec04bd2a0ecfdda4
imagen3.jpeg
78447 bytes
8924676317077fc07c252ddeec04bd2a0ecfdda4
Actualización 21/08/2016
Al parecer, la solución de este reto es llegar a la conclusión de que la imagen no está modificada. La respuesta del Administrador de la web así lo confirma.
desingsecurity [at] gmail [dot] com – Sorry about the delay, is precisely what is intended with that challenge, they can determine if the image is changed or not , the challenge was solved you . We’ll be equal way improving this point.
Greetings and Thanks
Stego 4
Lo primero es realizar de nuevo la comparación.
Imagen
Tamaño
SHA1
Original
78447 bytes
8924676317077fc07c252ddeec04bd2a0ecfdda4
imagen4.jpeg
93174 bytes
a6329ea4562ef997e5afd067f3b53bdab4665851
Al igual que en el caso dos el tamaño ha aumentado significativamente de modo que miramos al final del archivo y esta vez si vemos que hay insertado unos bytes tras el final del jpg (recordemos FFD9)
El archivo tiene pinta de ser una hoja de cálculo de Open Office o Libre Office según indica la palabra «spreadsheet«. Lo abrimos con Excel y tras analizar la maraña de datos enseguida vemos una clave que llama la atención.
Hace tiempo que me aficioné a los retos de Hacking y Cracking, y si bien la mayoría de ellos consisten en desencriptar una clave o realizar ingeniería inversa sobre un ejecutable, también los hay sobre programación pura y dura.
En esta ocasión se nos proporciona un código «muestra» parecido a PHP o C++ y tenemos que ingeniarnoslas para mejorarlo y ganar a la máquina.
Objetivo del juego y normas
El objetivo de esta misión es ganar a Tr0n en su propio juego: las carreras de motos. Se te proporcionará un programa (código) funcional para que veas como se controla el vehiculo. Usando tu inteligencia, tendrás que entender su uso y mejorarlo, ya que no es lo suficientemente bueno como para ganar a Tr0n. Tr0n lleva ya bastante tiempo en la parrilla de juegos y es bastante habilidoso 🙂
Cuando venzas a Tr0n un mínimo de 5 veces consecutivas, se te dará por superada esta prueba.
Buena suerte!!!
[ Available functions / Funciones disponibles ]
direction() returns current direction, change to a new one with direction([newdir])
getX(), getY() returns X and Y coordinates
collisionDistance() | collisionDistance([anydir]) returns the distance until collision
Note: parameters [*dir] can be empty or one of this values: UP DOWN LEFT or RIGHT
[ Constants / Constantes ]
UP DOWN LEFT RIGHT MAX_X MAX_Y
[ Rules / Reglas ]
Try to survive driving your bike and … / Intenta sobrevivir conduciendo tu moto y…
Don’t cross any line / No cruces ninguna línea
or crash with the corners! / o choques con las esquinas!
[ Mission / Mision ]
Use well this controller and beat Tr0n 5 consecutive times to score in this game
Usa bien este controlador y vence a Tr0n 5 veces consecutivas para puntuar en este juego
Código inicial
Nada más comenzar vemos que hemos perdido nuestra primera partida con el siguiente código:
Lo primero que tenemos que modificar son las distancias de las coordenadas que estan puestas en «<10» al mínimo, que sería «<2«. También sustituir la aleatoriedad «rand(0,1)==0» por algo más útil y comenzar a usar la función «collisionDistance()«.
Como podéis observar en el código inferior, usamos la función «collisionDistance()» para detectar cuando estamos a punto de chocar «collisionDistance() ==1» y para detectar a que lado nos conviene más girar en función de donde podamos recorrer más distancia «if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT); else $c->direction(RIGHT);«.
El código anterior de por sí no nos resuelve mucho si no afinamos un poco más, comprobando todos las posibles colisiones y tomando la dirección correcta en función de la mayor distancia a recorrer.
El código no es infalible ya que como comprabaréis vosotros mismos, no se puede ganar siempre por el mero hecho de la aleatoriedad y de la suerte. Cuando dispongais de un código decente, ejecutarlo varias veces para estar seguros antes de desecharlo.
Curiosidades
Como se suele decir, la banca siempre gana, y en este caso no iba a ser menos y es que en caso de empate ¡la banca gana!
Por último deciros que podéis utilizar el código ya que la web detecta los códigos ganadores para que no se repitan.
Continuamos con los BTM awards. Esta vez analizaremos brevemente una escena de la película del casi siempre excelente James Cameron, Mentiras Arriesgadas. En esta ocasión vamos a analizar una situación que se da mucho en el cine de Hollywood, esto es, el Plug and Play mágico. Cuando vemos películas de espías, es habitual encontrarnos con situaciones en las que el protagonista conecta un «algo» en el ordenador al que quiere acceder y ¡chas!, como por arte de magia sin tocar ninguna tecla se copian o se borran unos archivos, le da acceso remoto a algún compañero etc.
BTM
Este film no iba a ser menos y es que cuando Harry Tasker (Arnold Schwarzenegger) con sus inigualables dotes para el espionaje, entra en la mansión del objetivo en cuestión, conecta un módem, lo enciende y sin teclear un solo comando le da a su compañero Faisil (Grant Heslov) que se encuentra en una furgoneta a unos kilómetros, acceso a la máquina, nos quedamos perplejos.
Esta situación es posible en la vida real, lo que la hace difícil de creer es que Harry no teclee ni un solo comando al conectar el módem, independientemente del Sistema Operativo que corra la máquina. Si nos situamos un poco, estamos hablando del año 1995, con una máquina corriendo Windows 3.1 y estamos conectando un módem a un puerto RS-232. En aquella época, por avanzada que fuera la tecnología espía, es difícil de creer que las cosas funcionen solas. Otra cosa a destacar es que a no ser que Faisil estuviera conectados a un poste de teléfono, la conexión tendría que ser inalámbrica, casi una quimera hace 20 años. A continuación os muestro la secuencia.
