Solución para el KeygenMe ASM de Flamer

Intro

El crackme que analizamos hoy está hecho en ensamblador y si bien su dificultad es baja, la creación del keygen es un poco liosa. Al keygen que veremos más adelante, le he dado cierta aleatoriedad para que quede más elegante.

El crackme comprueba el serial en función de un identificador de 4 dígitos que el mismo crackme genera.

Análisis

Coje nuestro serial mediante la función GetDlgItemTextA.

004010D3  |.  68 FF000000   PUSH 0FF                                 ; /MaxCount = 255.
004010D8  |.  68 40324000   PUSH OFFSET 00403240                     ; |String
004010DD  |.  68 EC030000   PUSH 3EC                                 ; |ItemID = 1004.
004010E2  |.  FF75 08       PUSH DWORD PTR SS:[ARG.1]                ; |hDialog => [ARG.1]
004010E5  |.  E8 6E010000   CALL <JMP.&user32.GetDlgItemTextA>       ; \USER32.GetDlgItemTextA
004010EA  |.  68 40324000   PUSH OFFSET 00403240                     ; /String
004010EF  |.  E8 52010000   CALL <JMP.&kernel32.lstrlenA>            ; \KERNEL32.lstrlen
004010F4  |.  A3 47334000   MOV DWORD PTR DS:[403347],EAX
004010F9  |.  33DB          XOR EBX,EBX
004010FB  |.  33C0          XOR EAX,EAX
004010FD  |.  EB 54         JMP SHORT 00401153

Comprueba que nuestro serial esté formado por números (30h – 39h), letras de la A a la F (41h – 46h) y el guión (2Dh), es decir, el alfabeto hexadecimal más el guión. Si hay algún dígito indeseado nos tira fuera.

004010FF  |>  8A83 40324000 /MOV AL,BYTE PTR DS:[EBX+403240]
00401105  |.  3C 2D         |CMP AL,2D
00401107  |.  74 40         |JE SHORT 00401149
00401109  |.  3C 30         |CMP AL,30
0040110B  |.  74 3C         |JE SHORT 00401149
0040110D  |.  3C 31         |CMP AL,31
0040110F  |.  74 38         |JE SHORT 00401149
00401111  |.  3C 32         |CMP AL,32
00401113  |.  74 34         |JE SHORT 00401149
00401115  |.  3C 33         |CMP AL,33
00401117  |.  74 30         |JE SHORT 00401149
00401119  |.  3C 34         |CMP AL,34
0040111B  |.  74 2C         |JE SHORT 00401149
0040111D  |.  3C 35         |CMP AL,35
0040111F  |.  74 28         |JE SHORT 00401149
00401121  |.  3C 36         |CMP AL,36
00401123  |.  74 24         |JE SHORT 00401149
00401125  |.  3C 37         |CMP AL,37
00401127  |.  74 20         |JE SHORT 00401149
00401129  |.  3C 38         |CMP AL,38
0040112B  |.  74 1C         |JE SHORT 00401149
0040112D  |.  3C 39         |CMP AL,39
0040112F  |.  74 18         |JE SHORT 00401149
00401131  |.  3C 41         |CMP AL,41
00401133  |.  74 14         |JE SHORT 00401149
00401135  |.  3C 42         |CMP AL,42
00401137  |.  74 10         |JE SHORT 00401149
00401139  |.  3C 43         |CMP AL,43
0040113B  |.  74 0C         |JE SHORT 00401149
0040113D  |.  3C 44         |CMP AL,44
0040113F  |.  74 08         |JE SHORT 00401149
00401141  |.  3C 45         |CMP AL,45
00401143  |.  74 04         |JE SHORT 00401149
00401145  |.  3C 46         |CMP AL,46
00401147  |.  75 07         |JNE SHORT 00401150
00401149  |>  8305 4B334000 |ADD DWORD PTR DS:[40334B],1
00401150  |>  83C3 01       |ADD EBX,1
00401153  |>  3B1D 47334000 |CMP EBX,DWORD PTR DS:[403347]
00401159  |.^ 76 A4         \JBE SHORT 004010FF
0040115B  |. A1 47334000 MOV EAX,DWORD PTR DS:[403347]
00401160  |. 3905 4B334000 CMP DWORD PTR DS:[40334B],EAX     ; si no coincide el tamaño del serial con el
00401166  |. 0F85 94000000 JNE 00401200                      ; contador nos tira fuera

La comprobación del serial la realiza sumando el valor ascii del primer dígito al valor ascii del tercero y sucesivos y a continuación restando la suma anterior al ID. Cuando finalice la comprobación de todos los dígitos del serial, el restador tiene que ser cero, de lo contrario nos tira fuera. Si el ID es cero también nos tira fuera.

Ejemplo (base 10)para ID = 4011 y SERIAL: 1-23456

  • Valores del serial: 1(49) -(no se usa) 2(50) 3(51) 4(52) 5(53) 6(54)
  • 1º + 3º: 49 + 50 = 99
  • 4011 – 99 = 3912
  • 1º + 4º: 49 + 51 = 100
  • 3912 – 100 = 3812
  • 1º + 5º: 49 + 52 = 101
  • 3812 – 101 = 3711
  • 1º + 6º: 49 + 53 = 102
  • 3711 – 102 = 3609
  • 1º + 7º: 49 + 54 = 103
  • 3609 – 103 = 3506
  • ¿3506 = 0?
0040116C  |.  33C0          XOR EAX,EAX
0040116E  |.  BB 02000000   MOV EBX,2
00401173  |.  A0 40324000   MOV AL,BYTE PTR DS:[403240]
00401178  |.  A3 43334000   MOV DWORD PTR DS:[403343],EAX
0040117D  |.  EB 13         JMP SHORT 00401192
0040117F  |>  8A83 40324000 /MOV AL,BYTE PTR DS:[EBX+403240]         ; Coje el dígito correspondiente
00401185  |.  0305 43334000 |ADD EAX,DWORD PTR DS:[403343]           ; 1ºdig + dig
0040118B  |.  2905 4F334000 |SUB DWORD PTR DS:[40334F],EAX           ; ID - (1ºdig + dig)
00401191  |.  43            |INC EBX
00401192  |>  3B1D 47334000 |CMP EBX,DWORD PTR DS:[403347]
00401198  |.^ 72 E5         \JB SHORT 0040117F
0040119A  |.  833D 4F334000 CMP DWORD PTR DS:[40334F],0              ; CHECK RESTADOR SEA = 0
004011A1  |.  75 49         JNE SHORT 004011EC
004011A3  |.  833D 3F334000 CMP DWORD PTR DS:[40333F],0              ; CHECK ID <> 0
004011AA  |.  74 40         JE SHORT 004011EC
004011AC  |.  FF35 3F334000 PUSH DWORD PTR DS:[40333F]               ; /<%d> = 0
004011B2  |.  68 00304000   PUSH OFFSET 00403000                     ; |Format = "REGISTRADO CON ID:%d"
004011B7  |.  68 40324000   PUSH OFFSET 00403240                     ; |Buf
004011BC  |.  E8 A9000000   CALL <JMP.&user32.wsprintfA>             ; \USER32.wsprintfA

Como veis, el resultado de ir restando todos los dígitos de nuestro serial con la ID debe ser cero para que el serial sea correcto.

Keygen

Lo primero que se me ocurre para obtener una solución directa es buscar una combinación de dígito + dígito que sea múltiplo del ID. Para ello podemos usar la función módulo. La función módulo lo que hace es darnos el resto de la división de dos números, de modo que si el resto es cero los números son múltiplos. Para ello debemos cruzar todos los números y letras hasta encontrar los dígitos múltiplos del ID. Un serial de este primer tipo quedaría algo así como 1-FFFFFFFFFFFFFFFFFF ya que como el primer dígito es fijo el otro se repetirá tanta veces como sea necesario para hacer que el ID sea cero.

