While Crackmes.de returns, I leave a couple of files for practice.

Mientras vuelve Crackmes.de, os dejo un par de archivos para practicar.

In the folder crackmes.de_mirror you have two files:

En la carpeta crackmes.de_mirror tienes dos archivos:


 password of files = deurus.info


Intro Hoy vamos a desmitificar un poco a Visual Basic. El Crackme reza que acabemos con la nag y hagamos
Introducción La película "Contact", estrenada en 1997 y dirigida por Robert Zemeckis, es una adaptación de la novela homónima de
Introducción Objetivo del juego y normas Código inicial Primeras modificaciones Terminando la faena Código ganador Curiosidades Enlaces Introducción Hace tiempo
Aquí os dejo un video tutorial. El crackme lo podeis encontrar en crackmes.de.

Rebuscando entre todo el caos que puede llegar a ser mi disco duro, he encontrado una serie de programas que utilizaba antiguamente cuando empezó a interesarme el Cracking. Ya sabéis que no soy partidario de crackear programas comerciales pero hoy voy a hacer una excepción ya que la versión del programa es muy vieja (1997) e incluso podría considerarse abandonware.

Este ejercicio es ideal para los que están empezando ya que es fácil localizar donde está el algoritmo y éste es sumamente sencillo.

Table of Contents

Algoritmo

Address   Hex dump          Command                                      Comments
00402213    E8 78170000     CALL HEdit.00403990
........
004039C0    8BC1            MOV EAX,ECX
004039C2    99              CDQ
004039C3    33C2            XOR EAX,EDX
004039C5    2BC2            SUB EAX,EDX
004039C7    83E0 03         AND EAX,00000003
004039CA    33C2            XOR EAX,EDX
004039CC    2BC2            SUB EAX,EDX
004039CE    8A540C 04       MOV DL,BYTE PTR SS:[ECX+ESP+4]  ;Coge el dígito i*3
004039D2    8A5C04 04       MOV BL,BYTE PTR SS:[EAX+ESP+4]  ;Coge el dígito i
004039D6    8D4404 04       LEA EAX,[EAX+ESP+4]             ;Guarda en memoria 12EE90
004039DA    32DA            XOR BL,DL
004039DC    41              INC ECX                         ; i +=1
004039DD    81F9 00010000   CMP ECX,100                     ;El bucle se repite 256 veces (0x100)
004039E3    8818            MOV BYTE PTR DS:[EAX],BL
004039E5  ^ 7C D9           JL SHORT HEdit.004039C0
004039E7    8B4424 04       MOV EAX,DWORD PTR SS:[ESP+4]
004039EB    85C0            TEST EAX,EAX                    ;Comprueba que el serial no sea 0
004039ED    7D 02           JGE SHORT HEdit.004039F1        ;Si es 0 se acabó
004039EF    F7D8            NEG EAX
004039F1    3B8424 0C010000 CMP EAX,DWORD PTR SS:[ESP+10C]  ;Comprobación de serial válido
004039F8    75 13           JNE SHORT HEdit.00403A0D        ;Si no es igual bad boy
004039FA    85C0            TEST EAX,EAX                    ;Comprueba que el serial no sea 0
004039FC    74 0F           JE SHORT HEdit.00403A0D         ;Si es 0 se acabó
004039FE    B8 01000000     MOV EAX,1
00403A03    5B              POP EBX
00403A04    81C4 00010000   ADD ESP,100
00403A0A    C2 0800         RETN 8

En resumen hace esto:

- Nombre introducido: deurus
- Convierte el nombre a mayúsculas

D  E  U  R  U  S
44 45 55 52 55 53 (En Hexadecimal)

1) 55 xor 44 = 11
2) 53 xor 45 = 16
3) 00 xor 55 = 55
4) 00 xor 52 = 52
   --------------- solo vale hasta aquí EAX(32 bits)
5) 00 xor 55 = 55
6) 00 xor 53 = 53
7) 00 xor 00 = 00
8) ...
            HEX         DEC
Serial = 52551611 = 1381307921

Como veis, realiza un bucle 256 veces pero como al final utiliza el registro EAX para hacer la comparación, solamente nos sirven las cuatro primeras operaciones. De hecho, no comprueba ni la longitud del nombre por lo que si introducimos un solo dígito como nombre, el serial será el valor ascii de ese dígito en decimal. La única comprobación que realiza es que el serial no sea 0.