Como se puede observar en el vídeo, incluso parece que el equipo de Faisil, que también corre Windows 3.1, accede al equipo en modo escritorio remoto, tecnología que no existía en aquella época. Para que la secuencia tuviera un mínimo de credibilidad, Harry al conectar el módem y encender el equipo, debiera de haber introducido un par de comandos como mínimo para asignarle un puerto COM al módem y así iniciar la comunicación con Faisil. Ni que decir tiene que Faisil hubiera tenido que hacer todas las transmisiones mediante línea de comandos.
Aunque la película es entretenida y me gustó mucho cuando la vi allá por el año 1998, no nos queda más remedio que ponerle nuestro sello BTM de NO credibilidad.
AVISO: Debido a que este reto está en activo no publicaré a donde pertenece.
El reto en cuestión nos presenta un esquema de puertas lógicas y una secuencia binaria que al pasarla por las puertas nos devolverá la solución al reto.
Lo primero que necesitamos saber es quefunción realiza cada puerta. Si indagamos un poco enseguida llegamos a la conclusión de que el esquema lo componen 3 puertas NOT, cuatro puertas AND y una puerta OR.
El funcionamiento es muy sencillo, la puerta NOT simplemente invierte el dígito de entrada convirtiendo los unos en ceros y los ceros en unos. La puerta AND siempre dará como resultado cero excepto cuando todos dígitos de entrada sean unos, que dará como resultado uno. La puerta OR es contraria a la AND y siempre dará como resultado uno excepto cuando todos los dígitos de entrada sean ceros, que en este caso dará como resultado cero.
Esquema con apuntes
Nota: Aunque lo más normal es encontrarse puertas de dos entradas y una salida, cuando tenemos múltiples entradas el funcionamiento es el mismo pudiendo resolverlo de manera secuencial. Por ejemplo, a la primera puerta AND le entran la pista cuatro, la dos y la tres. La solución es hacer cuatro AND dos y el resultado AND tres -> (cuatro AND dos) AND tres.
Teniendo en cuenta el funcionamiento de las puertas y con la ayuda del esquema anterior podemos automatizar el proceso fácilmente. A continuación os dejo el código en .Net.
Dim encoded As String = "110111000001110010010011101100011000001101111110000001011101110011101100011000001101011011111000011010100110111000001010100111111111000101110001010"
Dim uno, dos, tres, cuatro, cinco, seis As String
Dim w, x, y, z, tmp As Integer
For i = 0 To encoded.Length - 1 Step 3
uno = Mid(encoded, i + 1, 1)
dos = Mid(encoded, i + 2, 1)
tres = Mid(encoded, i + 3, 1)
If uno = "1" Then cuatro = "0"
If uno = "0" Then cuatro = "1"
If dos = "1" Then cinco = "0"
If dos = "0" Then cinco = "1"
If tres = "1" Then seis = "0"
If tres = "0" Then seis = "1"
w = CInt(cuatro And dos) And CInt(tres)
x = CInt(uno And cinco) And CInt(tres)
y = CInt(uno And dos) And CInt(seis)
z = CInt(uno And dos) And CInt(tres)
tmp = (w Or x) Or (y Or z)
txt_s.Text &= tmp.ToString
Next
Obtenemos como resultado: 1100100110100111001111101001111010011000011101100
Si intentamos decodificar la secuencia resultante en bloque no obtenemos ningún resultado pero si tenemos en cuenta que cada letra en binario ocupa siete dígitos enseguida encontramos la solución.
1100100 1101001 1100111 1101001 1110100 1100001 1101100
d i g i t a l
Analizamos el programa con PEiD y nos muestra que está hecho en ensamblador.
Unas pruebas introduciendo datos nos muestran que el nombre debe tener entre 3 y 10 dígitos.
Determinando la rutina de creación del serial con Ollydbg
Llegados a este punto tenemos dos opciones que funcionan en el 90% de los casos. La primera es mediante las referenced strings o mediante los names.
Para el primer caso, con el keygenme cargado en olly, click derecho y Search > All referenced text strings. Haciendo doble click en “You got it” o en “Bad boy” vamos directamente a la rutina de comprobación del serial o muy cerca de ella en la mayoría de los casos.
Para el segundo caso, haremos click derecho y Search > Name (label) in current módule, o Ctrl+N. Vemos dos llamadas interesantes como son user32.GetDlgItemInt y user32.GetDlgItemTextA. Lo más seguro es que user32.GetDlgItemInt coja del textbox nuestro serial y user32.GetDlgItemTextA coja nuestro nombre. Para este caso colocaríamos breakpoints en las dos llamadas.
En mi caso elijo la primera opción. Nada más pulsar en “You got it” nos fijamos un poco más arriba y vemos las funciones donde coge el nombre y el serial y a simple vista se ven las operaciones que hace con ellos.
Generando un serial válido
Como se muestra en la imagen siguiente, la creación del serial es muy sencilla y al final la comparación es lineal ya que se compara nuestro serial con el serial válido. Veamos el serial válido para el usuario “abc” cuyos dígitos en hexadecimal son 0x61, 0x62 y 0x63.
Letra a
Letra b
Letra c
Suma + 0x61
Suma * 0x20
Suma xor 0xBEFF
Suma / 4
Suma = 0x2CB7
Suma + 0x62
Suma * 0x20
Suma xor 0xBEFF
Suma / 4
Suma = 0x14777
Suma + 0x63
Suma * 0x20
Suma xor 0xBEFF
Suma / 4
Suma = 0xA116F
Suma xor 0xBEA4 = 0xAAFCB
Serial válido = 700363
Generando un keygen con WinASM studio desde cero
Abrimos WinASM studio y pulsamos en File > New Project y en la pestaña dialog elegimos base.