Con nuestro reducido alfabeto, cabe la posibilidad de que no encontremos una combinación válida, por lo que tendremos que pensar en un plan B. El plan B que se me ocurre a mi es intentar forzar el plan A restando caracteres aleatorios al ID y volviendo a comprobar si encontramos múltiplos del nuevo ID. Un serial de este tipo quedaría más elegante, por ejemplo 3-A6D53B628BBBBB.

Os dejo unos cuantos números de serie.

  • Tipo A
    • ID: 1111 SERIAL: 0-55555555555
    • ID: 2500 SERIAL: 0-4444444444444444444444444
    • ID: 4982 SERIAL: 1-99999999999999999999999999999999999999999999999
    • ID: 4992 SERIAL: 0-0000000000000000000000000000000000000000000000000000
  • Tipo B
    • ID: 1112 SERIAL: 9-19247C5555
    • ID: 2499 SERIAL: A-C5ADC2233333333333333
    • ID: 4981 SERIAL: 7-C6FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
    • ID: 4999 SERIAL: 4-A37BEEB8146A5CE6ECFB422B1BFF8474E852314F5A999
'Keygen for Flamer's asm keygenme
    Dim id As Integer
    Dim serial As String
    Dim tmp, tmp2, na, nb As Integer
    Dim alfabeto As Integer() = New Integer() {48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 65, 66, 67, 68, 69, 70}
    Dim r As Random = New Random
    'Button generate
    Private Sub btngen_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btngen.Click
ini:
        If txtid.TextLength <> 4 Then GoTo Mal
        id = txtid.Text
        txtdebug.Text = ""
        na = alfabeto(r.Next(1, 16))
        serial = Chr(na) & "-"
        tmp = id
        For i = 0 To alfabeto.Length - 1
            For y = 0 To alfabeto.Length - 1
                'Solución directa
                If id Mod (alfabeto(i) + alfabeto(y)) = 0 Then
                    tmp = id / (alfabeto(i) + alfabeto(y))
                    txtserial.Text = Chr(alfabeto(i)) & "-"
                    For z = 0 To tmp - 1
                        txtserial.Text &= Chr(alfabeto(y))
                    Next
                    GoTo fuera
                End If
                'Indirecta con aleatoriedad
                nb = alfabeto(r.Next(1, 16))
                tmp = tmp - (na + nb)
                serial &= Chr(nb)
                If tmp Mod (na + nb) = 0 Then
                    tmp2 = tmp / (na + nb)
                    For z = 0 To tmp2 - 1
                        serial &= Chr(nb)
                    Next
                    txtserial.Text = serial
                    GoTo fuera
                End If
                If tmp < 0 Then
                    GoTo ini
                Else
                    txtdebug.Text &= tmp & " "
                End If
            Next
        Next
Mal:
        txtserial.Text = "¿id?"
fuera:

    End Sub

Me doy cuenta que en el keygen no he utilizado el guión, pero no pasa nada, se lo dejo al lector como curiosidad.

Links


Hace unos años cuando empecé a trastear con Android y animado por mi afición a la Ingeniería Inversa, decidí realizar
Intro Aquí tenemos un crackme clásico realizado en Visual C++. La única particularidad que tiene es que no muestra MessageBox
Se nos entrega el siguiente ELF: Extracción de la Flag Si nos fijamos en las líneas 41 a la 45
Computer Password Security Hacker En el primer vistazo con el editor hexadecimal ya vemos la solución al reto: Pho Al

Blooper Tech Movie III – Mentiras arriesgadas

Continuamos con los BTM awards. Esta vez analizaremos brevemente una escena de la película del casi siempre excelente James Cameron, Mentiras Arriesgadas. En esta ocasión vamos a analizar una situación que se da mucho en el cine de Hollywood, esto es, el Plug and Play mágico. Cuando vemos películas de espías, es habitual encontrarnos con situaciones en las que el protagonista conecta un «algo» en el ordenador al que quiere acceder y ¡chas!, como por arte de magia sin tocar ninguna tecla se copian o se borran unos archivos, le da acceso remoto a algún compañero etc.

BTM

Este film no iba a ser menos y es que cuando Harry Tasker (Arnold Schwarzenegger) con sus inigualables dotes para el espionaje, entra en la mansión del objetivo en cuestión, conecta un módem, lo enciende y sin teclear un solo comando le da a su compañero Faisil (Grant Heslov) que se encuentra en una furgoneta a unos kilómetros,  acceso a la máquina, nos quedamos perplejos.

vlcsnap-2015-11-25-11h24m51s404

Esta situación es posible en la vida real, lo que la hace difícil de creer es que Harry no teclee ni un solo comando al conectar el módem, independientemente del Sistema Operativo que corra la máquina. Si nos situamos un poco, estamos hablando del año 1995, con una máquina corriendo Windows 3.1 y estamos conectando un módem a un puerto RS-232. En aquella época, por avanzada que fuera la tecnología espía, es difícil de creer que las cosas funcionen solas. Otra cosa a destacar es que a no ser que Faisil estuviera conectados a un poste de teléfono, la conexión tendría que ser inalámbrica, casi una quimera hace 20 años. A continuación os muestro la secuencia.

Como se puede observar en el vídeo, incluso parece que el equipo de Faisil, que también corre Windows 3.1, accede al equipo en modo escritorio remoto, tecnología que no existía en aquella época. Para que la secuencia tuviera un mínimo de credibilidad, Harry al conectar el módem y encender el equipo, debiera de haber introducido un par de comandos como mínimo para asignarle un puerto COM al módem y así iniciar la comunicación con Faisil. Ni que decir tiene que Faisil hubiera tenido que hacer todas las transmisiones mediante línea de comandos.

Aunque la película es entretenida y me gustó mucho cuando la vi allá por el año 1998, no nos queda más remedio que ponerle nuestro sello BTM de NO credibilidad.

sellazoment

Enlaces

Otros posts que te pueden interesar

Introducción Objetivo del juego y normas Código inicial Primeras modificaciones Terminando la faena Código ganador Curiosidades Enlaces Introducción Hace tiempo
Warning: This challenge is still active and therefore should not be resolved using this information. Aviso: Este reto sigue en
Este BTM va otra vez sobre IPs. Si amigos del séptimo arte, viendo un capítulo de mi querida "The Sinner"
Introducción Funcionamiento de RSA OllyDbg Calculando la clave privada (d) Ejemplo operacional Keygen Links Introducción Segunda crackme con RSA que

Tron – Reto IA de yoire.com

Introducción

Hace tiempo que me aficioné a los retos de Hacking y Cracking, y si bien la mayoría de ellos consisten en desencriptar una clave o realizar ingeniería inversa sobre un ejecutable, también los hay sobre programación pura y dura.

En esta ocasión se nos proporciona un código «muestra» parecido a PHP o C++ y tenemos que ingeniarnoslas para mejorarlo y ganar a la máquina.

Objetivo del juego y normas

El objetivo de esta misión es ganar a Tr0n en su propio juego: las carreras de motos. Se te proporcionará un programa (código) funcional para que veas como se controla el vehiculo. Usando tu inteligencia, tendrás que entender su uso y mejorarlo, ya que no es lo suficientemente bueno como para ganar a Tr0n. Tr0n lleva ya bastante tiempo en la parrilla de juegos y es bastante habilidoso 🙂

Cuando venzas a Tr0n un mínimo de 5 veces consecutivas, se te dará por superada esta prueba.

Buena suerte!!!

[ Available functions / Funciones disponibles ]
direction() returns current direction, change to a new one with direction([newdir])
getX(), getY() returns X and Y coordinates
collisionDistance() | collisionDistance([anydir]) returns the distance until collision
Note: parameters [*dir] can be empty or one of this values: UP DOWN LEFT or RIGHT

[ Constants / Constantes ]
UP DOWN LEFT RIGHT MAX_X MAX_Y

[ Rules / Reglas ]
Try to survive driving your bike and … / Intenta sobrevivir conduciendo tu moto y…
Don’t cross any line / No cruces ninguna línea
or crash with the corners! / o choques con las esquinas!