Keygen

Os dejo una prueba de concepto en Javascript.

var nombre = "deurus";
nombre = nombre.toUpperCase();
var serial = "";

serial = serial + nombre.charCodeAt(3).toString(16) + nombre.charCodeAt(2).toString(16);
serial = serial + (nombre.charCodeAt(5) ^ nombre.charCodeAt(1)).toString(16);
serial = serial + (nombre.charCodeAt(2) ^ nombre.charCodeAt(0)).toString(16);
serial = "Nº Serie: " + parseInt(serial,16);

document.write(serial);

Enlaces

Yuri Software

Intro

Hace poco me reencontré con esta entrañable serie que tanto me entretuvo cuando era pequeño y para mi sorpresa, me percaté de que nunca había visto el episodio piloto. La nostalgia me llevó a tragarme el episodio entero y a disfrutar a lo grande de la parafernalia técnica de la que hace gala para justificar la creación que da nombre a la serie.

La visión tecnológica de los años 80

Esto hay que analizarlo con perspectiva. Estamos en los años 80 y nos están presentando un coche capaz de mantener una conversación, es decir, nos están presentando una inteligencia artificial (IA) llamada KITT. Puede parecer que el término inteligencia artificial es nuevo pero realmente se acuño en 1956 por John McCarthy. A partir de ese momento surgieron líneas de estudio e hipótesis pero a partir de los 70 se puede considerar que la investigación sobre la IA perdió financiación y quedó en el congelador hasta los años 90. Dicho esto, cuando nos presentan a KITT lo hacen de la siguiente manera:

Devon Miles: Está totalmente controlado por microprocesadores que hacen físicamente imposible que se vea implicado en ningún tipo de colisión o percance a no ser que se lo ordene su piloto específicamente

Michael Knight: ¿Piloto?, no me diga que esta cosa vuela

Devon Miles: ¡No!, pero piensa

Michael Knight: ¿Piensa?, ¿mi coche piensa?

Intel daba a conocer el primer microprocesador allá por el 71 y la serie se estrenó en el 82 lo que le da credibilidad en ese aspecto, aunque dudo que el público de esa época supiera que era un microprocesador, un ordenador y menos una IA.

Los Chips

La serie arranca con un grupo de personas realizando espionaje industrial donde nos muestran las hojas de datos de dos chips Japoneses como son el PD8257-5 y el PD780. Un aplauso para los guionistas y sus asesores ya que el PD8257-5 es una interfaz de comunicaciones y el PD780 un microprocesador de 8 bits.

Detalle del esquema del chip PD8257-5 y del set de instrucciones del chip PD780

Lo más interesante es que lo que se muestra es real como podéis apreciar en la siguiente imagen

Detalle del esquema mostrado en la serie VS la hoja de datos

A continuación un detalle de las capturas realizadas:

Más adelante vuelven a aparecer imágenes en un PC que parecen puestas en post-producción y que son robadas en un maravilloso disco de 5 1/4.

Los diálogos

Llaman la atención mucho los diálogos centrados en el microprocesador como si de un ser superior se tratase, éste es la referencia continua y la parte central del guion de los dos primeros capítulos. Curiosamente aparecen en pantalla multitud de imágenes de circuitos integrados pero no se llega a ver ningún microprocesador. Por otro lado, es interesante el esfuerzo que hacen los guionistas por que llamemos a KITT él en vez de ello, convirtiendo al coche en un personaje más.

Otra cosa que llama mucho la atención son los tópicos de los que hace gala como la asociación de los microprocesadores a los videojuegos o que la empresa villana esté afincada en Silicon Valley. Incluso el nombre KITT es un tópico ya que las siglas vienen de Knight Industries Two Thousand que en cristiano quiere decir Industrias Knight 2000. Y es que en mi opinión el año 2000 se imaginaba como una barrera lejana en la que todo iba a ser tecnológicamente más avanzado.

Conclusiones

Tengo que reconocer que me ha sorprendido que dieran realismo a los chips mostrados teniendo en cuenta que aparecen muy pocos segundos en pantalla y podían haber puesto cualquier cosa.

Por otro lado, la realidad es que en el año 2022 aún nos queda recorrido para llegar a tener un coche fantástico y lo más parecido que tenemos hoy día sería un Tesla con Alexa.

Enlaces de interés

Introducción

Hoy vamos a enfrentarnos a cuatro retos de esteganografía relativamente sencillos, y digo relativamente, debido a que hay tantas formas de esconder información en un archivo, ya sea imagen, vídeo o sonido, que afrontarlos suele ser desesperante. Las cuatro imágenes son aparentemente las mismas que la que se ve en portada.