Vemos que se nos generan tres archivos, uno con extensión asm, otro con extensión inc y otro con extensión rc. El archivo asm es el que contendrá nuestro código. El archivo inc no lo vamos a usar para simplificar las cosas y el archivo rc es nuestro formulario al que pondremos a nuestro gusto.
Empecemos con el aspecto del formulario. Por defecto viene como se muestra en la siguiente imagen. Que por cierto, es todo lo que necesitamos para un keygen básico.
Y el aspecto final:
Ahora veamos cómo viene nuestro archivo asm inicialmente y que haremos con él. En la siguiente imagen lo indico.
Encima de la sección .code hemos creado dos secciones como son .data y .data? y hemos declarado las variables necesarias.
szFormat está declarada en formato integer (%i). Más tarde la utilizaremos junto a la función wsprintf para dar formato a un número.
szSizeMin: habla por sí misma.
szSizeMax: habla por sí misma.
szCap: habla por sí misma.
szName: contendrá el nombre introducido.
szCode: contendrá el serial válido.
Nuestro código queda de la siguiente manera:
A partir de aquí ya simplemente es escribir el código necesario para generar el serial válido. Una de las ventajas que tiene el ensamblador para hacer keygens sin muchas complicaciones, es que prácticamente es copiar el código que nos muestra Ollydbg. Si os fijáis a continuación, en el botón llamado “IDC_OK” (no le he cambiado el nombre) he puesto todo el código necesario para generar la simple rutina del serial.
Como veis el bucle del nombre es una copia de lo que nos mostró Ollydbg. Una vez que tenemos en EAX nuestro serial válido, mediante la función wsprintf guardamos en la variable szCode el serial válido con formato integer. Finalmente mediante la función SetDlgItemText, mostramos el serial válido en la caja de texto 1002, que es la del serial.
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.
Realistic Challenge 4: There is a site offering protection against hackers to website owners, the service is far too overpriced and the people running the service don’t know anything about security. Look around their site, and see how protected it is.
Hay un sitio que ofrece protección contra los hackers. El servicio tiene un precio abusivo, echa un vistazo a la web y evalúa su pretección.
Analizando a la víctima
Vemos un escueto menú pero con cosas interesantes.
Pinchamos sobre «Testimonials» y a continuación en «Customer 1»
Vemos que hay solo 3 «customers», vamos a introducir manualmente un 5 haber que pasa.
Ok, nos genera el siguiente error.
Probamos ahora con un enlace interno que nos genera el siguiente error.
Tenemos un directorio interesante «secure«, si entramos en el nos salta un Login típico protegido con «.htaccess«. Lo lógico a continuación es hacernos con el archivo «.htpasswd«
Una vez obtenido el contenido del archivo «.htpasswd» lo siguiente es crackear el password con John the Ripper. Nos logueamos en la carpeta secure y reto superado.
Aviso: Este crackme forma parte de una serie de pruebas de Yoire.com que todavía está en activo. Lo ético si continuas leyendo este manual es que no utilices la respuesta para completar la prueba sin esfuerzo. 😉
Analizando
Abrimos el crackme con Ollydbg y vamos a las referenced strings.
Pinchamos sobre cualquiera.
Vemos un «Call» donde seguramente se generará un SUM en función del serial metido ya que después del Call vemos una comprobación contra «B79E763E» lo que nos da una pista de que vamos a tener que utilizar fuerza bruta para llegar a ese valor. Vamos a explorar el Call.
Lo que resalto con la flecha son una par de Calls que podemos NOPear ya que lo único que hacen es ralentizar la generación del SUM.
A continuación vamos a analizar el algoritmo de generación del SUM.
Hace poco me reencontré con esta entrañable serie que tanto me entretuvo cuando era pequeño y para mi sorpresa, me percaté de que nunca había visto el episodio piloto. La nostalgia me llevó a tragarme el episodio entero y a disfrutar a lo grande de la parafernalia técnica de la que hace gala para justificar la creación que da nombre a la serie.
La visión tecnológica de los años 80
Esto hay que analizarlo con perspectiva. Estamos en los años 80 y nos están presentando un coche capaz de mantener una conversación, es decir, nos están presentando una inteligencia artificial (IA) llamada KITT. Puede parecer que el término inteligencia artificial es nuevo pero realmente se acuño en 1956 por John McCarthy. A partir de ese momento surgieron líneas de estudio e hipótesis pero a partir de los 70 se puede considerar que la investigación sobre la IA perdió financiación y quedó en el congelador hasta los años 90. Dicho esto, cuando nos presentan a KITT lo hacen de la siguiente manera:
Devon Miles: Está totalmente controlado por microprocesadores que hacen físicamente imposible que se vea implicado en ningún tipo de colisión o percance a no ser que se lo ordene su piloto específicamente
Michael Knight: ¿Piloto?, no me diga que esta cosa vuela
Devon Miles: ¡No!, pero piensa
Michael Knight: ¿Piensa?, ¿mi coche piensa?
Intel daba a conocer el primer microprocesador allá por el 71 y la serie se estrenó en el 82 lo que le da credibilidad en ese aspecto, aunque dudo que el público de esa época supiera que era un microprocesador, un ordenador y menos una IA.
Los Chips
La serie arranca con un grupo de personas realizando espionaje industrial donde nos muestran las hojas de datos de dos chips Japoneses como son el PD8257-5 y el PD780. Un aplauso para los guionistas y sus asesores ya que el PD8257-5 es una interfaz de comunicaciones y el PD780 un microprocesador de 8 bits.