[ Mission / Mision ]
Use well this controller and beat Tr0n 5 consecutive times to score in this game
Usa bien este controlador y vence a Tr0n 5 veces consecutivas para puntuar en este juego

Código inicial

Nada más comenzar vemos que hemos perdido nuestra primera partida con el siguiente código:

	function controller(playerController $c){
		if($c->direction()==UP && $c->getY()<10){
			if(rand(0,1)==0) $c->direction(LEFT);
				else $c->direction(RIGHT);
			goto done;
		}
		if($c->direction()==DOWN && MAX_Y-$c->getY()<10){
			if(rand(0,1)==0) $c->direction(LEFT);
				else $c->direction(RIGHT);
			goto done;
		}
		if($c->direction()==LEFT && $c->getX()<10){
			if(rand(0,1)==0) $c->direction(UP);
				else $c->direction(DOWN);
			goto done;
		}
		if($c->direction()==RIGHT && MAX_X-$c->getX()<10){
			if(rand(0,1)==0) $c->direction(UP);
				else $c->direction(DOWN);
		}
		done:
	}

Nosotros somos el AZUL y la máquina es el VERDE.

loose_inicial

Primeras modificaciones

Lo primero que tenemos que modificar son las distancias de las coordenadas que estan puestas en «<10» al mínimo, que sería «<2«. También sustituir la aleatoriedad «rand(0,1)==0» por algo más útil y comenzar a usar la función «collisionDistance()«.

Como podéis observar en el código inferior, usamos la función «collisionDistance()» para detectar cuando estamos a punto de chocar «collisionDistance() ==1» y para detectar a que lado nos conviene más girar en función de donde podamos recorrer más distancia «if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT); else $c->direction(RIGHT);«.

if($c->direction()==UP && $c->getY()==1 && $c->collisionDistance() ==1){
			if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT);
				else $c->direction(RIGHT);
		}
if($c->direction()==DOWN && MAX_Y-$c->getY()<2 || $c->collisionDistance() ==1){
			if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT);
				else $c->direction(RIGHT);
		}
if($c->direction()==LEFT && $c->getX()==1 && $c->collisionDistance() ==1){
			if($c->collisionDistance([UP]) >2) 
                                $c->direction(UP);
				else 
                                $c->direction(DOWN);
		}
if($c->direction()==RIGHT && MAX_X-$c->getX()<2 || $c->collisionDistance() ==1){
			if($c->collisionDistance([UP]) >2) $c->direction(UP);
				else $c->direction(DOWN);
				
		}

Terminando la faena

El código anterior de por sí no nos resuelve mucho si no afinamos un poco más, comprobando todos las posibles colisiones y tomando la dirección correcta en función de la mayor distancia a recorrer.

    if($c->collisionDistance([UP])==1 || $c->collisionDistance() ==1){
             if($c->collisionDistance([LEFT]) > $c->collisionDistance([RIGHT]))
               $c->direction(LEFT);
             else 
               $c->direction(RIGHT);
     }
     if($c->collisionDistance([DOWN])==1 || $c->collisionDistance() ==1){
            if($c->collisionDistance([LEFT]) > $c->collisionDistance([RIGHT]))
               $c->direction(LEFT);
             else 
               $c->direction(RIGHT);
     }
     if($c->collisionDistance([RIGHT])==1 || $c->collisionDistance() ==1){
             if($c->collisionDistance([UP]) > $c->collisionDistance([DOWN]))
               $c->direction(UP);
             else 
               $c->direction(DOWN);
     }
     if($c->collisionDistance([LEFT])==1 || $c->collisionDistance() ==1){
          if($c->collisionDistance([UP]) > $c->collisionDistance([DOWN]))
               $c->direction(UP);
             else 
               $c->direction(DOWN);
     }

Código ganador

El código que utilicé yo para ganar a Tron es el siguiente:

function controller(playerController $c){
uno:
if($c->direction()==UP && $c->getY()==1 && $c->collisionDistance() ==1){
			if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT);
				else $c->direction(RIGHT);
				
		}
if($c->direction()==DOWN && MAX_Y-$c->getY()<2 || $c->collisionDistance() ==1){
			if($c->collisionDistance([LEFT]) >2) $c->direction(LEFT);
				else $c->direction(RIGHT);
				
		}
if($c->direction()==LEFT && $c->getX()==1 && $c->collisionDistance() ==1){
			if($c->collisionDistance([UP]) >2) 
                                $c->direction(UP);
				else 
                                $c->direction(DOWN);
				
		}
if($c->direction()==RIGHT && MAX_X-$c->getX()<2 || $c->collisionDistance() ==1){
			if($c->collisionDistance([UP]) >2) $c->direction(UP);
				else $c->direction(DOWN);
				
		}
dos:
    if($c->collisionDistance([UP])==1 || $c->collisionDistance() ==1){
             if($c->collisionDistance([LEFT]) > $c->collisionDistance([RIGHT]))
               $c->direction(LEFT);
             else 
               $c->direction(RIGHT);
     }
     if($c->collisionDistance([DOWN])==1 || $c->collisionDistance() ==1){
            if($c->collisionDistance([LEFT]) > $c->collisionDistance([RIGHT]))
               $c->direction(LEFT);
             else 
               $c->direction(RIGHT);
     }
     if($c->collisionDistance([RIGHT])==1 || $c->collisionDistance() ==1){
             if($c->collisionDistance([UP]) > $c->collisionDistance([DOWN]))
               $c->direction(UP);
             else 
               $c->direction(DOWN);
     }
     if($c->collisionDistance([LEFT])==1 || $c->collisionDistance() ==1){
          if($c->collisionDistance([UP]) > $c->collisionDistance([DOWN]))
               $c->direction(UP);
             else 
               $c->direction(DOWN);
     }
		done:
	}

Mis jugadas ganadoras:

01

02

03

04

05

El código no es infalible ya que como comprabaréis vosotros mismos, no se puede ganar siempre por el mero hecho de la aleatoriedad y de la suerte. Cuando dispongais de un código decente, ejecutarlo varias veces para estar seguros antes de desecharlo.

Curiosidades

Como se suele decir, la banca siempre gana, y en este caso no iba a ser menos y es que en caso de empate ¡la banca gana!

empate

 

Por último deciros que podéis utilizar el código ya que la web detecta los códigos ganadores para que no se repitan.

Enlaces

ThisIsLegal.com – Realistic Challenge 4

Warning: This challenge is still active and therefore should not be resolved using this information.
Aviso: Este reto sigue en activo y por lo tanto no se debería resolver utilizando esta información.

Introducción

Realistic Challenge 4: There is a site offering protection against hackers to website owners, the service is far too overpriced and the people running the service don’t know anything about security. Look around their site, and see how protected it is.

Hay un sitio que ofrece protección contra los hackers. El servicio tiene un precio abusivo, echa un vistazo a la web y evalúa su pretección.

Analizando a la víctima

Vemos un escueto menú pero con cosas interesantes.

Pinchamos sobre «Testimonials» y a continuación en «Customer 1»

Vemos que hay solo 3 «customers», vamos a introducir manualmente un 5 haber que pasa.

Ok, nos genera el siguiente error.

Probamos ahora con un enlace interno que nos genera el siguiente error.

http://www.thisislegal.com/newr/src/read.php?customer=../orders.php

Nos llama la atención «../beqref.cuc«. Parece una encriptación simple, probemos a poner eso mismo en el navegador.

http://www.thisislegal.com/newr/src/read.php?customer=../beqref.cuc

 

Nuestras sospechas son acertadas, ahora el error muestra esto.