Una buena práctica cuando te enfrentas a retos stego de tipo imagen es realizar una búsqueda inversa. Una búsqueda inversa consiste en buscar la imagen original mediante buscadores especializados como TinEye o Google. Si conseguimos la imagen original podemos resolver el reto simplemente comparando o nos puede dar una idea del tipo de modificación por su diferencia de tamaño, colores, degradados, etc.

Stego 1

Descargamos la imagen del reto. Se trata de una imagen JPEG de 526×263 y 76.6 KB (78445 bytes). Su hash SHA1 es «89aed5bbc3542bf5c60c4c318fe99cb1489f267a«

Realizamos una búsqueda inversa de la imagen y encontramos sin dificultad la imagen original mediante TinEye.

18-06-2016 07-27-02

Características de la imagen original:

  • Resolución: 526×263
  • Tamaño: 78447 bytes (76.6 KB)
  • Hash SHA1: 8924676317077fc07c252ddeec04bd2a0ecfdda4

Por lo que vemos ha cambiado el tamaño de 78447 bytes a 78445 bytes y su hash SHA1 tampoco coincide obviamente, lo que nos confirma que ha sufrido alguna modificación. Echando un vistazo con un editor hexadecimal te puedes volver loco por lo que vamos a realizar una comparación mediante la herramienta online DiffNow.

18-06-2016 07-40-51

Al realizar la comparación sale a relucir lo que buscamos. La clave es una simple cadena de texto.

Stego 2

Lo primero es realizar de nuevo la comparación.

ImagenTamañoSHA1
Original78447 bytes8924676317077fc07c252ddeec04bd2a0ecfdda4
imagen2.jpeg116386 bytes7641e3906f795c137269cefef29f30fcb9cb1b07

Como vemos, la imagen ha aumentado significativamente, de 76,6 KB a 113 KB. Cuando el aumento de tamaño llama la atención normalmente tenemos otro archivo insertado. Lo primero que suelo hacer yo es fijarme si ha sido modificado el final del archivo con un editor hexadecimal. Los bytes de cola de un archivo jpg/jpeg son FFD9 y en este caso no vemos modificación alguna al final del archivo. Si el archivo no está al final requiere realizar una búsqueda más exhaustiva. Para estos casos tengo una herramienta de creación propia que se llama Ancillary y que sirve para buscar cierto tipo de archivos dentro de otros como imágenes, documentos de Office, Open Office, pdf, etc. Ancillary encuentra otro jpg que es el que le daba el peso extra y que vemos a continuación. La clave es el título de la película (ojo a las mayúsculas/minúsculas).

image2_thumb

Stego 3

El tercer reto parece que tiene algún error debido a que el archivo coincide completamente con el original. Pienso que se ha subido la imagen original por error. Se lo he comunicado al admin del dominio y si algún día obtengo respuesta actualizaré la entrada.

ImagenTamañoSHA1
Original78447 bytes8924676317077fc07c252ddeec04bd2a0ecfdda4
imagen3.jpeg78447 bytes8924676317077fc07c252ddeec04bd2a0ecfdda4

Actualización 21/08/2016

Al parecer, la solución de este reto es llegar a la conclusión de que la imagen no está modificada. La respuesta del Administrador de la web así lo confirma.

desingsecurity [at] gmail [dot] com – Sorry about the delay, is precisely what is intended with that challenge, they can determine if the image is changed or not , the challenge was solved you . We’ll be equal way improving this point.

Greetings and Thanks

Stego 4

Lo primero es realizar de nuevo la comparación.

ImagenTamañoSHA1
Original78447 bytes8924676317077fc07c252ddeec04bd2a0ecfdda4
imagen4.jpeg93174 bytesa6329ea4562ef997e5afd067f3b53bdab4665851

Al igual que en el caso dos el tamaño ha aumentado significativamente de modo que miramos al final del archivo y esta vez si vemos que hay insertado unos bytes tras el final del jpg (recordemos FFD9)

18-06-2016 07-10-40

El archivo tiene pinta de ser una hoja de cálculo de Open Office o Libre Office según indica la palabra «spreadsheet«. Lo abrimos con Excel y tras analizar la maraña de datos enseguida vemos una clave que llama la atención.

  • Challengeland (El dominio ya no existe) [Archive]

Herramientas utilizadas