Detalle del esquema del chip PD8257-5 y del set de instrucciones del chip PD780
Lo más interesante es que lo que se muestra es real como podéis apreciar en la siguiente imagen
Detalle del esquema mostrado en la serie VS la hoja de datos
A continuación un detalle de las capturas realizadas:
Más adelante vuelven a aparecer imágenes en un PC que parecen puestas en post-producción y que son robadas en un maravilloso disco de 5 1/4.
Los diálogos
Llaman la atención mucho los diálogos centrados en el microprocesador como si de un ser superior se tratase, éste es la referencia continua y la parte central del guion de los dos primeros capítulos. Curiosamente aparecen en pantalla multitud de imágenes de circuitos integrados pero no se llega a ver ningún microprocesador. Por otro lado, es interesante el esfuerzo que hacen los guionistas por que llamemos a KITT él en vez de ello, convirtiendo al coche en un personaje más.
Otra cosa que llama mucho la atención son los tópicos de los que hace gala como la asociación de los microprocesadores a los videojuegos o que la empresa villana esté afincada en Silicon Valley. Incluso el nombre KITT es un tópico ya que las siglas vienen de Knight Industries Two Thousand que en cristiano quiere decir Industrias Knight 2000. Y es que en mi opinión el año 2000 se imaginaba como una barrera lejana en la que todo iba a ser tecnológicamente más avanzado.
Conclusiones
Tengo que reconocer que me ha sorprendido que dieran realismo a los chips mostrados teniendo en cuenta que aparecen muy pocos segundos en pantalla y podían haber puesto cualquier cosa.
Por otro lado, la realidad es que en el año 2022 aún nos queda recorrido para llegar a tener un coche fantástico y lo más parecido que tenemos hoy día sería un Tesla con Alexa.
Se nos entrega un ELF que decompilado presenta este aspecto:
/* This file was generated by the Hex-Rays decompiler version 8.4.0.240320.
Copyright (c) 2007-2021 Hex-Rays <info@hex-rays.com>
Detected compiler: GNU C++
*/
#include <defs.h>
//-------------------------------------------------------------------------
// Function declarations
__int64 (**init_proc())(void);
__int64 sub_401020();
__int64 sub_401030(); // weak
__int64 sub_401040(); // weak
__int64 sub_401050(); // weak
__int64 sub_401060(); // weak
__int64 sub_401070(); // weak
// int puts(const char *s);
// int printf(const char *format, ...);
// __int64 __isoc99_scanf(const char *, ...); weak
// void __noreturn exit(int status);
void __fastcall __noreturn start(__int64 a1, __int64 a2, void (*a3)(void));
void dl_relocate_static_pie();
char *deregister_tm_clones();
__int64 register_tm_clones();
char *_do_global_dtors_aux();
__int64 frame_dummy();
int __fastcall main(int argc, const char **argv, const char **envp);
_BYTE *__fastcall encode(__int64 a1);
__int64 __fastcall validar(const char *a1);
int banner();
int comprar();
void _libc_csu_fini(void); // idb
void term_proc();
// int __fastcall _libc_start_main(int (__fastcall *main)(int, char **, char **), int argc, char **ubp_av, void (*init)(void), void (*fini)(void), void (*rtld_fini)(void), void *stack_end);
// __int64 _gmon_start__(void); weak
//-------------------------------------------------------------------------
// Data declarations
_UNKNOWN _libc_csu_init;
const char a31mparaSeguirU[43] = "\x1B[31mPara seguir usando este producto deber"; // idb
const char a32myaPuedesSeg[61] = "\x1B[32mYa puedes seguir afinando tus instrumentos (y tus flags "; // idb
const char aDirigaseANuest[21] = "\nDirigase a nuestra p"; // idb
__int64 (__fastcall *_frame_dummy_init_array_entry)() = &frame_dummy; // weak
__int64 (__fastcall *_do_global_dtors_aux_fini_array_entry)() = &_do_global_dtors_aux; // weak
__int64 (*qword_404010)(void) = NULL; // weak
char _bss_start; // weak
//----- (0000000000401000) ----------------------------------------------------
__int64 (**init_proc())(void)
{
__int64 (**result)(void); // rax
result = &_gmon_start__;
if ( &_gmon_start__ )
return (__int64 (**)(void))_gmon_start__();
return result;
}
// 404090: using guessed type __int64 _gmon_start__(void);
//----- (0000000000401020) ----------------------------------------------------
__int64 sub_401020()
{
return qword_404010();
}
// 404010: using guessed type __int64 (*qword_404010)(void);
//----- (0000000000401030) ----------------------------------------------------
__int64 sub_401030()
{
return sub_401020();
}
// 401030: using guessed type __int64 sub_401030();
//----- (0000000000401040) ----------------------------------------------------
__int64 sub_401040()
{
return sub_401020();
}
// 401040: using guessed type __int64 sub_401040();
//----- (0000000000401050) ----------------------------------------------------
__int64 sub_401050()
{
return sub_401020();
}
// 401050: using guessed type __int64 sub_401050();
//----- (0000000000401060) ----------------------------------------------------
__int64 sub_401060()
{
return sub_401020();
}
// 401060: using guessed type __int64 sub_401060();
//----- (0000000000401070) ----------------------------------------------------
__int64 sub_401070()
{
return sub_401020();
}
// 401070: using guessed type __int64 sub_401070();
//----- (00000000004010D0) ----------------------------------------------------
// positive sp value has been detected, the output may be wrong!