Explotando a la víctima

Probamos varias cosas y al final conseguimos algo relevante con «order2.php«.

http://www.thisislegal.com/newr/src/read.php?customer=../beqre2.cuc
Tenemos un directorio interesante «secure«, si entramos en el nos salta un Login típico protegido con «.htaccess«. Lo lógico a continuación es hacernos con el archivo «.htpasswd«
http://www.thisislegal.com/newr/src/read.php?customer=../frpher/.ugcnffjq

 

Una vez obtenido el contenido del archivo «.htpasswd» lo siguiente es crackear el password con John the Ripper. Nos logueamos en la carpeta secure y reto superado.

Links

Blooper Tech Movie IX – The Sinner 2×06

Este BTM va otra vez sobre IPs. Si amigos del séptimo arte, viendo un capítulo de mi querida «The Sinner» me han vuelto a chirriar los dientes. La verdad que viendo el capítulo no te da tiempo a apreciarlo, únicamente me quedo con que aparece una URL y lo reviso a posteriori (esto lo digo para los curiosos que me preguntáis).

En esta ocasión me tiene un poco inquieto ya que es una serie que cuida enormemente los detalles y el fallo que os voy a mostrar parece intencionado. La imagen en cuestión es esta:

Fotograma del capítulo 2×06

Aparece un buscador con una URL más o menos creíble si no fuera porque la IP que aparece es IMPOSIBLE. La máxima IPv4 es 255.255.255.255, es decir, no han dado ni una, y eso es lo que me tiene mosca. Si hubieran utilizado 82.47.25.29 hubiera quedado bien y estaríamos hablando de un problema de geolocalización de IPs, ya que el rango 82.47.xx.xx le pertenece a UK y deberíamos discernir si el servidor está en EEUU o no…

En definitiva, puede ser un fallo a propósito, un guiño o tener un significado. No se que deciros, bueno si, ¡lo investigaré!

Enlaces

Solución al KeyGenMe1 (RSA127) de C00lw0lf

Introducción

Segunda crackme con RSA que afrontamos. Esta vez se trata de un crackme realizado en VC++ 7.0 y en sus entrañas utiliza RSA-127. Una cosa que no comenté en la entrega anterior (RSA-200), es que conviene utilizar el plugin Kanal de PEiD para localizar cuando se utilizan números grandes o determinados hashes como MD5 o SHA1.

16-02-2015 01-49-36

Otra cosa es que os quería comentar es la coletilla 127. Esta lo determina el módulo n e indica el número de bits de éste.

Funcionamiento de RSA

  1. Inicialmente es necesario generar aleatoriamente dos números primos grandes, a los que llamaremos p y q.
  2. A continuación calcularemos n como producto de p y q:
    n = p * q
  3. Se calcula fi:
    fi(n)=(p-1)(q-1)
  4. Se calcula un número natural e de manera que MCD(e, fi(n))=1 , es decir e debe ser primo relativo de fi(n). Es lo mismo que buscar un numero impar por el que dividir fi(n) que de cero como resto.
  5. Mediante el algoritmo extendido de Euclides se calcula d que es el inverso modular de e.
    Puede calcularse d=((Y*fi(n))+1)/e para Y=1,2,3,... hasta encontrar un d entero.
  6. El par de números (e,n) son la clave pública.
  7. El par de números (d,n) son la clave privada.
  8. Cifrado: La función de cifrado es.
    c = m^e mod n
  9. Descifrado: La función de descifrado es.
    m = c^d mod n

OllyDbg

Con OllyDbg analizamos la parte del código que nos interesa.

0040109B    .  68 00010000         PUSH 100                                  ; /Count = 100 (256.)
004010A0    .  52                  PUSH EDX                                  ; |Buffer = RSA127.<ModuleEntryPoint>
004010A1    .  68 EA030000         PUSH 3EA                                  ; |ControlID = 3EA (1002.)
004010A6    .  8B8C24 28020000     MOV ECX,DWORD PTR SS:[ESP+228]            ; |
004010AD    .  51                  PUSH ECX                                  ; |hWnd = NULL
004010AE    .  FF15 F0B04000       CALL DWORD PTR DS:[<&USER32.GetDlgItemTex>; \GetDlgItemTextA
004010B4    .  8D5424 04           LEA EDX,DWORD PTR SS:[ESP+4]
004010B8    .  57                  PUSH EDI
004010B9    .  52                  PUSH EDX                                  ;  RSA127.<ModuleEntryPoint>
004010BA    .  50                  PUSH EAX                                  ;  kernel32.BaseThreadInitThunk
004010BB    .  E8 201E0000         CALL RSA127.00402EE0
004010C0    .  83C4 0C             ADD ESP,0C
004010C3    .  8D9424 04010000     LEA EDX,DWORD PTR SS:[ESP+104]
004010CA    .  68 00010000         PUSH 100                                  ; /Count = 100 (256.)
004010CF    .  52                  PUSH EDX                                  ; |Buffer = RSA127.<ModuleEntryPoint>
004010D0    .  68 EB030000         PUSH 3EB                                  ; |ControlID = 3EB (1003.)
004010D5    .  8B8C24 28020000     MOV ECX,DWORD PTR SS:[ESP+228]            ; |
004010DC    .  51                  PUSH ECX                                  ; |hWnd = NULL
004010DD    .  FF15 F0B04000       CALL DWORD PTR DS:[<&USER32.GetDlgItemTex>; \GetDlgItemTextA
004010E3    .  8D9424 04010000     LEA EDX,DWORD PTR SS:[ESP+104]
004010EA    .  52                  PUSH EDX                                  ;  RSA127.<ModuleEntryPoint>
004010EB    .  8B4C24 04           MOV ECX,DWORD PTR SS:[ESP+4]
004010EF    .  51                  PUSH ECX
004010F0    .  E8 5B1F0000         CALL RSA127.00403050
004010F5    .  68 08B14000         PUSH RSA127.0040B108                      ;  ASCII "666AAA422FDF79E1D4E41EDDC4D42C51"
004010FA    .  55                  PUSH EBP
004010FB    .  E8 501F0000         CALL RSA127.00403050
00401100    .  68 2CB14000         PUSH RSA127.0040B12C                      ;  ASCII "29F8EEDBC262484C2E3F60952B73D067"
00401105    .  56                  PUSH ESI
00401106    .  E8 451F0000         CALL RSA127.00403050
0040110B    .  53                  PUSH EBX
0040110C    .  55                  PUSH EBP
0040110D    .  56                  PUSH ESI
0040110E    .  8B5424 24           MOV EDX,DWORD PTR SS:[ESP+24]
00401112    .  52                  PUSH EDX                                  ;  RSA127.<ModuleEntryPoint>
00401113    .  E8 38250000         CALL RSA127.00403650
00401118    .  53                  PUSH EBX
00401119    .  57                  PUSH EDI
0040111A    .  E8 31130000         CALL RSA127.00402450
0040111F    .  83C4 30             ADD ESP,30
00401122    .  85C0                TEST EAX,EAX                              ;  kernel32.BaseThreadInitThunk
00401124    .  74 12               JE SHORT RSA127.00401138
00401126    .  B8 01000000         MOV EAX,1
0040112B    .  81C4 08020000       ADD ESP,208
00401131    .  5B                  POP EBX                                   ;  kernel32.7590EE1C
00401132    .  5D                  POP EBP                                   ;  kernel32.7590EE1C
00401133    .  5E                  POP ESI                                   ;  kernel32.7590EE1C
00401134    .  5F                  POP EDI                                   ;  kernel32.7590EE1C
00401135    .  C2 1000             RETN 10
00401138    >  6A 40               PUSH 40                                   ; /Style = MB_OK|MB_ICONASTERISK|MB_APPLMODAL
0040113A    .  68 5CB14000         PUSH RSA127.0040B15C                      ; |Title = "Yeah!"
0040113F    .  68 50B14000         PUSH RSA127.0040B150                      ; |Text = "Nice job!!!"
00401144    .  6A 00               PUSH 0                                    ; |hOwner = NULL
00401146    .  FF15 F4B04000       CALL DWORD PTR DS:[<&USER32.MessageBoxA>] ; \MessageBoxA

El código nos proporciona el exponente público (e) y el módulo (n).

  • e = 29F8EEDBC262484C2E3F60952B73D067
  • n = 666AAA422FDF79E1D4E41EDDC4D42C51

Finalmente realiza un PowMod con el número de serie del disco C y el par de claves (e,n).

Calculando la clave privada (d)

Una vez localizados los datos anteriores lo siguiente es factorizar para obtener los primos p y q y finalmente d.

RSA127_rsatool

d = 65537

Ejemplo operacional

Nº serie disco C = -1295811883
Serial = hdd.getBytes()^d mod n
Serial = 2d31323935383131383833^65537 mod 666AAA422FDF79E1D4E41EDDC4D42C51
Serial = 1698B6CE6BE0D388C31E8E7895AF445A

RSA127_bigint

Keygen

El keygen está hecho en Java ya que permite trabajar con números grandes de forma sencilla.

JButton btnNewButton = new JButton("Generar");
        btnNewButton.addActionListener(new ActionListener() {
            public void actionPerformed(ActionEvent arg0) {
                BigInteger serial = new BigInteger("0");
                BigInteger n = new BigInteger("136135092290573418981810449482425576529");
                BigInteger d = new BigInteger("415031");
                String hdd = t1.getText();
                BigInteger tmp = new BigInteger(hdd.getBytes());
                serial = tmp.modPow(d, n);
                t2.setText(serial.toString(16).toUpperCase());
            }
        });

Links


El reto Se nos proporciona la imagen anterior y se nos invita a resolver la ecuación para el menor entero
El reto consiste en dos imágenes (v1.png y v2.png) que, a simple vista, parecen contener ruido aleatorio. Sin embargo, ambas
Alerta de Spoiler: El reto está en activo a fecha de publicación. Spoiler alert: The challenge is still alive. Este
En Parque Jurásico (1993), la informática no es solo un elemento narrativo, es una pieza clave del suspense y del

ChatGPT vs CTF matemático

El reto

Se nos proporciona la imagen anterior y se nos invita a resolver la ecuación para el menor entero positivo que representa cada fruta. La solución del reto es concatenar «Flag-» a la suma de los valores de las tres frutas.

Análisis inicial

El enunciado es breve pero ya nos adelanta que existen varias soluciones y que además sólo quieren los números más pequeños que podamos encontrar.

Las frutas están muy bien y son muy sanas pero a nosotros se nos hace más sencillo plantear la ecuación con letras.

\begin{align}
&  \frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=4\\
\end{align}

Para arrojar algo de luz veamos la representación gráfica en 2D y 3D con la ayuda de Desmos.

3D

Las gráficas más que luz nos traen oscuridad de modo que preguntemos a ChatGPT.

ChatGPT

resuelve: (x/y+z)+(y/x+z)+(z/x+y)=4 para enteros positivos

Dado que las variables x, y, z son enteros positivos, podemos intentar encontrar una solución para la ecuación bajo estas condiciones. Sin embargo, encontrar una solución exacta puede ser complejo debido a la naturaleza no lineal de la ecuación. Aun así, podemos intentar algunos enfoques:

  • Prueba y error: Podemos probar diferentes combinaciones de valores enteros positivos para x, y, z y ver si satisfacen la ecuación.
  • Análisis de casos específicos: Podemos comenzar analizando casos más simples, como cuando dos de las variables son iguales, y luego ampliar nuestra búsqueda desde allí.
  • Análisis gráfico o numérico: Utilizando herramientas gráficas o numéricas, podríamos identificar posibles soluciones y luego verificar si son enteros positivos.

Voy a realizar un análisis numérico con un rango limitado de valores para ver si encontramos alguna solución que cumpla con las condiciones. Vamos a probar con valores de 1 a 10 para cada variable.

El análisis numérico para valores de en el rango de 1 a 10 no ha encontrado ninguna solución que satisfaga la ecuación. Esto sugiere que, dentro de este rango, no existen combinaciones de enteros positivos que cumplan con la ecuación.

Dado que la ecuación es bastante compleja y no lineal, es posible que las soluciones, si existen, se encuentren fuera del rango considerado o que requieran un enfoque diferente para ser identificadas. Si tienes un rango específico de valores en mente o si hay alguna otra restricción o contexto relevante, por favor házmelo saber para poder ajustar el análisis en consecuencia.

Básicamente nos está invitando a utilizar prueba y error para encontrar una solución, y el prueba y error de las matemáticas no es más que la fuerza bruta en programación.

El código

Partiendo del problema anterior dame un código en python que realice una comprobación recursiva de todas las variables con un rango de 1 a 999.

soluciones = []
rango_valores_x = range(1, 999)
rango_valores_y = range(1, 999)
rango_valores_z = range(1, 999)

for x in rango_valores_x:
    for y in rango_valores_y:
        for z in rango_valores_z:
            # Calculamos el valor de la expresión para cada combinación de x, y, z
            valor = x / (y + z) + y / (x + z) + z / (x + y)
            # Comprobamos si el valor es igual a 4 y agregamos la solución a la lista
            if abs(valor - 4) < 1e-6:  # Usamos una pequeña tolerancia para evitar errores de precisión
                soluciones.append((x, y, z))

print(soluciones)

Dejo resaltada la línea 12 del código ya que en ella reside el problema. Está comprobando con un margen de tolerancia de 10-6 ya que el resultado de las diferentes fracciones no da como resultado exacto 4. Esto es un problema ya que nosotros necesitamos que de exactamente 4 para validar los valores enteros de x, y y z. Pongo un ejemplo para el que se haya perdido con una solución válida para la tolerancia 10-6 siendo x=2, y=264 y z=993.

\begin{align}
&  \frac{2}{264+993}+\frac{264}{2+993}+\frac{993}{2+264}=4.000000429\\
\end{align}

En otras palabras, ChatGPT nos ha brindado una solución aproximada que no sirve para nuestro propósito. Seguimos probando con el código anterior quitando la tolerancia y con rangos mayores hasta que en 106 paro. Me acaba de quedar claro que con la fuerza bruta no vamos a ninguna parte, o más bien, no tenemos capacidad de computación para resolverlo de ésta manera.

¿Qué está pasando?

Lo que pasa es que estamos ante una ecuación algebraica de 3 incógnitas que deben ser enteros positivos cuya solución se alcanza mediante la teoría de curvas elípticas.

Curvas elípticas

Las curvas elípticas son fundamentales en matemáticas avanzadas, representadas por la ecuación y2=x3+Ax+B, donde A y B son constantes. Estas curvas son un punto de encuentro entre la geometría, la teoría de números y el álgebra, ofreciendo un campo rico para la exploración y el análisis. En este CTF, nos enfocaremos en los puntos racionales de las curvas elípticas. Utilizando el método tangente-secante, un procedimiento geométrico iterativo, buscaremos ampliar un conjunto finito de soluciones conocidas a la ecuación de la curva. Este método nos permite indagar en la estructura de las soluciones racionales, que potencialmente pueden ser infinitas. Además, estableceremos una conexión entre las soluciones enteras de las ecuaciones diofánticas y los puntos racionales en las curvas elípticas partiendo de la ecuación (1) especificada en el análisis inicial. A pesar de su aparente simplicidad, esta ecuación es conocida por presentar soluciones mínimas de gran tamaño.