void __fastcall __noreturn start(__int64 a1, __int64 a2, void (*a3)(void))
{
__int64 v3; // rax
int v4; // esi
__int64 v5; // [rsp-8h] [rbp-8h] BYREF
char *retaddr; // [rsp+0h] [rbp+0h] BYREF
v4 = v5;
v5 = v3;
_libc_start_main(
(int (__fastcall *)(int, char **, char **))main,
v4,
&retaddr,
(void (*)(void))_libc_csu_init,
_libc_csu_fini,
a3,
&v5);
__halt();
}
// 4010DA: positive sp value 8 has been found
// 4010E1: variable 'v3' is possibly undefined
//----- (0000000000401100) ----------------------------------------------------
void dl_relocate_static_pie()
{
;
}
//----- (0000000000401110) ----------------------------------------------------
char *deregister_tm_clones()
{
return &_bss_start;
}
// 404050: using guessed type char _bss_start;
//----- (0000000000401140) ----------------------------------------------------
__int64 register_tm_clones()
{
return 0LL;
}
//----- (0000000000401180) ----------------------------------------------------
char *_do_global_dtors_aux()
{
char *result; // rax
if ( !_bss_start )
{
result = deregister_tm_clones();
_bss_start = 1;
}
return result;
}
// 404050: using guessed type char _bss_start;
//----- (00000000004011B0) ----------------------------------------------------
__int64 frame_dummy()
{
return register_tm_clones();
}
//----- (00000000004011B6) ----------------------------------------------------
int __fastcall main(int argc, const char **argv, const char **envp)
{
int v4; // [rsp+10h] [rbp-10h] BYREF
int v5; // [rsp+14h] [rbp-Ch]
unsigned __int64 v6; // [rsp+18h] [rbp-8h]
v6 = __readfsqword(0x28u);
v5 = 0;
puts("\n\x1B[31m -----------Se le ha acabado el periodo de prueba gratuito-----------\n");
puts(a31mparaSeguirU);
do
{
banner();
__isoc99_scanf("%d", &v4);
if ( v4 == 3 )
exit(0);
if ( v4 > 3 )
goto LABEL_10;
if ( v4 == 1 )
{
comprar();
continue;
}
if ( v4 == 2 )
v5 = validar("%d");
else
LABEL_10:
puts("Opcion invalida, pruebe otra vez");
}
while ( !v5 );
puts(a32myaPuedesSeg);
return 0;
}
// 4010B0: using guessed type __int64 __isoc99_scanf(const char *, ...);
//----- (0000000000401291) ----------------------------------------------------
_BYTE *__fastcall encode(__int64 a1)
{
_BYTE *result; // rax
int i; // [rsp+14h] [rbp-4h]
for ( i = 0; i <= 33; ++i )
{
if ( *(char *)(i + a1) <= 96 || *(char *)(i + a1) > 122 )
{
if ( *(char *)(i + a1) <= 64 || *(char *)(i + a1) > 90 )
{
result = (_BYTE *)*(unsigned __int8 *)(i + a1);
*(_BYTE *)(i + a1) = (_BYTE)result;
}
else
{
result = (_BYTE *)(i + a1);
*result = (5 * ((char)*result - 65) + 8) % 26 + 65;
}
}
else
{
result = (_BYTE *)(i + a1);
*result = (5 * ((char)*result - 97) + 8) % 26 + 97;
}
}
return result;
}
//----- (00000000004013DB) ----------------------------------------------------
__int64 __fastcall validar(const char *a1)
{
int i; // [rsp+Ch] [rbp-64h]
char v3[48]; // [rsp+10h] [rbp-60h] BYREF
__int64 v4[6]; // [rsp+40h] [rbp-30h] BYREF
v4[5] = __readfsqword(0x28u);
qmemcpy(v4, "RisgAv{rIU_ihHwvIxA_sAppCsziq3vzC}", 34);
printf("\nIntroduce tu licencia: ");
__isoc99_scanf("%s", v3);
encode((__int64)v3);
for ( i = 0; i <= 33; ++i )
{
if ( v3[i] != *((_BYTE *)v4 + i) )
{
puts("\n\x1B[31mTu licencia es incorrecta\x1B[37m\n");
return 0LL;
}
}
puts("\n\x1B[32mEres un crack, lo conseguiste\x1B[37m");
return 1LL;
}
// 4010B0: using guessed type __int64 __isoc99_scanf(const char *, ...);
// 4013DB: using guessed type char var_60[48];
//----- (00000000004014CE) ----------------------------------------------------
int banner()
{
puts(" ___________OPCIONES___________");
puts(" | 1: Comprar licencia premium |");
puts(" | 2: Validar clave de licencia |");
puts(" | 3: Salir |");
puts(" ------------------------------");
return printf("> ");
}
//----- (0000000000401526) ----------------------------------------------------
int comprar()
{
return puts(aDirigaseANuest);
}
//----- (0000000000401540) ----------------------------------------------------
void __fastcall _libc_csu_init(unsigned int a1, __int64 a2, __int64 a3)
{
signed __int64 v3; // rbp
__int64 i; // rbx
init_proc();
v3 = &_do_global_dtors_aux_fini_array_entry - &_frame_dummy_init_array_entry;
if ( v3 )
{
for ( i = 0LL; i != v3; ++i )
(*(&_frame_dummy_init_array_entry + i))();
}
}
// 403E10: using guessed type __int64 (__fastcall *_frame_dummy_init_array_entry)();
// 403E18: using guessed type __int64 (__fastcall *_do_global_dtors_aux_fini_array_entry)();
//----- (00000000004015B0) ----------------------------------------------------
void _libc_csu_fini(void)
{
;
}
//----- (00000000004015B8) ----------------------------------------------------
void term_proc()
{
;
}
// nfuncs=33 queued=21 decompiled=21 lumina nreq=0 worse=0 better=0
// ALL OK, 21 function(s) have been successfully decompiled
Para resolver el juego y obtener una licencia válida, nos fijamos en el proceso de validación que se encuentra en la función validar (líneas 237 a 258). Esta función compara una entrada de licencia codificada con una licencia codificada almacenada en el programa.
La licencia almacenada es "RisgAv{rIU_ihHwvIxA_sAppCsziq3vzC}", y se utiliza la función encode (líneas 207 a 234) para codificar la entrada del usuario antes de compararla. La función encode aplica un cifrado simple a la entrada, alterando los caracteres alfabéticos según una fórmula específica.
La función de cifrado encode realiza lo siguiente:
Si el carácter es una letra minúscula (a-z), se convierte según la fórmula (5 * (char - 97) + 8) % 26 + 97.
Si el carácter es una letra mayúscula (A-Z), se convierte según la fórmula (5 * (char - 65) + 8) % 26 + 65.
Nos construimos una función en Python para decodificar la Flag y reto superado.
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.
Intro
This crackme is for the crack challenge 6 of canyouhack.it.
In this crackme the goal is to turn on all the lights. Note that a light off to the next, so if we interrupt this, we win.
Tools
Exeinfo (For crackme info)
Delphi Decompiler (For decompile)
OllyDbg (For debug)
Decompiling
With Delphi Decompiler we can found easy the buttons and his offsets.
Go to the offset 401A64 in OllyDbg and analyze the code.
We view two jumps, one turn ON the light and the other Turn OFF the next light. Patching the call from offset 401A8B we get the serial.
Los retos de criptografía pueden ser muy variados como he dicho anteriormente. El secreto suele estar en saber a que te enfrentas y posteriormente construir una herramienta para descifrarlo o usar una ya existente (la mayoría de los casos).
Una web con la que suelo resolver la mayoría de retos es dcode.fr. Si os fijáis en el enlace, la lista de categorías asciende a 48 y disponéis de unos 800 algoritmos para rebanaros los sesos.
A continuación veamos unos cuantos retos que podéis encontrar por la red. Cabe destacar que normalmente el título del reto dice mucho del algoritmo.
Solución: Aquí nuestro primer impulso es utilizar fuerza bruta a MD5, pero cuando nos damos contra la pared el siguiente candidato es LAN Manager. Aquí la opción que más os guste, Cain, John The Ripper, etc.
Con John The Ripper tenemos que preparar un archivo de texto del estilo: deurus.info:1011:4C240DDAB17D1796AAD3B435B51404EE:4C240DDAB17D1796AAD3B435B51404EE:::
Solución: Para la primera parte la conversión es directa. Para la segunda, la dificultad reside en darse cuenta que hay que separar en grupos de cinco y decodificar por separado.
Conversiones, cifra clásica, hash, simétricos, asimétricos, combinaciones de varios algoritmos y un largo etcetera. Como veis los hay para todos los gustos, ten en cuenta que aquí os muestro una pequeñísima parte de lo que os encontrareis en las webs de retos, pero para despertar la curiosidad es suficiente.
La película «Contact«, estrenada en 1997 y dirigida por Robert Zemeckis, es una adaptación de la novela homónima de Carl Sagan. Más allá de su profunda exploración sobre la existencia de vida extraterrestre y el debate entre ciencia y fe, la película ofrece un interesante vistazo a la tecnología de la época. En este análisis, nos enfocaremos en los aspectos tecnológicos presentes en la película, detallando los sistemas operativos, software y hardware utilizados por los protagonistas.
Sinopsis
La Dra. Eleanor «Ellie» Arroway, interpretada por Jodie Foster, es una científica dedicada al proyecto SETI (Búsqueda de Inteligencia Extraterrestre). Tras años de búsqueda, capta una señal proveniente del espacio profundo que contiene instrucciones para construir una máquina enigmática. A medida que se desarrolla la trama, Ellie enfrenta desafíos políticos, religiosos y personales mientras lucha por interpretar el mensaje y lo que podría significar para la humanidad.
Análisis Tecnológico
Sistemas Operativos y Software
Uno de los aspectos más destacados en Contact es la presencia del sistema operativo UNIX. A lo largo de la película, se observan pistas que indican su uso, como pegatinas en las pantallas con mensajes del estilo: «Join the UNIX PARTY (The open system platform)». UNIX, desarrollado en la década de 1970, es conocido por su estabilidad y eficiencia, características esenciales en entornos científicos y de investigación.
La utilización de Netscape Navigator es recurrente. El logo de Netscape aparece en varias ocasiones, especialmente durante las videoconferencias que se muestran sin retrasos apreciables. Netscape fue uno de los primeros navegadores web ampliamente utilizados y jugó un papel crucial en la expansión de Internet durante los años 90.
Es importante destacar que, aunque la película promueve la idea de sistemas abiertos a través del uso de UNIX, Netscape Navigator no era software libre en el momento en que se rodó la película. Durante esa época, antes de 1997, Netscape era un navegador propietario. Sin embargo, en sistemas UNIX, Netscape tenía poca competencia y era el navegador predominante, soportando estándares abiertos como HTTP y HTML. Curiosamente, en 1998, poco después del estreno de la película, Netscape liberó el código fuente de su navegador, iniciando el proyecto Mozilla y contribuyendo significativamente al movimiento del software libre.
El software o plataforma denominada MADDEN HADDEN es utilizado por los protagonistas en diversas localizaciones, sugiriendo que es un estándar en su campo. Aunque en la realidad no existe un software conocido con ese nombre en el ámbito científico, en la película parece ser una herramienta integral para el análisis de datos y comunicación.
Videoconferencias y Comunicaciones
Las videoconferencias sin «lags» (retrasos) que se muestran en la película son notables, especialmente considerando las limitaciones tecnológicas de la época. La presencia del logo de Netscape durante estas comunicaciones resalta el optimismo sobre las capacidades de Internet en 1997. En ese entonces, las conexiones de alta velocidad no eran comunes, y las videollamadas de calidad eran más una aspiración que una realidad.