Adecuación

Antes de nada, necesitamos saber el grado de la ecuación, de modo que planteamos la ecuación en forma polinómica estándar deshaciéndonos de los denominadores.

\begin{align}
\begin{split}
n(a+b)(b+c)(c+a)=a(a+b)(c+a)+b(b+c)(a+b)+c(c+a)(b+c)
\end{split}
\end{align}

Ahora necesitamos expandir y simplificar para llegar a la conclusión de que estamos ante una ecuación diofántica de grado 3. Este proceso es engorroso por la cantidad de términos a manejar así que vamos a utilizar Mathematica como software de respaldo para finalmente obtener el polinomio en la forma de Weierstrass según la ecuación 4.

\begin{align}
&  y^2=x^3+109x^2+224x\\
\end{align}

donde:

\begin{align}
x = \frac{−28(a+b+2c)}{(6a+6b−c)}\\
y = \frac{364(a−b)}{(6a+6b−c)}
\end{align}

Las relación entre la ecuación 3 y los puntos de la curva elíptica se establecen mediante la ecuación 4. Las transformaciones entre las soluciones (a, b, c) y los puntos (x, y) en la curva elíptica vienen dados por las ecuaciones 5 y 6. Con estas transformaciones, cada solución de la ecuación diofántica se puede representar como un punto en la curva elíptica, y las operaciones de suma de puntos en la curva elíptica pueden usarse para encontrar nuevas soluciones de la ecuación diofántica.

Mathematica

El código que tenéis a continuación pertenece al gran trabajo de Aditi Kulkarni [7], que además nos da el resultado para cualquier valor de n. Ojo porque para n=4 el resultado tiene 81 dígitos, para n=6 tiene 134, para n=10 tiene 190 y para n=12 asciende a 2707 dígitos.

(* Asignar un valor numérico a n *)
n = 4;
(* Definir la ecuación de una curva elíptica en términos de n *)
curve4 = y^2 == x^3 + (4*n^2 + 12*n - 3)*x^2 + 32*(n + 3)*x;
(* Encontrar un punto racional en la curva que no sea (4,0) *)
P4 = {x, y} /. First[FindInstance[curve4 && x != 4 && y != 0, {x, y}, Integers]];
(* Función para calcular la pendiente entre dos puntos en la curva, 
   o la derivada en el punto si son iguales *)
Slope4[{x1_, y1_}, {x2_, y2_}] := 
  If[x1 == x2 && y1 == y2, 
     ImplicitD[curve4, y, x] /. {x -> x1, y -> y1}, 
     (y2 - y1)/(x2 - x1)];
(* Función para calcular la intersección en y de la línea entre dos puntos 
   o la tangente en el punto si son iguales *)
Intercept4[{x1_, y1_}, {x2_, y2_}] := y1 - Slope4[{x1, y1}, {x2, y2}]*x1; 
(* Función para encontrar el siguiente punto racional en la curva *)
nextRational4[{x1_, y1_}, {x2_, y2_}] := 
  {Slope4[{x1, y1}, {x2, y2}]^2 - CoefficientList[curve4[[2]], x][[3]] - x1 - x2, 
   -Slope4[{x1, y1}, {x2, y2}]^3 + Slope4[{x1, y1}, {x2, y2}]*(CoefficientList[curve4[[2]], x][[3]] + x1 + x2) - Intercept4[{x1, y1}, {x2, y2}]};
(* Función para convertir un punto en la curva elíptica a una solución diofántica *)
ellipticToDiophantine[n_, {x_, y_}] := 
  {(8*(n + 3) - x + y)/(2*(4 - x)*(n + 3)), 
   (8*(n + 3) - x - y)/(2*(4 - x)*(n + 3)), 
   (-4*(n + 3) - (n + 2)*x)/((4 - x)*(n + 3))};
(* Usar nextRational4 para iterar desde P4 hasta encontrar una solución 
   válida y positiva para la ecuación diofántica *)
sol4 = ellipticToDiophantine[n, 
   NestWhile[nextRational4[#, P4] &, P4, 
     ! AllTrue[ellipticToDiophantine[n, #], Function[item, item > 0]] &]];
(* Escalar la solución para obtener enteros mínimos *)
MinSol4 = sol4*(LCM @@ Denominator[sol4])
(* Suma de las tres variables*)
Total[MinSol4]

Solución

Concatenando Flag- con el resultado de Mathematica tenemos la ansiada flag.

Flag-195725546580804863527010379187516702463973843196699016314931210363268850137105614

Conclusiones

ChatGPT ha demostrado ser eficaz en el análisis y la resolución de problemas, siempre que se le proporcione el contexto adecuado. Sin embargo, es importante ser conscientes de que la respuesta proporcionada puede ser aproximada, especialmente si la solución requiere una gran cantidad de recursos computacionales. Por ejemplo, al trabajar con una ecuación diofántica y valores específicos para (x) e (y), ChatGPT puede ayudar a calcular puntos como (P), (2P), (3P), etc., pero hay que tener en cuenta que los resultados para estos puntos pueden ser estimaciones.

Finalmente, os invito a leer la solución de Mingliang Z. [4], en la que se resuelve el problema por completo y de forma muy detallada.

Enlaces

Reto Stego – Dos por Uno

El reto consiste en dos imágenes (v1.png y v2.png) que, a simple vista, parecen contener ruido aleatorio. Sin embargo, ambas forman parte de un sistema de criptografía visual en la que cada imagen contiene información parcial que no es interpretable por separado, pero que al combinarse correctamente revelan información oculta.

La trampa está en que la combinación no se hace con operaciones normales como suma, resta o multiplicación. El autor del reto espera que el jugador use una herramienta como StegSolve y pruebe distintas operaciones tipo XOR, AND o MUL hasta encontrar una transformación en la que uno de los métodos muestre algo significativo. El truco está en llegar a la conclusión de que una de las imágenes hay que invertirla antes de combinar ambas imágenes. Todo esto se puede hacer con StegSolve sin necesidad de utilizar ninguna herramienta adicional, pero voy a aprovechar para hacerlo con python y así de paso entendemos como realiza las operaciones StegSolve. En resumen, para resolver el reto basta con:

  1. Invertir (Colour Inversion XOR) una de las imágenes.
  2. Combinar ambas imágenes mediante Analyse > Combine images.
  3. Operación MUL del combinador.

La operación MUL no es una multiplicación normalizada, sino una multiplicación de enteros de 24 bits (0xRRGGBB) con overflow, algo que la mayoría de herramientas no replican correctamente.

¿Por qué aparece la solución con esa combinación

Las imágenes están preparadas para que ciertos bits de color en una imagen sean el complemento de los de la otra. Por tanto:

  • Si se muestran tal cual → parecen ruido
  • Si se combinan mediante XOR → parte de la estructura aparece, pero no se ve el resultado correcto
  • Si se combinan mediante MUL «normal» → tampoco aparece
  • Si se aplica la multiplicación bitwise exacta usada por StegSolve → se alinean las partes ocultas

La operación MUL de StegSolve no es una multiplicación de píxeles, es decir, no hace:

R = (R1 * R2) / 255

sino:

c1 = 0xRRGGBB  (pixel 1)
c2 = 0xRRGGBB  (pixel 2)
resultado = (c1 * c2) & 0xFFFFFF

Con todo esto claro, he preparado un script para combinar las imágenes de forma automática.

import os
import numpy as np
from PIL import Image

# =========================================================
# UTILIDADES
# =========================================================

def ensure_output():
    if not os.path.exists("output"):
        os.makedirs("output")

def load_rgb(path):
    img = Image.open(path).convert("RGB")
    return np.array(img, dtype=np.uint32)

def save_rgb(arr, name):
    Image.fromarray(arr.astype(np.uint8), "RGB").save(os.path.join("output", name))

def invert_xor(arr):
    """Colour Inversion (Xor) de StegSolve."""
    out = arr.copy()
    out[..., :3] = 255 - out[..., :3]
    return out

# =========================================================
# FUNCIONES DE COMBINER EXACTAS DE STEGSOLVE
# =========================================================

def to24(arr):
    """Convierte RGB → entero 0xRRGGBB."""
    return ((arr[..., 0] << 16) |
            (arr[..., 1] << 8)  |
             arr[..., 2])

def from24(c):
    """Convierte entero 0xRRGGBB → RGB."""
    R = (c >> 16) & 0xFF
    G = (c >> 8)  & 0xFF
    B = c & 0xFF
    return np.stack([R, G, B], axis=-1).astype(np.uint8)

# ------------------------------
# Funciones auxiliares
# ------------------------------

def comb_xor(c1, c2):
    return from24((c1 ^ c2) & 0xFFFFFF)

def comb_or(c1, c2):
    return from24((c1 | c2) & 0xFFFFFF)

def comb_and(c1, c2):
    return from24((c1 & c2) & 0xFFFFFF)

def comb_add(c1, c2):
    return from24((c1 + c2) & 0xFFFFFF)

def comb_add_sep(c1, c2):
    R = (((c1 >> 16) & 0xFF) + ((c2 >> 16) & 0xFF)) & 0xFF
    G = (((c1 >> 8)  & 0xFF) + ((c2 >> 8)  & 0xFF)) & 0xFF
    B = ((c1 & 0xFF) + (c2 & 0xFF)) & 0xFF
    return from24((R << 16) | (G << 8) | B)

def comb_sub(c1, c2):
    return from24((c1 - c2) & 0xFFFFFF)

def comb_sub_sep(c1, c2):
    R = (((c1 >> 16) & 0xFF) - ((c2 >> 16) & 0xFF)) & 0xFF
    G = (((c1 >> 8)  & 0xFF) - ((c2 >> 8)  & 0xFF)) & 0xFF
    B = ((c1 & 0xFF) - (c2 & 0xFF)) & 0xFF
    return from24((R << 16) | (G << 8) | B)

def comb_mul(c1, c2):
    """MUL EXACTO StegSolve"""
    return from24((c1 * c2) & 0xFFFFFF)

def comb_mul_sep(c1, c2):
    R = (((c1 >> 16) & 0xFF) * ((c2 >> 16) & 0xFF)) & 0xFF
    G = (((c1 >> 8)  & 0xFF) * ((c2 >> 8)  & 0xFF)) & 0xFF
    B = ((c1 & 0xFF) * (c2 & 0xFF)) & 0xFF
    return from24((R << 16) | (G << 8) | B)

def comb_lightest(c1, c2):
    """Máximo por canal"""
    R = np.maximum((c1 >> 16) & 0xFF, (c2 >> 16) & 0xFF)
    G = np.maximum((c1 >> 8)  & 0xFF, (c2 >> 8)  & 0xFF)
    B = np.maximum(c1 & 0xFF, c2 & 0xFF)
    return from24((R << 16) | (G << 8) | B)

def comb_darkest(c1, c2):
    """Mínimo por canal"""
    R = np.minimum((c1 >> 16) & 0xFF, (c2 >> 16) & 0xFF)
    G = np.minimum((c1 >> 8)  & 0xFF, (c2 >> 8)  & 0xFF)
    B = np.minimum(c1 & 0xFF, c2 & 0xFF)
    return from24((R << 16) | (G << 8) | B)

# Lista de transformaciones
TRANSFORMS = {
    "xor": comb_xor,
    "or": comb_or,
    "and": comb_and,
    "add": comb_add,
    "add_sep": comb_add_sep,
    "sub": comb_sub,
    "sub_sep": comb_sub_sep,
    "mul": comb_mul,
    "mul_sep": comb_mul_sep,
    "lightest": comb_lightest,
    "darkest": comb_darkest,
}

# =========================================================
# GENERACIÓN DE TODAS LAS COMBINACIONES
# =========================================================

def generate_all(imA, imB, labelA, labelB):
    print(f"Generando combinaciones: {labelA} vs {labelB}")

    c1 = to24(imA)
    c2 = to24(imB)

    for name, fun in TRANSFORMS.items():
        out = fun(c1, c2)
        save_rgb(out, f"{labelA}__{labelB}__{name}.png")

    print(f"{labelA}-{labelB} completado.")

# =========================================================
# MAIN
# =========================================================

ensure_output()

print("Cargando imágenes v1.png y v2.png...")
im1 = load_rgb("v1.png")
im2 = load_rgb("v2.png")

print("Generando invertidas estilo StegSolve...")
im1_x = invert_xor(im1)
im2_x = invert_xor(im2)

save_rgb(im1_x, "v1_xored.png")
save_rgb(im2_x, "v2_xored.png")

# Generar las 52 combinaciones:
generate_all(im1,   im2,   "v1",   "v2")
generate_all(im1_x, im2,   "v1x",  "v2")
generate_all(im1,   im2_x, "v1",   "v2x")
generate_all(im1_x, im2_x, "v1x",  "v2x")

print("\nResultados en carpeta ./output/")

A continuación os muestro parte de las imágenes generadas por el script. El secreto oculto era un código QR que nos da la solución al reto.

Challengeland.co Realistic 1

Alerta de Spoiler: El reto está en activo a fecha de publicación.

Spoiler alert: The challenge is still alive.

Este tipo de retos son de lo más variopinto pero una de las primeras cosas que se suele hacer es ver el código fuente y fijarse en los enlaces para hacernos una idea del tipo de vulnerabilidades a explotar. Empezamos por explorar el código fuente.

<html>
<head>
    <link href="../../assets/css/bootstrap.min.css" rel="stylesheet" type="text/css">
    <script src="../../assets/js/jquery.min.js" type="text/javascript"></script>
    <meta charset="UTF-8">
    <style>
        body{
            background-color: #111;
        }
        .main{
            background-color: #fff;
        }
    </style>
</head>
<body>
<div class="container main">
    <div class="jumbotron">
        <div class="container">
            <h1>ジェフのショップ</h1>
            <p>ジェフのショップへようこそ、私たちは...私たちは、新しいセキュリティシステムを幸せ持っています <img height="100" width="100" src="source/cat.gif"></p>
            <p><a class="btn btn-primary btn-lg" href="#" role="button">もっと詳しく知る »</a></p>
        </div>
    </div>
    <div class="row">
        <!-- Example row of columns -->
        <div class="row text-center">
            <div class="col-md-4">
                <h2>車</h2>
                <p class="text-center" style="margin: 20px;">我々 50,000円の価格で車を販売しています. </p>
                <p><a class="btn btn-danger " href="#" role="button">今すぐ購入<span class="glyphicon glyphicon-shopping-cart"></span></a></p>
            </div>
            <div class="col-md-4">
                <h2>剣</h2>
                <p class="text-justify" style="margin: 20px;">我々は、 25円の価格のために地球全体の最も鋭い剣を販売しています </p>
                <p><a class="btn btn-danger " href="#" role="button">今すぐ購入<span class="glyphicon glyphicon-shopping-cart"></span></a></p>
            </div>
            <div class="col-md-4">
                <h2>赤ジェフの毒</h2>
                <p class="text-justify" style="margin: 20px;">我々は毒、世界に存在するほとんどの不治の毒を販売しています。プライスレス90000.</p>
                <p><a class="btn btn-danger " href="#" role="button">今すぐ購入<span class="glyphicon glyphicon-shopping-cart"></span></a></p>
            </div>
        </div>
        <hr>
    </div>
    <div class="row">
        <!-- Example row of columns -->
        <div class="row text-center">
            <div class="col-md-4">
                <h2>魔法の脳</h2>
                <p class="text-justify" style="margin: 20px;">彼らは私たちの脳販売しているいくつかの場面で非常に便利です。その価格は約10円です.</p>
                <p><a class="btn btn-danger " href="#" role="button">今すぐ購入<span class="glyphicon glyphicon-shopping-cart"></span></a></p>
            </div>
            <div class="col-md-4">
                <h2>侵入テスト</h2>
                <p class="text-justify" style="margin: 20px;">私たちはあなたのウェブページやサーバーで完全なセキュリティを提供します。これはジェフの店の最高の製品です。</p>
                <p><a class="btn btn-danger " href="#" role="button">今すぐ購入<span class="glyphicon glyphicon-shopping-cart"></span></a></p>
            </div>
        </div>
        <hr>
    </div>
    <footer>
        <p>© ジェフは2015フンメルス</p>
    </footer>
</div>
</body>
</html>

A simple vista no hay nada sospechoso pero me llama la atención el enlace de la imagen del gatito «source/cat.gif«. Si fisgamos dentro de la carpeta «source» podemos ver que nos muestra el contenido de la carpeta como se puede apreciar en la imagen a continuación.