Estándares y Sistemas Abiertos
La promoción de sistemas abiertos es evidente en la película. El uso de UNIX, basado en estándares abiertos, refleja una filosofía de colaboración y accesibilidad en el ámbito científico. Aunque Netscape Navigator no era software libre durante la producción de la película, su soporte para estándares abiertos de Internet lo convirtió en una herramienta esencial para la comunicación y el intercambio de información entre científicos y profesionales.
Hardware
En términos de hardware, la película presenta una variedad de equipos representativos de la tecnología de los años 90:
Monitor NEC MultiSync XE21: Un monitor CRT de 21 pulgadas conocido por su alta resolución y calidad de imagen, ideal para aplicaciones que requieren detalles precisos.
Monitores con marcas ocultas: Es interesante notar que en varios monitores se utilizan post-its o adhesivos para cubrir la marca y el modelo. Esto podría deberse a decisiones de producción para evitar publicidad no deseada o cuestiones legales relacionadas con derechos de marca.
Monitor CTX: Aunque no se especifica el modelo, los monitores CTX eran populares por su fiabilidad y rendimiento a un costo razonable.
Monitor Hansol Mazellan 17px: Los monitores Hansol eran reconocidos por su calidad en la reproducción de gráficos, siendo utilizados en diseño y aplicaciones multimedia.
Monitor IBM: IBM fue pionera en tecnología informática, y sus monitores eran sinónimo de calidad y durabilidad. Aunque no se especifica el modelo exacto, es probable que se trate de uno de sus populares monitores CRT utilizados en entornos profesionales.
Evolución de UNIX y Windows
Para entender el contexto tecnológico de la época, es útil comparar la evolución de UNIX y Windows, así como de los navegadores Netscape Navigator e Internet Explorer.
Detalles Adicionales
Cobertura de marcas: La práctica de cubrir las marcas y modelos en los monitores podría indicar un intento de la producción por crear un entorno más universal y atemporal, evitando asociar la tecnología presentada con productos específicos que podrían quedar obsoletos rápidamente. En bastantes fotogramas se nota que esto es completamente intencionado.
Representación de la tecnología: La película equilibra la precisión técnica con las necesidades narrativas. Si bien algunas representaciones, como las videoconferencias fluidas, eran tecnológicamente avanzadas para la época, sirven para enfatizar la conectividad y colaboración global entre los científicos.
SETI y la Búsqueda de Vida Extraterrestre: En Contact, la Dra. Ellie Arroway dedica su vida al proyecto SETI (Search for Extraterrestrial Intelligence), reflejando el esfuerzo real de la comunidad científica por encontrar señales de inteligencia extraterrestre. SETI es una iniciativa internacional que utiliza radiotelescopios para detectar posibles comunicaciones de civilizaciones fuera de la Tierra. La película captura la pasión y los desafíos asociados con este tipo de investigación, destacando la dedicación de los científicos que trabajan en el límite de lo conocido.
El Mensaje de Arecibo: El radiotelescopio de Arecibo en Puerto Rico juega un papel significativo tanto en la realidad como en la película. En 1974, desde este observatorio, se envió el famoso Mensaje de Arecibo, una transmisión de radio dirigida al cúmulo estelar M13, diseñada para demostrar los avances tecnológicos humanos y nuestra existencia a posibles civilizaciones extraterrestres. El mensaje contenía información codificada sobre la composición humana, nuestro sistema numérico, la estructura del ADN y nuestra posición en el sistema solar. En «Contact», aunque la señal recibida por Ellie proviene de Vega y no está directamente relacionada con el Mensaje de Arecibo, la película establece paralelismos con este acontecimiento histórico. La utilización de Arecibo como escenario subraya la conexión entre los esfuerzos reales y ficticios en la búsqueda de inteligencia extraterrestre. La película explora la posibilidad de que, así como enviamos mensajes al espacio, podríamos recibir respuestas o comunicaciones de otras civilizaciones.
Matthew McConaughey: Es interesante notar cómo este actor ha participado en dos de las películas más destacadas de la ciencia ficción: Contact e Interstellar. En Contact, McConaughey interpreta un papel secundario como Palmer Joss, un escritor y asesor espiritual que cuestiona las implicaciones éticas y filosóficas del descubrimiento científico. Diecisiete años después, en Interstellar, asume el rol protagonista de Cooper, un ex piloto de la NASA que emprende una misión interestelar para salvar a la humanidad.
Números primos: El inicio de la investigación seria de la señal extraterrestre en la película se desencadena cuando, al analizar la señal recibida, los científicos descubren que esta codifica una secuencia de números primos. Este hallazgo resulta crucial, ya que los números primos, al ser divisibles únicamente por 1 y por sí mismos, no surgen de forma aleatoria en procesos naturales conocidos. Su presencia en la señal sugiere intencionalidad e inteligencia detrás de su emisión, lo que confirma que no se trata de ruido cósmico sino de una posible comunicación deliberada desde una civilización avanzada. Este descubrimiento impulsa a los científicos a profundizar en la decodificación, marcando el verdadero inicio de la búsqueda de vida extraterrestre.
Conclusión
Contact no solo es una obra que invita a reflexionar sobre nuestro lugar en el universo y la posibilidad de vida más allá de la Tierra, sino que también es un retrato de la tecnología de su tiempo. La inclusión de sistemas operativos como UNIX, navegadores como Netscape y hardware específico refleja una atención al detalle que enriquece la narrativa. A pesar de que Netscape Navigatorno era software libre durante la producción de la película, su presencia destaca la importancia de los estándares abiertos y la colaboración en el avance científico.