Contenido de la carpeta source

Contenido de la carpeta source

La carpeta «app» suena interesante. Hacemos clic y vemos lo siguiente.

Notice: Undefined index: commit in C:/xampp/htdocs/challenge-land/Realistic/shop/source/app/index.php on line 2

Vemos que el error mostrado muestra más información de la debida y la aprovecharemos en beneficio propio. Aquí la clave está en el fichero index.php y en el parámetro commit. Haremos una prueba para ver que vamos por el buen camino.

http://challengeland.co/Realistic/e4633b53f9/source/app/index.php?commit

y recibimos el error «The commit number not found.»

Probamos entonces añadiendo números al parámetro commit y nos fijamos en las respuestas.

http://challengeland.co/Realistic/e4633b53f9/source/app/index.php?commit=1
すべて更新
http://challengeland.co/Realistic/e4633b53f9/source/app/index.php?commit=2
Jeff@shop.com 2013年5月5日 - >ちょっと私たちは.htpasswdの使用する必要がジェームズと.htaccess保護...本当に安全です。すべてのファイルを更新します
http://challengeland.co/Realistic/e4633b53f9/source/app/index.php?commit=3
すべて更新
http://challengeland.co/Realistic/e4633b53f9/source/app/index.php?commit=4
すべて更新
http://challengeland.co/Realistic/e4633b53f9/source/app/index.php?commit=5
すべて更新
http://challengeland.co/Realistic/e4633b53f9/source/app/index.php?commit=6
James@shop.com 2013年5月7日に - >ジェフ、大丈夫、私はそれに仕事に行きます。すべてのファイルを更新し、覚えています - jeffshop:adm1n$2015*+
http://challengeland.co/Realistic/e4633b53f9/source/app/index.php?commit=7
すべて更新
http://challengeland.co/Realistic/e4633b53f9/source/app/index.php?commit=8
jeff@shop.com 2013年5月9日 - >ジェームズ、良い仕事...新しいユーザーとパスがあります jeffcrazyshop:h4rDtoF1nD

Hay varias respuestas sugerentes pero quizá la más relevante es la 8. Ahora bien, solo falta encontrar donde introducir el usuario y la clave.

Si volvemos a la página principal vemos en el enlace algo interesante, me refiero a index.php?page=index. Tras probar varias cosas la que funciona es la típica, admin.

http://challengeland.co/Realistic/e4633b53f9/index.php?page=admin

Al entrar vemos que nos redirige al index de nuevo tras pocos segundos. Aquí hay dos opciones, desactivar javascript para evitar la redirección o entrar directamente a la página admin.php. Optamos por el camino fácil entrando directamente en admin.php:

http://challengeland.co/Realistic/e4633b53f9/admin.php

Login

Login

Introduciendo los datos obtenidos anteriormente nos muestra la querida flag.

Enlaces

Blooper Tech Movie XIV – Parque Jurásico

En Parque Jurásico (1993), la informática no es solo un elemento narrativo, es una pieza clave del suspense y del conflicto. A diferencia de otras películas donde las pantallas muestran interfaces ficticias o visualmente espectaculares pero irreales, Parque Jurásico opta por una aproximación sorprendentemente sobria y auténtica.

Durante bastantes escenas, se nos muestran terminales, ventanas de código y comandos que, lejos de ser decorativos, pertenecen a sistemas reales utilizados por programadores profesionales de principios de los años 90. Este detalle, que puede pasar desapercibido para el público general, resulta especialmente interesante desde un punto de vista técnico. En otras palabras, el trabajo de producción es excelente y destaca como una de las películas más respetuosas con la informática real de su época.

No es “código de película”: es software real

Uno de los puntos más interesantes es que el código que aparece en pantalla no fue escrito para la película. No hay pseudocódigo, ni pantallas diseñadas solo para quedar bonitas en cámara. Lo que se ve es software real, ejecutándose en el entorno Macintosh Programmer’s Workshop (MPW), el kit oficial de Apple para desarrolladores en aquellos años. El sistema operativo que se reconoce es un Macintosh clásico (System 7) corriendo sobre máquinas de la serie Quadra, auténticos pepinos para la época. Vamos, que cuando John Hammond decía aquello de «no hemos reparado en gastos», también iba en serio en lo informático.

«No hemos reparado en gastos»

En este punto no se le puede reprochar demasiado a la película. En líneas generales es bastante fiel a la novela, aunque la resolución del problema de seguridad se aborda de forma distinta. En el libro es el ingeniero Ray Arnold quien detecta el fallo y consigue reconducir la situación. En la película, sin embargo, el personaje desaparece cuando va a los barracones a restablecer la corriente del parque, con el resultado que todos conocemos.

Lo curioso es que muchos personajes sí cambian de forma notable con respecto al libro, el niño es mayor y más friki de los ordenadores, Ray Arnold no muere y acaba salvando la situación, o Gennaro es más atlético y bastante más valiente. Sin embargo, el gran disparate técnico permanece intacto.

En la novela se menciona de pasada a un equipo de informáticos de Cambridge que supuestamente colaboró en el diseño del software. Aun así, la puesta en marcha y la explotación del sistema recaen prácticamente en una sola persona, Dennis Nedry. Evidentemente, tanto al libro como al guion les viene de perlas que todo dependa de una única persona para que el desastre sea posible, pero cuesta aceptar que en un parque donde todo está duplicado, el control informático central dependa de una sola persona.

Curiosamente, en uno de los monitores de Nedry se puede ver una foto de Oppenheimer con la frase «Beginning of baby boom», de la que podemos sacar la conclusión de que Nedry es perfectamente consciente de que su trabajo puede tener consecuencias catastróficas e irreversibles. También es un maravilloso guiño del equipo de producción que nos está indicando exactamente donde se va originar el desastre.

Al final, Parque Jurásico no va de dinosaurios, ni siquiera de genética. Va de personas. Y, más concretamente, de personas con demasiado poder y muy pocos compañeros de equipo y poca supervisión.

Desde el punto de vista informático, la película es casi entrañable. Todo es serio, profesional y real… hasta que descubrimos que el sistema más complejo jamás construido depende, en la práctica, de un solo programador cabreado, mal pagado y con demasiadas líneas de código en la cabeza. Ningún comité de arquitectura, ninguna auditoría externa, ningún segundo par de ojos. Solo Dennis Nedry y su teclado. ¿Qué podía salir mal?

Lo curioso es que ni la película ni el libro se molestan en disimularlo demasiado. Te hablan de sistemas redundantes, de seguridad, de control absoluto… pero el corazón digital del parque es un castillo de naipes. Eso sí, un castillo de naipes programado en máquinas de primera, con software real y pantallas que hoy siguen pareciendo más creíbles que muchas producciones actuales.

Quizá por eso Parque Jurásico envejece tan bien. Porque, incluso cuando se equivoca, lo hace con honestidad. No intenta venderte magia disfrazada de tecnología. Te muestra ordenadores de verdad, código de verdad y errores muy humanos. Y al final, tanto en la novela como en la película, el mensaje es el mismo, puedes clonar dinosaurios, diseñar parques imposibles y rodearte de la mejor tecnología del mundo, que si todo depende de una sola persona, tarde o temprano, el sistema se vendrá abajo.

Y no, el problema no eran los dinosaurios, nunca lo fueron.