También destaca por su compromiso con la precisión científica, en gran parte debido a la influencia de Carl Sagan, autor de la novela original y asesor en la producción. La representación de los procedimientos del SETI, el análisis de señales y las discusiones éticas y filosóficas reflejan debates reales en la comunidad científica. La inclusión de elementos como el Mensaje de Arecibo y las operaciones del radiotelescopio añaden autenticidad a la narrativa y acercan al público a la realidad de la exploración espacial.
Hemos interceptado un mensaje secreto, pero ninguno de nuestros traductores lo sabe interpretar, ¿sabrías interpretarlo tú? Lo único que hemos encontrado es esto en un foro: шжзклмнпфъ = 1234567890
Parece que el mensaje secreto está encriptado utilizando un alfabeto cifrado que corresponde a números. Según la clave proporcionada (шжзклмнпфъ = 1234567890), cada letra del alfabeto cirílico se sustituye por un número.
Primero, descompondremos la clave dada: ш = 1 ж = 2 з = 3 к = 4 л = 5 м = 6 н = 7 п = 8 ф = 9 ъ = 0
Este parece ser un mensaje cifrado en números. La secuencia de números se puede interpretar de varias maneras (como ASCII, coordenadas, etc.). Si asumimos que es un texto codificado en ASCII:
Convertimos cada número a su correspondiente carácter ASCII:
72 = H 97 = a 99 = c 107 = k 79 = O 110 = n 123 = { 69 = E 108 = l 95 = _ 84 = T 101 = e 116 = t 114 = r 105 = i 115 = s 95 = _ 101 = e 115 = s 95 = _ 117 = u 110 = n 95 = _ 106 = j 117 = u 101 = e 130 = ? 111 = o 95 = _ 82 = R 117 = u 115 = s 111 = o 125 = }
Juntando todo:
HackOn{El_Tetris_e_s_u_n_j_u_e?o_Ruso}
La parte «{El_Tetris_e_s_u_n_j_u_e?o_Ruso}» parece un mensaje en español. Probablemente deba ser leído como: HackOn{El_Tetris_es_un_juego_Ruso}
Así, el mensaje secreto es: HackOn{El_Tetris_es_un_juego_Ruso}.
La imagen de portada de la entrada ha sido generada con ChatGPT.
Hace poco me reencontré con esta entrañable serie que tanto me entretuvo cuando era pequeño y para mi sorpresa, me percaté de que nunca había visto el episodio piloto. La nostalgia me llevó a tragarme el episodio entero y a disfrutar a lo grande de la parafernalia técnica de la que hace gala para justificar la creación que da nombre a la serie.
La visión tecnológica de los años 80
Esto hay que analizarlo con perspectiva. Estamos en los años 80 y nos están presentando un coche capaz de mantener una conversación, es decir, nos están presentando una inteligencia artificial (IA) llamada KITT. Puede parecer que el término inteligencia artificial es nuevo pero realmente se acuño en 1956 por John McCarthy. A partir de ese momento surgieron líneas de estudio e hipótesis pero a partir de los 70 se puede considerar que la investigación sobre la IA perdió financiación y quedó en el congelador hasta los años 90. Dicho esto, cuando nos presentan a KITT lo hacen de la siguiente manera:
Devon Miles: Está totalmente controlado por microprocesadores que hacen físicamente imposible que se vea implicado en ningún tipo de colisión o percance a no ser que se lo ordene su piloto específicamente
Michael Knight: ¿Piloto?, no me diga que esta cosa vuela
Devon Miles: ¡No!, pero piensa
Michael Knight: ¿Piensa?, ¿mi coche piensa?
Intel daba a conocer el primer microprocesador allá por el 71 y la serie se estrenó en el 82 lo que le da credibilidad en ese aspecto, aunque dudo que el público de esa época supiera que era un microprocesador, un ordenador y menos una IA.
Los Chips
La serie arranca con un grupo de personas realizando espionaje industrial donde nos muestran las hojas de datos de dos chips Japoneses como son el PD8257-5 y el PD780. Un aplauso para los guionistas y sus asesores ya que el PD8257-5 es una interfaz de comunicaciones y el PD780 un microprocesador de 8 bits.
Detalle del esquema del chip PD8257-5 y del set de instrucciones del chip PD780
Lo más interesante es que lo que se muestra es real como podéis apreciar en la siguiente imagen
Detalle del esquema mostrado en la serie VS la hoja de datos
A continuación un detalle de las capturas realizadas:
Más adelante vuelven a aparecer imágenes en un PC que parecen puestas en post-producción y que son robadas en un maravilloso disco de 5 1/4.
Los diálogos
Llaman la atención mucho los diálogos centrados en el microprocesador como si de un ser superior se tratase, éste es la referencia continua y la parte central del guion de los dos primeros capítulos. Curiosamente aparecen en pantalla multitud de imágenes de circuitos integrados pero no se llega a ver ningún microprocesador. Por otro lado, es interesante el esfuerzo que hacen los guionistas por que llamemos a KITT él en vez de ello, convirtiendo al coche en un personaje más.
Otra cosa que llama mucho la atención son los tópicos de los que hace gala como la asociación de los microprocesadores a los videojuegos o que la empresa villana esté afincada en Silicon Valley. Incluso el nombre KITT es un tópico ya que las siglas vienen de Knight Industries Two Thousand que en cristiano quiere decir Industrias Knight 2000. Y es que en mi opinión el año 2000 se imaginaba como una barrera lejana en la que todo iba a ser tecnológicamente más avanzado.
Conclusiones
Tengo que reconocer que me ha sorprendido que dieran realismo a los chips mostrados teniendo en cuenta que aparecen muy pocos segundos en pantalla y podían haber puesto cualquier cosa.
Por otro lado, la realidad es que en el año 2022 aún nos queda recorrido para llegar a tener un coche fantástico y lo más parecido que tenemos hoy día sería un Tesla con Alexa.